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Abstract

Text annotation tools assume that their user’s
goal is to create a labeled corpus. However,
users view annotation as a necessary evil on
the way to deliver business value through NLP.
Thus an annotation tool should optimize for
the throughput of the global NLP process, not
only the productivity of individual annotators.
LightTag is a text annotation tool designed and
built on that principle. This paper shares our
design rationale, data modeling choices, and
user interface decisions then illustrates how
those choices serve the full NLP lifecycle.

1 Introduction

Building supervised learning models is like oper-
ating a manufacturing plant. Raw materials(data)
need to be refined and processed(annotated) as a
precursor to final assembly. Some manufacturing
plants rely on a supply chain (outsource annota-
tion) while others are vertically integrated (annotate
in house). According to the theory of constraints
(Goldratt and Cox, 2016), a manufacturing process
should optimize the global throughput and not any
individual sub-process .

LightTag is a text annotation tool built on the
premise of global optimization by addressing anno-
tator as well as project managers and data scientists
who manage the work and enforce production qual-
ity. LightTag is a commercial offering with an
unlimited free tier for academic use 1. LightTag is
unique not only in philosophical outlook but also
in it’s technical implementation and user interface
choices, which we share in this paper.

The remainder of this article is structured as fol-
lows. Section 2 describes prior art. Section 3 an-
alyzes requirements and user personas to derive
LightTag’s goal. Section 4 describes novel user
facing features. Section 5 highlights LightTag’s
data model and it’s implications. We conclude

1Academic free tier avalible at https://lighttag.
io/signup/academic

with a number of case studies from industry and
academia.

2 Related Work

Emacs (Stallman, 1981) was (shockingly) used to
annotate the Penn Treebank (Marcus et al., 1993).
Afterwards a series of standalone annotation tools
emerged such as Salsa (Erk et al., 2003) and ITU
(Eryiğit, 2007) for treebanks or BOEMIE (Fragkou
et al., 2008) and ABNER (Settles, 2005)for the
biomedical domain. This generation of tools is
notable for being standalone software as opposed
to the later web-based tools. DUALIST (Settles,
2011) stands out as an influential system due to it’s
inclusion of active learning and feature labeling.

The following generation of annotation tools
were the first to leverage the browser as a user in-
terface platform and include the Brandeis Annota-
tion Tool (Verhagen, 2010), GATE Teamware (Cun-
ningham and Bontcheva, 2011), BRAT (Stenetorp
et al., 2012) and WebAnno (Yimam et al., 2013).
These also leveraged a client-server architecture
to enable multi-user annotation projects and server
side automation. The recent trends and ubiquity
of NLP, along with improved web development
frameworks and simplified delivery mechanisms,
have inspired a new generation of tools which cater
to data scientists as opposed to academics and em-
phasize ergonomics. This generation of tools, of
which LightTag is a contemporary, include the open
source Docanno (Nakayama et al., 2018) as well as
the commercial Prodi.gy (Montani and Honnibal,
2018) which focuses on annotator productivity via
active learning, and TagTog (Cejuela et al., 2014)
which optimizes for bio-medical annotation.

LightTag’s generation of annotation tools offer
roughly the same set of capabilities as the previous
generation, that of WebAnno, INCEpTION and
BRAT. Yet the current generation of tools enjoys
a measure of commercial success, despite estab-
lished and free alternatives. We posit that the cur-

https://lighttag.io/signup/academic
https://lighttag.io/signup/academic
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rent generation of tools has a stronger focus on user
experience, ease of use and integration with the end
users goals and systems. Thus, despite the simi-
lar feature sets between the two generations, we
offer the commercial success of LightTag and it’s
contemporaries as proof of innovation that satisfies
previously unmet needs.

3 Goals and Design

In designing LightTag, we relied on the manufac-
turing metaphor mentioned above and identified
three user personas and five broad needs that need
to be served to optimize the overall "NLP process"
as opposed to the local-maxima of individual anno-
tator.

We assume that the end user’s goal is to solve a
business problem with NLP and that text annotation
is a bottleneck in that process (Sambasivan et al.,
2021) . We distinguish between the rate at which
labeled data is produced, and the rate at which
labeled data propagates through the end user’s NLP
process and optimize for the latter.

3.1 Requirements Of An Annotation Tool

Expressivity An annotation tool should allow the
user to express the kinds of annotation they need
to carry out. LightTag supports span annotations,
single and multi-label document classification and
relationship annotation, including dependency and
constituency grammars. LightTag also emphasizes
working with "text in the wild" and supports RTL
languages, unicode, and very long documents such
as legal contracts and electronic medical records.

Productivity In our taxonomy, productivity is
the rate at which an annotator can express the re-
quired annotation. All else being equal, the desired
productivity is "As much as possible."

Coordination Larger annotation projects need
to coordinate the work among the annotators. This
can be as simple as sending out N examples to be
labeled by K annotators such that M annotators an-
notate each example. More complex requirements
include sending out tasks to subsets of annotators
(based on language or security clearance) or dy-
namically scheduling work based on agreement
levels.

Review and Quality Control As in manufac-
turing, the quality of an annotation needs to be
reviewed before delivery. The ability to efficiently
review annotations from multiple annotators and/or
models is required for larger annotation projects.

Analytics Project managers and data consumers
need to know what is happening. That can include
the project’s progress, inter-annotator agreement,
or annotator accuracy.

3.2 User Personas
Modern annotation projects have multiple, distinct,
participants whose requirements from an annota-
tion tool differ. LightTag recognizes three pri-
mary user personas annotators, data scientists, and
project managers

Personas

Needs

Annotator

Manager

Data Scientist

Expression

Efficency

QA

Coordination

Figure 1: A visualization of the mapping between user
personas and their requirements. An annotation plat-
form caters to multiple personas who have different
needs.

Annotators have three primary needs from an
annotation tool. First, they should express the re-
quired annotation (an entity, a document class, re-
lationships). Second, the tooling should help anno-
tators avoid errors such as mistakenly annotating
trailing whitespace. Third, the annotator’s through-
put should be maximized subject to their other re-
quirements.

Project Managers need to control what work is
being done and understand the project’s cadence
and productivity. A common best practice (Hovy
and Lavid, 2010) is to have more than one annota-
tor annotate each example. However, coordinating
and distributing the work is complex, and the effort
scales with the number of annotators while being
constrained by the availability of the project man-
ager. LightTag resolves this issue by automating
the distribution and management of work according
to a project manager’s configuration.

Data Scientists are the final consumer of labeled
data and are responsible for assessing it is quality
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and suitability. LightTag minimizes their heavy
lifting by calculating inter-annotator agreement,
precision and recall (based on reviewed data), and
other metrics. This allows data scientists to spend
more time in differentiated data science instead of
joining excel files.

4 User Interface and User Facing
Features

In this section, we present user interface decisions
and user-facing features that are, to our knowledge,
unique to LightTag.

4.1 Annotation Features

Contextual Display: Conversational annotation
requires preceding messages in order to interpret
and properly annotate their followers. LightTag
supports this ability through "contextual display,"
whereby a project manager can configure to display
all examples with a particular metadata attribute
(such as conversation_id) at once and sort the items
by a separate attribute (such as timestamp). Thus
annotators can see the entire conversation but an-
notate each message individually.

Drag And Drop Relationship Annotation:
Relationship annotation is a common feature of text
annotation tools. To our knowledge, all text annota-
tion tools that offer this functionality implement it
as arcs drawn between entities in text, implemented
with Scalable Vector Graphics (SVG).

LightTag implements relationship annotation via
the dragging and dropping of entities onto each
other and visualizes a full tree in a separate pane.
Inspired by the Trees3 program Phillips (1998),
users can annotate partial trees and drag and drop
branches to annotate richer structures.

Of note is the ability to annotate constituency
grammars by defining non-terminal nodes. This
feature is often used to "group together" related
nodes in a "container" such as in resume annotation,
where a title, company and dates are all constituents
of a single job.

Figure 2: Relationship annotation of a resume with a
constituency grammar. The "Sales Job" and "Period"
nodes are user defined non-terminals while the other
nodes are entities from the text

Large Taxonomies: Annotation starts with a
taxonomy, the collection of concepts that will be
annotated. Some projects are based on taxonomies
with hundreds or thousands of classes or entity
types. In these cases, it is infeasible to display the
entire taxonomy in a static list. Long lists slow
down annotators and introduces an availability bias
(Tversky and Kahneman, 1973) where annotators
are more likely to select entities that are visible and
at the top of a list, thus biasing the resulting data.

LightTag resolves this issue by providing a
searchable field for classes and entities, allowing
the annotator to quickly find the correct class by
searching.

Figure 3: The user can search a taxonomy of a few
thousand classes to quickly find the most relevant class,
without scrolling through a list

Unobtrusive Pre-Annotations: Many annota-
tion tools offer pre-annotations to increase anno-
tator productivity. The efficacy of pre-annotations
depends on both their accuracy and how the user
interacts with them, particularly when the pre-
annotations are incorrect. If a user must make an
action for every pre-annotation, incorrect ones risk
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increasing the total number of actions and dimin-
ishing productivity.

Figure 4: Unobstrusive pre-annotations are displayed
as colored underlines. When the user hovers over a pre-
annotation they can accept or reject it. A batch accept
butto (not displayed) allows users to save clicks by ac-
cepting all at once.

LightTag displays pre-annotations in as an unob-
trusive underline. The user can ignore them (and
thus take no action) or accept/reject them by hov-
ering over a pre-annotation and clicking. LightTag
offers a batch accept button allowing users to ac-
cept many pre-annotations at once.

We find that this mode of interaction has a signif-
icant effect on annotator productivity, with a near
doubling of annotator throughput achieved when
only 50% of pre-annotations are accepted.

Annotating With Search Like other annotation
tools, LightTag defaults to displaying examples to
annotate one at a time. However, many datasets are
sparse with respect to the classes or entities that
users need to annotate. In such cases having anno-
tators annotate each example, where the majority
are irrelevant, is ineffective.

To address this issue, LightTag follows Atten-
berg and Provost (2010) by offering a "Search
Mode" in which the entire dataset is displayed in
an infinite scroll, and the user can narrow it down
using search queries.

LightTag’s implementation of search is notewor-
thy because it is operationally simple while remain-
ing fast at scale. Cox (2012) demonstrated the use
of tri-gram indices to speed up plain text and reg-
ular expression search and Korotkov (2012) intro-
duced an implementation to Postgres. Leveraging
these, LightTag can offer users very fast regular
expressions search with minimal operational over-
head.

Figure 5: Annotating with search. Users can write
search queries or regular expressions to narrow down
the set of documents to work on. In this example, doc-
uments from the Federal Registar are annoted for men-
tions of foreign policy.

4.2 Review

Project managers and data scientists want to review
annotations produced by both annotators and, later,
by models. LightTag’s Review mode displays all
annotations made in a selected example and con-
solidates agreements and conflicts. Reviewers can
narrow the scope of review to human or model an-
notations and automatically accept all annotations
that meet a certain agreement threshold.

Figure 6: Agreement detection powered by the rela-
tional model. Conflicts are easily detected by the sys-
tem and visually displayed during review. A reviewer
can click on the button to accept all annotations meet-
ing a specific criteria

4.2.1 Batch Lexical Review
We observe that the distribution of annotated enti-
ties is Zipfian. Rather than having reviewers review
every case of trivially correct or incorrect anno-
tations, LightTag offers a batch review function
where every instance of a particular lexical form
can be seen and reviewed in either a stream or in
one click.
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Figure 7: All instances of the form "White House" la-
beled as place are displayed. The user can review them
one by one or batch accept/reject them with one click.

5 Backend and Data Model

LightTag’s focus on project management and qual-
ity assurance requires a rich data management struc-
ture. LightTag’s backend is a relational database
using Postgres and makes heavy use of relational
design theory Codd (2002). In this section, we
provide an overview of LightTag’s data model and
elaborate on useful implications.

5.1 Relational Data Model

A project manager in LightTag may define a Job
comprised of the Dataset to annotate and the con-
cepts (entity tags or document classes) with which
to annotate. N annotators should annotate each Ex-
ample in the Dataset of a Job. A project manager
may wish to have the same Dataset annotated with
the same Schema in two Jobs, where a different
Team executes each Job. The definition and assign-
ment of work as described above fits neatly into a
relational model.

Example1

Example2

Annotator 1

Annotator 2

Dataset

Job Schema

Team

Task1

Task2

Task3

Figure 8: A graphical display of the relation between
data entities describing three tasks carried out by two
annotators as part of a job

The natural extension of a relational data model
is that annotations are stored separately from the
Example being annotated. LightTag takes this
idea a step further and separates the Platonic Ideal
(Plato, 1961) of annotation from the event that An-
notator A made Annotation X, thus brining the
database to third normal form. For example, the
"Ideal" that “Document X is classified as class Y”
is stored in a distinct table with id Z. A separate
events table would then store the event “Annotator 1
made classification Z during Task x”. Storing every
possible ideal would be inefficient, thus LightTag
stores the ideal of an annotation the first time it is
manifested via annotation.

Task

Annotator

Schema

Class1 Example

Annotation Ideal

Annotation

Figure 9: A graphical depiction of the relations defin-
ing an annotation. Each node corresponds to a row in
the respective table. The annotator that worked on the
Task made the annotation represent by the Ideal of an
annotation that the Example is classified as Class1
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5.2 Relational Data Implications
A notable implication of this design is batch func-
tionality during review. For example, automatically
accepting all annotations with a majority vote is dis-
played as a button to the user and is implemented
by aggregating over the “Annotation Ideal table” id,
counting and comparing with the number of users
that saw that example (derived from the Tasks ta-
ble).

Measuring Negative Annotations When anno-
tating with a larger team, we can not assume that
every team member annotated every example. Thus
when calculating metrics such as inter-annotator
agreement, a particular annotator even saw the par-
ticular example needs to be accounted for. The
relational model makes this easy by implicitly pro-
viding a list for each annotator of the Examples
they worked on (by aggregating on the Task table).

Majority Vote During a quality assurance pro-
cess, it is common practice to automatically accept
annotations with a majority or unanimous vote au-
tomatically and manually review annotations in a
conflicting state. By separating the Ideal of an An-
notation from the Event that annotation was made
and recording the particular Job under which the
annotation was made, LightTag can provide the
reviewing user with a one-click functionality to
accept all annotations that meet some agreement
criteria.

Transitive Annotation Rejections LightTag’s
quality assurance functionality assumes only one
correct answer for an annotated span or a document
classification2. When a reviewer marks an annota-
tion as correct, the system rejects any conflicting
annotation automatically, be it a difference in class,
an entity tag, or span range. If annotations A and B
overlap and A is correct, then B must be incorrect.
The relational model allows executing the transi-
tive rejection in O(1) time instead of scanning the
entire annotation table. More importantly, doing
so in a single database transaction ensures that the
data is never in an invalid state.

6 Case Studies

6.1 Detecting Foreign Policy With Search
The Federal Register is the official journal of the
federal government of the United States that con-
tains government agency rules, proposed rules, and

2In single-class classification. In configurations where
more than one class is allowed per document, this assumption
is removed

public notices. A team of researchers from Harvard
Law wished to annotate every mention of foreign
policy across over 100,000 rules spanning 2.1 Mil-
lion paragraphs. A team of 15 undergraduate law
students was assembled, and the data was loaded
into LightTag. Using LightTag’s search mode, sub-
sections of the dataset were assigned to subsets of
annotators who then searched over the corpus to
find and annotate over 60 thousand distinct men-
tions of foreign policy in the corpus.

6.2 Sponsorship Detection in Podcasts
Thoughtleaders (TL). a provider of marketing ana-
lytics created a corpus of podcast transcripts to de-
tect which brands sponsored each podcast episode
(Kassuto, 2021). TL trained a BERT-based model
to recognize brands and distinguish between casual
brand mentions and mentions of a podcast sponsor.
To create a training corpus with LightTag, TL first
created pre-annotations with regular expressions
and then had their team validate those and annotate
missing entities.

Within a week, they had generated over 20 thou-
sand human-annotated entities and trained a model
that met their requirements. To validate the model’s
performance, they loaded model predictions from
data outside of the training set into LightTag and
used the review functionality to verify model pre-
dictions and establish performance metrics manu-
ally.

6.3 Multi-Lingual Malware Detection
CS is a provider of Malware analytic and early
detection systems. To serve their customers, they
develop custom NLP models to detect the sale of
zero-day exploits on the dark web. Due to the
multi-lingual nature of the data, they needed to
manage multiple teams and projects, each special-
izing in a particular language (Mandarin, Russian,
English, etc.). LightTag’s workforce management
solution enabled them to minimize project manage-
ment overhead, while pre-annotations and review
functionality allowed the team to validate both an-
notations and candidate model outputs, reaching
production grade models and their market faster.

6.4 Mentions In Other Publications
Sarkar (2020) created a corpus for emotion de-
tection in musical lyrics. Vasilyev et al. (2020)
generated a corpus of text-summary quality on a
five-point scale across five attributes of the sum-
mary.Alnazzawi (2021) annotated a joint corpus
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of tweets and electronic health records to detect
underlying risk factors for hypertension and dia-
betes.Pitenis et al. (2020) developed a Greek lan-
guage corpus of offensive language
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