
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 28–34
November 7–11, 2021. ©2021 Association for Computational Linguistics

28

TransIns: Document Translation with Markup Reinsertion

Jörg Steffen
German Research Center for
Artificial Intelligence (DFKI)

Saarland Informatics Campus D3 2
66123 Saarbrücken, Germany
Joerg.Steffen@dfki.de

Josef van Genabith
DFKI and Saarland University

Saarland Informatics Campus D3 2
66123 Saarbrücken, Germany

Josef.Van_Genabith@dfki.de

Abstract
For many use cases, it is required that MT
does not just translate raw text, but complex
formatted documents (e.g. websites, slides,
spreadsheets) and the result of the translation
should reflect the formatting. This is chal-
lenging, as markup can be nested, apply to
spans contiguous in source but non-contiguous
in target etc. Here we present TransIns,
a system for non-plain text document transla-
tion that builds on the Okapi framework and
MT models trained with Marian NMT. We de-
velop, implement and evaluate different strate-
gies for reinserting markup into translated sen-
tences using token alignments between source
and target sentences. We propose a simple
and effective strategy that compiles down all
markup to single source tokens and transfers
them to aligned target tokens. Our evaluation
shows that this strategy yields highly accurate
markup in the translated documents that out-
performs the markup quality found in docu-
ments translated with popular translation ser-
vices. We release TransIns under the MIT
License as open-source software on https://
github.com/DFKI-MLT/TransIns. An online
demonstrator is available at https://transins.
dfki.de.

1 Introduction

In MT research, models are usually trained and
evaluated on plain text parallel data. But such mod-
els do not translate complex formatted documents
created, e.g., with MS Office. Translating such
documents comes with several challenges.

Text content has to be separated from formatting
and other code and made available as input to MT.
This requires a parser that handles the document
format at hand and provides access to the embed-
ded text content. After translation, the translated
text must be placed into the target document and a
further component is needed to create the translated
version of the document reflecting the formatting
and layout of the original document.

Furthermore, MT has to be able to handle inline
sentence markup, i.e. to make sure that markup
in the source sentence is correctly transferred to
the appropriate parts of the target sentence. It is
possible to train markup-aware MT models, e.g. by
replacing tags with unique mask tokens in training
and translation, as described in (Zhechev and van
Genabith, 2010), but in order to use an existing MT
model that is unaware of markup, the only option
is to remove markup from the source sentence and
to reinsert it at proper positions in the target sen-
tence after translation. Du et al. (2010) describe
a reinsertion strategy based on the phrase segmen-
tation indicated by the decoder. This is refined by
Hudik and Ruopp (2011) who use word alignments
instead of phrase segmentation. Joanis et al. (2013)
propose a hybrid approach combining phrase seg-
mentation with word alignments. Building on these,
Müller (2017) evaluates different markup handling
strategies and provides implementations as part of
the Zurich NLP mtrain1 framework.

In order to utilize state-of-the-art MT technol-
ogy and obtain alignments at the same time, we
use Marian2 NMT (Junczys-Dowmunt et al., 2018).
Marian allows transformer models to be trained
using guided alignment so that the decoder pro-
duces translations together with alignments be-
tween source and target tokens. The OPUS-MT3

project (Tiedemann and Thottingal, 2020) provides
pre-trained Marian models for many language pairs,
mostly trained with guided alignment based on
eflomal4 word alignments (Östling and Tiedemann,
2016), but unaware of markup.

Below, we describe TransIns, a translator
for non-plain text documents. We use the Okapi5

framework to process such documents and extend

1https://github.com/ZurichNLP/mtrain
2https://marian-nmt.github.io/
3https://github.com/Helsinki-NLP/Opus-MT
4https://github.com/robertostling/eflomal
5https://okapiframework.org/

https://github.com/DFKI-MLT/TransIns
https://github.com/DFKI-MLT/TransIns
https://transins.dfki.de
https://transins.dfki.de
https://github.com/ZurichNLP/mtrain
https://marian-nmt.github.io/
https://github.com/Helsinki-NLP/Opus-MT
https://github.com/robertostling/eflomal
https://okapiframework.org/

29

Okapi in order to query Marian for translations and
alignments. We study different alignment-based
markup reinsertion strategies, starting with the one
implemented in mtrain. We identify deficits and
present improved strategies. Finally, we evaluate
different strategies and compare the markup quality
between documents translated by TransIns and
popular translation services.

2 Okapi Framework

Okapi is a free open-source framework designed to
support localization and translation processes. It in-
cludes a collection of filters providing access to the
translatable content for many file formats. A work-
flow in Okapi is modelled as a pipeline of steps
that pass events through the pipeline. Events are
associated with resources, e.g. text units, and are
created when using a filter on a source document.
A typical Okapi pipeline for translating documents
consists of four steps:

The Raw Document to Filter Events Step
reads the source document with an associated filter
configuration and sends the filter events with the
associated text units down the pipeline.

The Segmentation Step breaks down the text
units into sentences, using rules specified in Seg-
mentation Rules eXchange format (SRX)6, a stan-
dard describing how to segment text.

The Leveraging Step sends each sentence to a
translation service and stores the generated transla-
tion with the sentence. Translation services are ac-
cessed via connectors. Okapi provides connectors
for popular translation services, but a connector for
Marian is not included.

The Filter Events to Raw Document Step cre-
ates the target document in the original format from
the translated text content coming in as filter events.

Okapi handles global document markup, but not
inline sentence markup. This has to be dealt with
by the translation service.7

3 TransIns System Description

Below, we describe how we build TransIns
(translation with markup reinsertion) based on the
Okapi translation pipeline by adding Marian spe-
cific components and setting up an additional Okapi
pipeline to support efficient processing.

6https://www.gala-global.org/srx-20-april-7-2008
7The Okapi supported popular translation services can

handle inline sentence markup, but details are not available.

Marian comes with a web-socket server that
loads a model once at start time and then listens for
single or batch translation queries. The server can
be run remotely, supporting distributed setups with
multiple Marian servers. In order to use Marian as
a translation service from the leveraging step, we
provide a Marian connector that implements the
Okapi connector interface.

Most MT models are trained on parallel data
where sentences are preprocessed, e.g. tokenized.
Sentences to be translated need to be preprocessed
in the same way. Also, the translation provided by
the MT model might require postprocessing, e.g
detokenization. With Marian, pre-/postprocessing
often resorts to Perl scripts written for the Moses
statistical MT system (Koehn et al., 2007). For
TransIns, we use a Python reimplementation
provided by Sacremoses8. Transformer MT models
often apply subword tokenization in preprocessing.
In postprocessing, subword tokenization has to be
undone in the translated sentence. For transformer
models, Byte-Pair Encoding (BPE) (Sennrich et al.,
2016) and SentencePiece (Kudo and Richardson,
2018) are popular subword tokenizers. We use pub-
licly available implementations of both subword to-
kenizers.9,10 Undoing the subword tokenization in
the translated sentence in postprocessing is straight-
forward by applying simple string replacements.
TransInswraps the steps described above in a

web service that provides corresponding endpoints
for pre-/postprocessing single sentences or batches.
The steps to apply can be configured separately for
each translation direction. The Marian connector
for Okapi calls this web service to preprocess a
sentence before translation and again afterwards to
postprocess the translated sentence.

The standard Okapi translation pipeline is some-
what inefficient: extracted sentences arrive at the
leveraging step one-by-one, i.e. only single sen-
tences are sent for pre-/postprocessing and trans-
lation to the corresponding services, even though
the services support batch processing. The accu-
mulated overhead of connecting and disconnecting
slows throughput significantly. For efficient batch
processing, we set up another Okapi pipeline, the
sentence collector pipeline, consisting of a Raw
Document to Filter Events Step and a Segmen-
tation Step followed by a custom Sentence Col-

8https://github.com/alvations/sacremoses
9https://github.com/rsennrich/subword-nmt

10https://github.com/google/sentencepiece

https://www.gala-global.org/srx-20-april-7-2008
https://github.com/alvations/sacremoses
https://github.com/rsennrich/subword-nmt
https://github.com/google/sentencepiece

30

Figure 1: TransIns processes the source document with two Okapi pipelines

lector Step that simply adds each sentence to a
local Batch Translator component. In a first run,
we process the source document with this pipeline.
Once the batch translator has collected all sentences
it sends batches to preprocessing, translation and
postprocessing. The batch translator also serves as
Cache: for each source sentence, it stores the re-
sulting target sentence. In a second run, we process
the source document with the translation pipeline,
but we adapt the Marian connector so that it queries
the batch translator cache. This avoids connections
to remote services, resulting in increased through-
put. Figure 1 shows the TransIns workflow with
both Okapi pipelines.11

4 Markup Reinsertion

Okapi provides sentences in a generic format. Sen-
tence internal tags are encoded using characters
from the Unicode private use area (PUA). Each
tag consists of two such characters. The first en-
codes the type of the tag, which is either opening
(e.g.), closing (e.g.), or isolated (e.g.

). The second character encodes a running
tag index. Tags provided by Okapi are always well-
formed and balanced, i.e. for each opening tag,
there is a corresponding closing tag, and tag pairs
are properly nested. Tag indices are unique, and so
is each tag pair.

The OPUS-MT models we use with TransIns
are unaware of markup, so the only option is to re-
move tags before translation and to reinsert them af-
terwards. The general workflow of all TransIns
markup reinsertion strategies is shown in Figure 2.

Alignments provided by Marian12 refer to token
indices. As tokenization is decided by preprocess-
ing, we can only map and remove tags from the
source sentence after preprocessing. Postprocess-
ing like detokenization might change target tok-
enization. Therefore tag reinsertion has to be done

11For debugging purposes, our system can be run without
the sentence collector pipeline.

12using the --alignment hard option

1 preprocess source sentence;
2 map each tag to a source token;13

3 remove tags from source sentence;
4 send source sentence to Marian for translation,

retrieve target sentence and alignments;
5 reinsert tags into target sentence based on the alignments

of the mapped source tokens;
6 clean up target sentence markup;
7 postprocess target sentence.

Figure 2: Markup reinsertion workflow

into the raw target sentence before postprocessing.
As reinserted tags may end up anywhere and in

any order in the target sentence, we do a cleanup
step after tag reinsertion that takes care of:

Tags in subword token sequences: If a tag is
inserted within a sequence of subword tokens, e.g.
as created by BPE, that tag has to be moved so
that the subword token sequence can be properly
merged in postprocessing. We move opening and
isolated tags to the front of the sequence and clos-
ing tags to the end.

Improper tag order: Reinserted tags in the tar-
get sentence might occur in incorrect order, i.e.
closing tag before corresponding opening tag. In
this case, we swap the tags. Furthermore, tag pairs
might be improperly nested. We reorder and, if
required, insert additional tags to restore a proper
nesting. E.g., a target sentence with two "overlap-
ping" tag scopes

(1) <i> x y </i> z

is fixed by adding two additional tags
(2) <i> x y </i> z

Below, we describe the markup reinsertion strate-
gies implemented in TransIns. For some strate-
gies the cleanup step has to be adapted or extended.

4.1 mtrain Strategy

mtrain (Müller, 2017) is implemented in the
Zurich NLP mtrain Python package.14 We reim-
plement it with the TransIns workflow (Figure

13Source tokens include subword tokens.
14https://github.com/ZurichNLP/mtrain/blob/master/

mtrain/preprocessing/reinsertion.py#L315

https://github.com/ZurichNLP/mtrain/blob/master/mtrain/preprocessing/reinsertion.py#L315
https://github.com/ZurichNLP/mtrain/blob/master/mtrain/preprocessing/reinsertion.py#L315

31

2) as follows: in step 2, tags are always mapped to
the following token.15 In step 5, we iterate over the
target tokens left to right. For each target token for
which there is an alignment with a source token,
we check if that source token has a tag mapped to it.
If yes, that tag is moved in front of the target token.
After the iteration, any remaining source sentence
tags that have not been moved are added at the end
of the target sentence. Such tags occur if they are
mapped to a source token without alignment.

Example (3) demonstrates the strategy. The first
row contains the source sentence with tags. Tag
and mapped token are underlined. The last row
contains the target sentence with reinserted tags,
with vertical lines indicating alignments.

Hello World !
(3)

Hallo Welt !

 is mapped to "World", is mapped to "!".
"Welt" is aligned with "World", so is moved in
front of "Welt". The same is done for "!" and ,
resulting in correct markup reinsertion. But if the
word order in the target language is different from
the source language, mtrain fails:

Porte verte !
(4)

 Green door !

In (4) "door" is incorrectly rendered bold. In (5)
both "Green" and "door" end up with incorrect
markup:16

 Porte verte !
(5)

 Green door !

In conclusion, mtrain is only suitable for lan-
guage pairs with similar word order and often fails
otherwise. Below, we propose improvements to
compensate for mtrain deficits.

4.2 mtrain++ Strategy

The first improvement comes from the insight that
tags do not generally refer to the following token.
mtrain++ only maps opening and isolated tags
to the following token, but closing tags are mapped
to the previous token and moved after the aligned
target token. This fixes (4) (and also (5)):

Porte verte !
(6)

 Green door !

15A tag at the end of a sentence is mapped to an artificial
end-of-sentence token.

16 and are swapped in the cleanup step.

But mtrain++ requires an adaptation of the
cleanup step, as (7) shows:

 Porte verte !
(7)

Green door !

Swapping the tags here is not sufficient. We also
have to consider the tag type. After swapping, we
move the opening tag in front of the previous token
and the closing tag after the following token:

(8) Green door !

Another deficit of mtrain is the handling of
tags mapped to unaligned source tokens.17 Un-
aligned tags are added at the end of the target sen-
tence, resulting in a counter-intuitive markup rein-
sertion:

a <i> b c d </i> e
(9)

x y z <i> </i>

mtrain++ handles unaligned tags in the source
sentence: opening and isolated unaligned tags are
moved in front of the following aligned token and
closing unaligned tags after the previous aligned
token. We then remap the tags accordingly. This
results in correct markup reinsertion:

a b <i> c </i> d e
(10)

x <i> y </i> z

A further problem may occur with 1-to-n align-
ments where a single source token is aligned to
multiple target tokens. Tags mapped to such a
source token are moved by mtrain, so they are
only applied to the first of the possible n aligned
target tokens:

Police arrests man
(11)

Polizei nimmt Mann fest

mtrain++ copies opening and closing tags in-
stead of moving them, resulting in correct markup
reinsertion for (11), where both "nimmt" and "fest"
are correctly rendered bold.

But copying tags instead of moving them comes
at a price: tags in the target sentence are poten-
tially no longer well-formed and balanced. E.g., an
opening tag may be copied twice while the corre-
sponding closing tag is only copied once if they are
mapped to different source tokens. We extend the
cleanup step so that well-formedness and balance
are restored.

But even with all the improvements, there still
remain configurations where the markup is not rein-
serted correctly to the target sentence:

17We call such tags unaligned tags in the following.

32

 Search Site !
(12)

Seite durchsuchen !

The underlying problem is that mtrain++ only
considers tokens immediately next to tags. Source
tokens located within a tag pair’s scope but not next
to a tag, as "Site" in (12), may be aligned with a
target token outside of that tag pair’s scope in the
target sentence.

Another problem are tag pairs with a contiguous
scope in the source sentence that should be non-
contiguous in the target sentence:

a <i> b c </i> d
(13)

<i> w x y z </i>

In (13) only w and z should be rendered italic.
Rather than continuing to fix individual problem

cases, below we develop a new mapping strategy
designed to provide a general solution.

4.3 Complete Mapping Strategy (CMS)

CMS is based on the insight that if (i) alignments
steer markup transfer, and (ii) alignments relate
tokens, then compiling down tag pairs to their min-
imal token level scope should solve most if not
all of the problems presented in Sections 4.1 and
4.2. Formally, a tagged sentence is a sequence
s = s1 . . . sm consisting of one or more sequence
elements si, where si is either a raw token w or a
function ti(sj) representing a tag pair with scope
over a sequence sj .18 This allows for sentences
with arbitrarily nested tag pairs and ensures that
markup is well-formed. We use t1i (. . . (t

k
j (.))) to

denote one or more (k) nested tag pairs with scope
(.). The algorithm compiles tag pairs to their mini-
mal scopes t1i (. . . (t

k
j (w))) by repeatedly applying

(14) tkj (s1 . . . sm) → tkj (s1) . . . t
k
j (sm)

until no tag pair with scope sequence of length >
1 remains. In terms of tag mapping, this results
in each tag pair being mapped to all tokens in its
original scope, hence the term complete mapping.19

The compilation is meaning-preserving, e.g.
(15) x <i> y </i> z

is turned into
(16) x <i> y </i> z

CMS simplifies markup reinsertion significantly:
as minimum scope tag pairs "travel" with token
alignments, tag balance, well-formedness and com-
plex positioning in the target sentence are taken

18Isolated tags are considered as tag pairs with empty scope,
though they have an implicit scope over all following tokens.

19Isolated tags are still mapped to the following token.

care of by the alignments. Tag swapping, reorder-
ing or insertion is no longer required in the cleanup
step. Unaligned opening and closing tags no longer
have to be moved.20 The cleanup step only needs
to take care of tags in subword token sequences.
Readers are invited to check that all "toxic" exam-
ples discussed in Sections 4.1 and 4.2 are handled
correctly by CMS. Finally to remove clutter, we
simplify the target sentence markup by eliminating
closing tags immediately followed by the corre-
sponding opening tag, so

(17) x y z

simplifies to
(18) x y z

While CMS ensures that target tokens "inherit"
the markup of their aligned source tokens, there
may be unaligned target tokens. Such tokens would
never receive markup, resulting in gaps:

 a
(19)

 x y z

In such configurations, rendering "y" bold seems
appropriate. We implement a tag interpolation
scheme for target tokens within gaps. A gap is a
target token sequence not longer than a specified
maximum gap size where all target tokens have no
markup, either because they are unaligned or they
are aligned with a source token without tags. The
latter is often the result of incorrect alignments that
tag interpolation can correct.21 Tag interpolation
inspects the tags applied to the neighbor tokens in
front of and after the gap. Identical tags22 found
with both neighbor tokens are applied to the gap
tokens. E.g., applying tag interpolation to a gap of
size 2 with tokens x and y turns

(20) <i> w </i> x y z

(after simplification) into
(21) <i> w </i> x y z

5 Evaluation

To the best of our knowledge, there are no pub-
lic standard evaluation data sets for markup trans-
fer yet. We collect 10 complex web pages from
spiegel.de, a well-known German news provider,
that contain a total of 378 sentences with inline
markup. We convert the web pages to MS Office

20Unaligned isolated tags are still moved in front of the
following aligned token.

21Tag interpolation produces a markup error if a gap target
token is correctly aligned with a source token without tags.

22Identical tags have the same tag type and index.

33

Reinsertion Strategy
de –> fr de –> en

Marian
Alignments

Perfect
Alignments

Marian
Alignments

Perfect
Alignments

mtrain 104 94 98 85
mtrain++ 23 31 28 31

CMS

max gap 3 12 (8 + 4) 4 7 (3 + 4) 4
max gap 2 9 (8 + 1) 1 7 (3 + 4) 4
max gap 1 9 (8 + 1) 1 5 (3 + 2) 2
max gap 0 10 (10 + 0) 0 5 (5 + 0) 0

Table 1: Markup transfer errors by reinsertion strategy

MT Service de –> fr de –> en
Google 119 55
DeepL 129 78

Microsoft 261 235
CMS (max gap 1) 58 (48 + 10) 32 (21 + 11)
CMS (max gap 0) 57 (57 + 0) 25 (25 + 0)

Table 2: Markup transfer errors by translation service

docx documents, preserving the relevant markup,
and examine translations to French and English
using the latest OPUS-MT models. As a quality
measure of markup transfer, we count how many
target tokens end up with incorrect markup.23

Even though CMS can handle all toxic examples
described in Section 4, as a sanity check, we do a
small evaluation of the three TransIns reinser-
tion strategies using the first evaluation document
containing 40 sentences with inline markup. We do
this for alignments as provided by the OPUS-MT
models and also for hand-corrected perfect align-
ments.24 For CMS and Marian alignments, we
distinguish between errors resulting from incorrect
alignments (first number in brackets) and errors
from incorrect tag interpolation (second number
in brackets). We also examine different maximum
gap sizes. Table 1 shows the results.

For both translation directions mtrain pro-
duces most errors. Using perfect alignments yields
only a minor improvement. mtrain++ reduces
the number of errors by about two-thirds. Surpris-
ingly, the quality for both translation directions
is slightly better when using Marian alignments
instead of perfect alignments. This is due to the
fact that a single change in alignment, even if it
is a correction, can potentially change the markup
of multiple tokens. With CMS, a change in align-
ment only effects a single target token, making this
strategy less volatile.

For both types of alignments, CMS produces the
smallest number of errors. The results are similar

23We ignore punctuation tokens with incorrect markup.
24We hand-correct 8% of the de –> fr and 10% of the de –>

en Marian token alignments.

for both translation directions. For de –> fr, using
Marian alignments with a maximum gap size of
3, we find 8 errors caused by incorrect alignments
and 4 errors caused by incorrect tag interpolation.
Reducing the maximum gap size to 2 and 1 de-
creases the number of interpolation errors, as tag
interpolation is applied to fewer gaps. With a gap
size of 0, i.e. with no tag interpolation, the number
of errors caused by incorrect alignments increases
by 2. These errors are now no longer corrected by
tag interpolation. With perfect alignments, only the
errors caused by incorrect tag interpolation remain.

The main focus of our evaluation is the com-
parison of CMS with popular translation services.
These services are able to handle markup, but the
details are unknown to us. Table 2 shows the er-
rors for all evaluation document translations.25 The
performance for de –> en is always better than for
de –> fr. This is probably due to the more similar
word order between German and English. For both
translation directions, CMS produces less than half
as many markup errors as the next best commercial
MT service. Errors decrease when omitting tag
interpolation, i.e. the number of corrected align-
ment errors is smaller than the number of errors
introduced by incorrect tag interpolation. We see
this as an indicator of the high quality alignments
provided by the OPUS-MT models.

6 Conclusion

In this paper, we present TransIns, an open-
source system implementing several alignment
based strategies for markup reinsertion in trans-
lated documents. mtrain constitutes a baseline,
while mtrain++ can handle more complex con-
figurations. CMS correctly handles all problem
cases discussed and outperforms the markup trans-
fer in documents translated with popular translation
services.

25All evaluation documents are available at https://github.
com/DFKI-MLT/TransIns/tree/master/evaluation.

https://github.com/DFKI-MLT/TransIns/tree/master/evaluation
https://github.com/DFKI-MLT/TransIns/tree/master/evaluation

34

Acknowledgements

We thank Thierry Declerck and Cristina España
i Bonet for feedback and productive discussion.
We also thank the anonymous reviewers for their
constructive reviews. This work is supported in part
by the German Federal Ministry of Education and
Research (BMBF) under funding code 01IW20010
(CORA4NLP).

References
Jinhua Du, Johann Roturier, and Andy Way. 2010.

TMX markup: A challenge when adapting SMT to
the localisation environment. In Proceedings of the
14th Annual conference of the European Association
for Machine Translation, Saint Raphaël, France. Eu-
ropean Association for Machine Translation.

Tomáš Hudik and Achim Ruopp. 2011. The integration
of Moses into localization industry. In Proceedings
of the 15th Annual conference of the European Asso-
ciation for Machine Translation, Leuven, Belgium.
European Association for Machine Translation.

Eric Joanis, Darlene Stewart, and Samuel Larkin. 2013.
Transferring markup tags in statistical machine trans-
lation: A two-stream approach. In Proceedings of
MT Summit XIV Workshop on Post-editing Technol-
ogy and Practice, pages 73–81.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Mathias Müller. 2017. Treatment of markup in sta-
tistical machine translation. In Proceedings of the

Third Workshop on Discourse in Machine Transla-
tion, pages 36–46, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Robert Östling and Jörg Tiedemann. 2016. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics,
106:125–146.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Jörg Tiedemann and Santhosh Thottingal. 2020.
OPUS-MT – building open translation services for
the world. In Proceedings of the 22nd Annual Con-
ference of the European Association for Machine
Translation, pages 479–480, Lisboa, Portugal. Euro-
pean Association for Machine Translation.

Ventsislav Zhechev and Josef van Genabith. 2010.
Seeding statistical machine translation with trans-
lation memory output through tree-based structural
alignment. In Proceedings of the 4th Workshop
on Syntax and Structure in Statistical Translation,
pages 43–51, Beijing, China. Coling 2010 Organiz-
ing Committee.

https://www.aclweb.org/anthology/2010.eamt-1.23
https://www.aclweb.org/anthology/2010.eamt-1.23
https://www.aclweb.org/anthology/2011.eamt-1.9
https://www.aclweb.org/anthology/2011.eamt-1.9
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/W17-4804
https://doi.org/10.18653/v1/W17-4804
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
http://ufal.mff.cuni.cz/pbml/106/art-ostling-tiedemann.pdf
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/2020.eamt-1.61
https://www.aclweb.org/anthology/2020.eamt-1.61
https://www.aclweb.org/anthology/W10-3806
https://www.aclweb.org/anthology/W10-3806
https://www.aclweb.org/anthology/W10-3806

