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Abstract

We introduce COMBO - a fully neural
NLP system for accurate part-of-speech tag-
ging, morphological analysis, lemmatisation,
and (enhanced) dependency parsing. It pre-
dicts categorical morphosyntactic features
whilst also exposes their vector representa-
tions, extracted from hidden layers. COMBO
is an easy to install Python package with au-
tomatically downloadable pre-trained models
for over 40 languages. It maintains a bal-
ance between efficiency and quality. As it
is an end-to-end system and its modules are
jointly trained, its training is competitively
fast. As its models are optimised for accu-
racy, they achieve often better prediction qual-
ity than SOTA. The COMBO library is avail-
able at: https://gitlab.clarin-pl.eu/
syntactic-tools/combo.

1 Introduction

Natural language processing (NLP) has long recog-
nised morphosyntactic features as necessary for
solving advanced natural language understanding
(NLU) tasks. An enormous impact of contextual
language models on presumably all NLP tasks has
slightly weakened the importance of morphosyn-
tactic analysis. As morphosytnactic features are
encoded to some extent in contextual word embed-
dings (e.g. Tenney et al., 2019; Lin et al., 2019),
doubts arise as to whether explicit morphosyntactic
knowledge is still needed. For example, Glavas and
Vuli¢ (2021) have recently investigated an inter-
mediate fine-tuning contextual language models on
the dependency parsing task and suggested that this
step does not significantly contribute to advance
NLU models. Conversely, Warstadt et al. (2019) re-
veal the powerlessness of contextual language mod-
els in encoding linguistic phenomena like negation.
This is in line with our intuition about representing
negation in Polish sentences (see Figure 1). It does
not seem trivial to differentiate between the con-
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tradicting meanings of these sentences using con-
textual language models, as the word context is
similar. The morphosyntactic features, e.g. parts
of speech PART vs. INTJ, and dependency labels
advmod:neg vs. discourse:intj, could be beneficial
in determining correct reading.

In order to verify the influence of explicit mor-
phosyntactic knowledge on NLU tasks, it is neces-
sary to design a technique for injecting this knowl-
edge into models or to build morphosyntax-aware
representations. The first research direction was
initiated by Glavas and Vuli¢ (2021). Our objec-
tive is to provide a tool for predicting high-quality
morphosyntactic features and exposing their em-
beddings. These vectors can be directly combined
with contextual word embeddings to build mor-
phosyntactically informed word representations.

The emergence of publicly available NLP
datasets, e.g. Universal Dependencies (Zeman et al.,
2019), stimulates the development of NLP systems.
Some of them are optimised for efficiency, e.g.
spaCy (Honnibal et al., 2020), and other for ac-
curacy, e.g. UDPipe (Straka, 2018), the Stanford
system (Dozat and Manning, 2018), Stanza (Qi
et al., 2020). In this paper, we introduce COMBO,
an open-source fully neural NLP system which
is optimised for both training efficiency and pre-
diction quality. Due to its end-to-end architec-
ture, which is an innovation within morphosyn-
tactic analysers, COMBO is faster in training than
the SOTA pipeline-based systems, e.g. Stanza. As
a result of applying modern NLP solutions (e.g.
contextualised word embeddings), it qualitatively
outperforms other systems.

COMBO analyses tokenised sentences and pre-
dicts morphosyntactic features of tokens (i.e. parts
of speech, morphological features, and lemmata)
and syntactic structures of sentences (i.e. depen-
dency trees and enhanced dependency graphs). At
the same time, its module, COMBO-vectoriser, ex-
tracts vector representations of the predicted fea-
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Figure 1: UD trees of Polish sentences: (1) and (2) mean a non-sleeping situation and (3) means sleeping.

tures from hidden layers of individual predictors.
COMBO user guide is in §4 and a live demo is

available on the website http: //combo-demo.nlp.

ipipan.waw.pl.

Contributions 1) We implement COMBO (§2),
a fully neural NLP system for part-of-speech
tagging, morphological analysis, lemmatisation,
and (enhanced) dependency parsing, together with
COMBO-vectoriser for revealing vector represen-
tations of predicted categorical features. COMBO
is implemented as a Python package which is easy
to install and to integrate into a Python code. 2)
We pre-train models for over 40 languages that can
be automatically downloaded and directly used to
process new texts. 3) We evaluate COMBO and
compare its performance with two state-of-the-art
systems, spaCy and Stanza (§3).

2 COMBO Architecture

COMBUO'’s architecture (see Figure 2) is based
on the forerunner (Rybak and Wréblewska, 2018)
implemented in the Keras framework. Apart
from a new implementation in the PyTorch li-
brary (Paszke et al., 2019), the novelties are
the BERT-based encoder, the EUD prediction mod-
ule, and COMBO-vectoriser extracting embed-
dings of UPOS and DEPREL from the last hid-
den layers of COMBO’s tagging and dependency
parsing module, respectively. This section provides
an overview of COMBO’s modules. Implementa-
tion details are in Appendix A.

Local Feature Extractors Local feature extrac-
tors (see Figure 2) encode categorical features (i.e.
words, parts of speech, morphological features,
lemmata) into vectors. The feature bundle is con-
figurable and limited by the requirements set for
COMBO. For instance, if we train only a depen-
dency parser, the following features can be input
to COMBO: internal character-based word em-
beddings (CHAR), pre-trained word embeddings
(WORD), and embeddings of lemmata (LEMMA),
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Figure 2: COMBO architecture. Explanations:
CNN || Fc | [system-trained | | biLSTM | ! optional !

parts of speech (UPOS) and morphological features
(UFEATS). If we train a morphosyntactic analyser
(i.e. tagger, lemmatiser and parser), internal word
embeddings (CHAR) and pre-trained word embed-
dings (WORD), if available, are input to COMBO.
Words and lemmata are always encoded us-
ing character-based word embeddings (CHAR and
LEMMA) estimated during system training with a di-
lated convolutional neural network (CNN) encoder
(Yu and Koltun, 2016; Strubell et al., 2017).
Additionally, words can be represented using pre-
trained word embeddings (WORD), e.g. fastText
(Grave et al., 2018), or BERT (Devlin et al., 2019).
The use of pre-trained embeddings is an optional
functionality of the system configuration. COMBO
freezes pre-trained embeddings (i.e. no fine-tuning)
and uses their transformations, i.e. embeddings are
transformed by a single fully connected (FC) layer.
Part-of-speech and morphological embeddings
(UPOS and UFEATS) are estimated during system
training. Since more than one morphological fea-
ture can attribute a word, embeddings of all pos-
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sible features are estimated and averaged to build
a final morphological representation.

Global Feature Encoder The encoder uses con-
catenations of local feature embeddings. A se-
quence of these vectors representing all the words
in a sentence is processed by a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997; Graves and
Schmidhuber, 2005). The network learns the con-
text of each word and encodes its global (contex-
tualised) features (see Figure 3). Global feature
embeddings are input to the prediction modules.

[ROOT The car is red]

| 111

L1 LD
17717117

Figure 3: Estimation of global feature vectors.
biLSTM| | GLOBAL

Tagging Module The tagger takes global feature
vectors as input and predicts a universal part of
speech (UPOS), a language-specific tag (XPOS),
and morphological features (UFEATS) for each
word. The tagger consists of two linear layers fol-
lowed by a softmax. Morphological features build
a disordered set of category-value pairs (e.g. Num-
ber=Plur). Morphological feature prediction is thus
implemented as several classification problems.
The value of each morphological category is pre-
dicted with a FC network. Different parts of speech
are assigned different sets of morphological cate-
gories (e.g. a noun can be attributed with grammati-
cal gender, but not with grammatical tense). The set
of possible values is thus extended with the NA (not
applicable) symbol. It allows the model to learn that
a particular category is not a property of a word.

Lemmatisation Module The lemmatiser uses
an approach similar to character-based word em-
bedding estimation. A character embedding is con-
catenated with the global feature vector and trans-
formed by a linear layer. The lemmatiser takes a se-
quence of such character representations and trans-
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forms it using a dilated CNN. The softmax function
over the result produces the sequence of probabili-
ties over a character vocabulary to form a lemma.
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Figure 4: Prediction of dependency arcs.

Parsing Module Two single FC layers transform
global feature vectors into head and dependent em-
beddings (see Figure 4). Based on these represen-
tations, a dependency graph is defined as an adja-
cency matrix with columns and rows corresponding
to heads and dependents, respectively. The adja-
cency matrix elements are dot products of all pairs
of the head and dependent embeddings (the dot
product determines the certainty of the edge be-
tween two words). The softmax function applied to
each row of the matrix predicts the adjacent head-
dependent pairs. This approach, however, does not
guarantee that the resulting adjacency matrix is
a properly built dependency tree. The Chu-Liu-
Edmonds algorithm (Chu and Liu, 1965; Edmonds,
1967) is thus applied in the last prediction step.
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Figure 5: Prediction of grammatical functions.



The procedure of predicting words’ grammatical
functions (aka dependency labels) is shown in Fig-
ure 5. A dependent and its head are represented as
vectors by two single FC layers. The dependent em-
bedding is concatenated with the weighted average
of (hypothetical) head embeddings. The weights
are the values from the corresponding row of the ad-
jacency matrix, estimated by the arc prediction
module. Concatenated vector representations are
then fed to a FC layer with the softmax activation
function to predict dependency labels.

EUD Parsing Module Enhanced Universal De-
pendencies (EUD) are predicted similarly to depen-
dency trees. The EUD parsing module is described
in details in Klimaszewski and Wroblewska (2021).

3 COMBO Performance

Data COMBO is evaluated on treebanks from
the Universal Dependencies repository (Zeman
etal., 2019), preserving the original splits into train-
ing, validation, and test sets. The treebanks repre-
senting distinctive language types are summarised
in Table 4 in Appendix B.

By default, pre-trained 300-dimensional fastText
embeddings (Grave et al., 2018) are used. We also
test encoding data with pre-trained contextual word
embeddings (the tested BERT models are listed in
Table 5 in Appendix B). The UD datasets provide
gold-standard tokenisation. If BERT intra-tokeniser
splits a word into sub-words, the last layer embed-
dings are averaged to obtain a single vector repre-
sentation of this word.

Qualitative Evaluation Table 1 shows COMBO
results of processing the selected UD treebanks.!
COMBO is compared with Stanza (Qi et al.,
2020) and spaCy.” The systems are evaluated with
the standard metrics (Zeman et al., 2018): F1, UAS
(unlabelled attachment score), LAS (labelled attach-
ment score), MLAS (morphology-aware LAS) and
BLEX (bi-lexical dependency score).?

COMBO and Stanza undeniably outrun spaCy
models. COMBO using non-contextualised word

'Check the prediction quality for other languages at:
https://gitlab.clarin-pl.eu/syntactic—tools/
combo/~/blob/master/docs/performance.md.

Zhttps://spacy.io We use the project template
https://github.com/explosion/projects/tree/
v3/pipelines/tagger_parser_ud. The lemmatiser is
implemented as a standalone pipeline component in spaCy v3
and we do not test it.

3http://universaldependencies.org/conll18/
conlll8 ud_eval.py (CoNLL 2018 evaluation script).
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embeddings is outperformed by Stanza in many
language scenarios. However, COMBO supported
with BERT-like word embeddings beats all other
solutions and is currently the SOTA system for
morphosyntactic analysis.

Regarding lemmatisation, Stanza has an advan-
tage over COMBO in most tested languages. This
is probably due to the fact that Stanza lemmatiser
is enhanced with a key-value dictionary, whilst
COMBO lemmatiser is fully neural. It is not sur-
prising that a dictionary helps in lemmatisation of
isolating languages (English). However, the dictio-
nary approach is also helpful for agglutinative lan-
guages (Finnish, Korean, Basque) and for Arabic,
but not for Polish (fusional languages). Compar-
ing COMBO models estimated with and without
BERT embeddings, we note that BERT boost only
slightly increases the quality of lemma prediction
in the tested fusional and agglutinative languages.

For a complete insight into the prediction quality,
we evaluate individual UPOS and UDEPREL predic-
tions in English (the isolating language), Korean
(agglutinative) and Polish (fusional). Result visual-
isations are in Appendix C.

COMBO took part in IWPT 2021 Shared Task
on Parsing into Enhanced Universal Dependencies
(Bouma et al., 2021), where it ranked 4th.* In addi-
tion to ELAS and EULAS metrics, the third evalua-
tion metric was LAS. COMBO ranked 2nd, achiev-
ing the average LAS of 87.84%. The score is even
higher than the average LAS of 86.64% in Table 1,
which is a kind of confirmation that our evaluation
is representative, reliable, and fair.

Downstream Evaluation According to the re-
sults in Table 1, COMBO predicts high-quality de-
pendency trees and parts of speech. We therefore
conduct a preliminary evaluation of morphosyntac-
tically informed word embeddings in the textual
entailment task (aka natural language inference,
NLI) in English (Bentivogli et al., 2016) and Pol-
ish (Wréblewska and Krasnowska-Kieras, 2017).
We compare the quality of entailment classifiers
with two FC layers trained on max/mean-pooled
BERT embeddings and sentence representations es-
timated by a network with two transformer layers
which is given morphosyntactically informed word
embeddings (i.e. BERT-based word embeddings
concatenated with UPOS embeddings, DEPREL em-
beddings, and BERT-based embeddings of the head

*https://universaldependencies.org/iwpt21/
results.html
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System UPOS XPOS UFeat Lemma UAS LAS CLAS MLAS BLEX
English EWT (isolating)

spaCy 93.79 93.10 94.89 NA 8338 79.76 75.74 68.91 NA
Stanza 96.36 96.15 97.01 98.18 89.64  86.89 83.84 79.44 82.03
COMBO 95.60 95.21 96.60 9743  88.56  85.58 82.35 76.56 79.78

COMBOBERT 96.57 96.44 97.24 97.86 91.76  89.28 86.83 81.71 84.38
Arabic PADT (fusional)

spaCy 90.27 82.15 82.70 NA 7424  67.28 63.28 50.48 NA
Stanza 96.98 93.97 94.08 95.26 8796 83.74 80.57 74.96 76.80
COMBO 96.71 93.72  93.83 93.54 87.06 82.70 79.46 73.25 73.64

COMBOBERT 97.04 94.83 95.05 9395 89.21 85.09 82.36 76.82 76.67
Polish PDB (fusional)

spaCy 96.14 86.94  87.41 NA 86.73  82.06 79.00 65.42 NA
Stanza 98.47 9420 9442 9743 93.15 90.84 88.73 81.98 85.75
COMBO 98.24 9426  94.53 9747 9287 9045 88.07 81.31 85.53

COMBORBERT 98.97 96.54  96.80 98.06 95.60 93.93 92.34 87.59 89.91
Finnish TDT (agglutinative)

spaCy 92.15 93.34 87.89 NA 80.06 74.75 71.52 61.95 NA
Stanza 97.24 97.96 95.58 95.24 89.57 87.14 85.52 80.52 81.05
COMBO 96.72 98.02 94.04 88.73  89.73  86.70 84.56 77.63 72.42

COMBOBERT 98.29 99.00 97.30 89.48 9411 92.52 91.34 87.18 77.84
Korean Kaist (agglutinative)

spaCy 85.21 72.33 NA NA 76.15 68.13 61.98 57.52 NA
Stanza 95.45 86.31 NA 93.02 88.42 86.39 83.97 80.64 77.59
COMBO 94.46 81.66 NA 89.16 8731  85.12 82.70 78.38 72.79

COMBOBERT 95.89 85.16 NA 89.95 89.77 87.83 85.96 82.66 75.89
Turkish IMST (agglutinative)

spaCy 87.66 86.18 82.26 NA 6043 51.32 47.74 37.28 NA
Stanza 95.98 95.18  93.77 96.73  74.14  67.52 64.03 58.13 61.91
COMBO 93.60 92.36 88.88 96.47 72.00 6448 60.48 49.88 58.75

COMBORBERT 95.14 9427  93.56 97.54 78.53 72.03 68.88 60.55 67.13
Basque BDT (agglutinative with fusional verb morphology)

spaCy 91.96 NA 86.67 NA 76.11 70.28 66.96 54.46 NA
Stanza 96.23 NA  93.09 96.52 86.19 82.76 81.30 73.56 78.27
COMBO 94.28 NA  90.44 9547 84.64 80.44 78.82 67.33 74.95

COMBOBERT 96.26 NA  93.84 96.38 88.73  85.80 84.93 75.96 81.25
Average scores

spaCy 91.03 85.67 86.97 NA 76.73  70.51 66.60 56.57 NA
Stanza 96.67 93.96  94.66 96.05 87.01 83.61 81.14 75.60 77.63
COMBO 95.66 92.54  93.05 94.04  86.02 8221 79.49 72.05 73.98

COMBOBERT 96.88 94.37  95.63 9475 89.67 86.64 84.66 78.92 79.01

Table 1: Processing quality (F; scores) of spaCy, Stanza and COMBO on the selected UD treebanks (the language
types are given in parentheses). The highest scores are marked in bold.

spaCy Stanza COMBO

Tagger Lemmatiser Parser Total fastText BERT
English EWT | 00:22:34 | 02:08:51 02:12:17 02:29:13 06:50:21 01:26:55 1:54:11
Polish PDB 01:07:55 04:36:51 03:19:04 05:08:41 13:04:36 | 02:39:44 3:31:41

Treebank

Table 2: Training time of spaCy, Stanza and COMBO.

word). The morphosyntactically informed English ~ 20.77 pp and 5.44 pp, respectively. The Polish
NLI classifier achieves an accuracy of 78.84% and  syntax-aware NLI classifier achieves an accuracy
outperforms the max/mean-pooled classifiers by  of 91.60% and outperforms the max/mean-pooled
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classifiers by 17.2 pp and 7.7 pp, respectively.

Efficiency Evaluation We also compare spaCy,
Stanza and COMBO in terms of their efficiency,
i.e. training and prediction speed.’ According to
the results (see Tables 2 and 3), spaCy is the SOTA
system, and the other two are not even close to its
processing time. Considering COMBO and Stanza,
whose prediction quality is significantly better than
spaCy, COMBO is 1.5 times slower (2 times slower
with BERT) than Stanza in predicting, but it is
definitely faster in training. The reason for large
discrepancies in training times is the different archi-
tecture of these two systems. Stanza is a pipeline-
based system, i.e. its modules are trained one after
the other. COMBO is an end-to-end system, i.e. its
modules are jointly trained and the training process
is therefore faster.

In CLI mode, COMBO processes sentences us-
ing either a downloaded model or a model trained
by yourself. CLI works on raw texts and on
the CoNLL-U files (i.e. with tokenised sentences
and even morphologically annotated tokens):

combo —--mode predict \
—--model_path model.tar.gz \
——input_file input.conllu \
——output_file output.conllu

Model Training COMBO CLI allows to train
new models for any language. The only require-
ment is a training dataset in the CoNLL-U/CoNLL-
X format. In the default setup, tokenised sentences
are input and all possible predictors are trained:

combo —--mode train \
--training_data training.conllu \
——validation_data valid.conllu

Treebank Stanza COMBO COMBOBRBERT
English EWT | 4.7x 6.8 % 10.8x
Polish PDB 4.1x 5.8 10.6x

Table 3: Prediction time of Stanza and COMBO rela-
tive to spaCy (1x) on English and Polish test data.

4 Getting Started with COMBO

Prediction COMBO provides two main predic-
tion modes: a Python library and a command-line
interface (CLI). The Python package mode sup-
ports automated model download. The code snip-
pet demonstrates downloading a pre-trained Polish
model and processing a sentence:

from combo.predict import COMBO

nlp = COMBO.from_pretrained("polish")
sentence = nlp("Ala ma kota.")
print (sentence.tokens)

To download a model for another language, se-
lect its name from the list of pre-trained models.®
The Python mode also supports acquisition of DE-
PREL or UPOS embeddings, for example:

sentence = nlp("Ala ma kota.")
chosen_token = sentence.tokens[1]
print (chosen_token.embeddings["upostag"])

> A single NVIDIA V100 card is used in all tests.

The list of the pretrained COMBO models: https:
//gitlab.clarin-pl.eu/syntactic-tools/combo/—-/
blob/master/docs/models.mdffpre—trained-models

If we only train a dependency parser, the default
setup should be changed with configuration flags:
-—features with a list of input features and
——targets with a list of prediction targets.

5 Conclusion

We have presented COMBO, the SOTA system
for morphosyntacic analysis, i.e. part-of-speech
tagging, morphological analysis, lemmatisation,
and (enhanced) dependency parsing. COMBO is
a language-agnostic and format-independent sys-
tem (i.e. it supports the CoNLL-U and CoNLL-
X formats). Its implementation as a Python pack-
age allows effortless installation, and incorpora-
tion into any Python code or usage in the CLI
mode. In the Python mode, COMBO supports au-
tomated download of pre-trained models for mul-
tiple languages and outputs not only categorical
morphosyntactic features, but also their embed-
dings. In the CLI mode, pre-trained models can
be manually downloaded or trained from scratch.
The system training is fully configurable in respect
of the range of input features and output predic-
tions, and the method of encoding input data.

Last but not least, COMBO maintains a balance
between efficiency and quality. Admittedly, it is
not as fast as spaCy, but it is much more efficient
than Stanza considering the training time. Tested on
the selected UD treebanks, COMBO morphosyn-
tactic models enhanced with BERT embeddings
outperform spaCy and Stanza models.
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A  COMBO Implementation

COMBO is a Python package that uses the Py-
Torch (Paszke et al., 2019) and AllenNLP (Gardner
et al., 2018) libraries. The COMBO models used
in the evaluation presented in Section 3 are trained
with the empirically set default parameters speci-
fied below. The training parameters can be easily
configured and adjusted to the specifics of an indi-
vidual model.

A.1 Network Hyperparameters

Embeddings An internal character-based word
embedding is calculated with three convolutional
layers with 512, 256 and 64 filters with dilation
rates equal to 1, 2 and 4. All filters have the kernel
size of 3. The internal word embedding has a size
of 64 dimensions. All external word embeddings
are reduced to 100-dimensional vectors by a single
FC layer. As only words are used as input features
in the system evaluation, the local feature embed-
ding is a concatenation of the 64-dimensional inter-
nal and 100-dimensional external word embedding.
The global feature vectors are computed by two
biLSTM layers with 512 hidden units.

Prediction modules The tagger uses a FC net-
work with a hidden layer of the size 64 to predict
UPOS and FC networks with 128-dimensional hid-
den layers to predict XPOS and UFEATS.

The lemmatiser uses three convolutional layers
with 256 filters and dilation rates equal to 1, 2 and
4. All filters have the kernel size of 3. The fourth
convolutional layer with the number of filters equal
to the number of character instances in training data
is used to predict the probability of each character.
The final layer filters have the kernel size of 1. The
256-dimensional embeddings of input characters
are concatenated with the global feature vectors
reduced to 32 dimensions with a single FC layer.

The arc prediction module uses 512-dimensional
head, and dependent embeddings and the labelling
module uses 128-dimensional vectors.

COMBO-vectoriser currently outputs 64-
dimensional UPOS and 128-dimensional DEPREL
embeddings.

Activation function FC and CNN layers use hy-
perbolic tangent and rectified linear unit (Nair and
Hinton, 2010) activation functions, respectively.
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A.2 Regularisation

Dropout technique for Variational RNNs (Gal
and Ghahramani, 2016) with 0.33 rate is applied
to the local feature embeddings and on top of
the stacked biLSTM estimating global feature em-
beddings. The same dropout, for output and re-
current values, is used in the context of each biL-
STM layer. The FC layers use the standard dropout
(Srivastava et al., 2014) with 0.25 rate. Moreover,
the biLSTM and convolutional layers use L2 regu-
larisation with the rate of 1x 10~5, and the trainable
embeddings use L2 with the rate of 1 x 107°.

A.3 Training

The cross-entropy loss is used for all parts of
the system. The final loss is the weighted sum of
losses with the following weights for each task:

* (.05 for predicting UPOS and LEMMA,
* 0.2 for predicting UFEATS and (enh)HEAD,
* 0.8 for predicting (enh)DEPREL.

The whole system is optimised with ADAM
(Kingma and Ba, 2015) with the learning rate of
0.002 and 87 = B2 = 0.9. The model is trained
for a maximum of 400 epochs, and the learning
rate is reduced twice by the factor of two when
the validation score reaches a plateau.

B External Data Summary

Tables 4 and 5 list the UD dependency treebanks
and BERT models used in the evaluation experi-
ments presented in Section 3.

C Evaluation of UPOS and UDEPREL

The comparison of the universal parts of speech
predicted by the tested systems in English, Korean
and Polish data is shown in the charts in Figures 6,
7 and 8, respectively. The comparison of the qual-
ity of the predicted universal dependency types in
English, Korean and Polish data is presented in
Figures 9, 10 and 11, respectively.



Language Language Type UD Treebank #Words #Trees Reference
English isolating English-EWT 254,856 16,622  Silveira et al. (2014)
Arabic fusional Arabic-PADT 282,384 7,664 Hajic et al. (2009)
Polish fusional Polish-PDB 350,036 22,152 Wréblewska (2018)
Finnish agglutinative Finnish-TDT 202,453 15,136 Haverinen et al. (2014)
Korean agglutinative Korean-Kaist 350,090 27,363 Chun et al. (2018)
Turkish agglutinative Turkish-IMST 57,859 5,635 Sulubacak et al. (2016)
Basque agglutinative (fusional Basque-BDT 121,443 8,993  Aranzabe et al. (2015)
verb morphology)
Table 4: The UD treebanks used in the evaluation experiments.
Language BERT model Reference
Arabic bert-base-arabertv2 Antoun et al. (2020)
Basque berteus-base-cased Agerri et al. (2020)
English bert-base-cased Devlin et al. (2019)
Finnish bert-base-finnish-cased-vl  Virtanen et al. (2019)
Korean bert-kor-base Kim (2020)
Polish herbert-base-cased Mroczkowski et al. (2021)
Turkish bert-base-turkish-cased Schweter (2020)
Table 5: The BERT models used in the evaluation experiments.
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Figure 6: Evaluation of predicted universal parts of speech (UPOS) in the English test set (F-1-scores).
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Figure 7: Evaluation of predicted universal parts of speech (UPOS) in the Korean test set (F-1-scores).
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Figure 8: Evaluation of predicted universal parts of speech (UPOS) in the Polish test set (F-1-scores).
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Figure 9: Evaluation of predicted grammatical functions (UDEPREL) in the English test set (F-;-scores).
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Figure 10: Evaluation of predicted grammatical functions (UDEPREL) in the Korean test set (F-1-scores).
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Figure 11: Evaluation of predicted grammatical functions (UDEPREL) in the Polish test set (F-1-scores).
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