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Abstract

IrEne (Cao et al., 2021) is an energy
prediction system that accurately predicts
the interpretable inference energy consump-
tion of a wide range of Transformer-based
NLP models. We present the IrEne-viz
tool, an online platform for visualizing and
exploring energy consumption of various
Transformer-based models easily. Addition-
ally, we release a public API that can be
used to access granular information about
energy consumption of transformer models
and their components. The live demo
is available at http://stonybrooknlp.
github.io/irene/demo/.

1 Introduction

Pretrained transformers have shown strong results
on downstream NLP tasks, resulting in wide-spread
adoption. With their deployment in large-scale
public-facing systems serving hundreds of millions
of requests per day, it has become important to
study their energy footprint at inference time. Infer-
ence energy can incur substantial costs especially
for models that are critical for high-volume web
services.

Designing energy efficient and cost-effective
models requires both accurate and interpretable
energy modeling. Current approaches to energy
modeling treat the model as a monolithic entity.
In our previous work (Cao et al., 2021), we intro-
duced a tree-like abstraction to decompose a model
into its components. We designed a multi-level
prediction method that predicts energy in all the
components of the abstraction tree in a bottom-up
fashion using resource utilization and model de-
scription features. This system called IrEne is used
as the base of this work. IrEne provides more ac-
curate energy prediction than other methods and
is designed to be interpretable. However, it is non-
trivial to retrieve data from that system, making it

difficult to perform analysis or visualization for the
same.

In this work, we present IrEne-viz, a user-
friendly dashboard that allows visualization of in-
ference energy consumption of a transformer-based
model and its various components. Users will be
able to interact with the different operations present
in a model. Our interface allows people to easily
understand the energy bottlenecks during inference.
Additionally, we make our pipeline public by ex-
posing it as an API endpoint. Having such data
readily available will further research in the area
and allow the community to use it for their own
purposes, such as analyzing accuracy or latency
trade-offs against energy. For instance, Cao et al.
(2021) compared accuracy of BERT on a specific
task while varying the number of layers and made
observations about the energy-accuracy tradeoff.
We design IrEne-viz to be:

• Easy to use - Our browser interface is intu-
itive and allows for thorough exploration of a
model, its operations, and their energy usage.

• Easy to access - The model tree and its fea-
tures are readily available through a public
API in an easy-to-use JSON format.

• Easy to extend - New models to be tracked
can be included easily.

2 Related Work

There has been increased interest in the energy con-
sumption of NLP models in recent years. Despite
some progress in modeling, there is a lack of visu-
alisation and analysis tools for the same.

2.1 Energy Estimation

Schwartz et al. (2019) suggest using metrics like
floating point operations (FPO) to measure energy
efficiency. However, Henderson (2020) argues such
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Figure 1: A tree view of a 1-layer BERT model. The yellow rectangle nodes stand for basic machine learning (ML)
level operations. The brown rectangle nodes are also ML level which are non-parametric (i.e., has no trainable
parameters). The ML level operations are model-agnostic and provided by machine learning software framework.
The light blue oval nodes denote model-specific operations that reflect the architectural semantics given by the
model developer .

metrics alone cannot accurately reflect energy con-
sumption. Energy prediction of applications on
mobile devices is a well-studied topic in the sys-
tems community (Pathak et al., 2011, 2012; Yoon
et al., 2012; Cao et al., 2017) but they require fine-
grained understanding of the application. None of
these systems predict energy for NLP models.

Henderson (2020) use the experiment-impact-
tracker software framework to report the aggre-
gated energy of benchmark programs, built on
Strubell et al. (2019). However, Cao et al. (2020)
show that this type of resource utilization only mod-
eling can be highly inaccurate. Zhou et al. (2020)
presents an energy efficient benchmark for NLP
models. However, they only report the time (hours)
and cost (dollars) for training and testing NLP mod-
els, the actual energy numbers remain unknown.

2.2 Transformer Model Visualization

For NLP, a number of tools exist for investigat-
ing specific model classes, such as RNNs (Strobelt
et al., 2018), Transformers (Hoover et al., 2020; Vig
and Belinkov, 2019), or text generation (Strobelt
et al., 2018). More generally, AllenNLP Interpret
(Wallace et al., 2019) introduces a modular frame-
work for interpretability components, focused on
single-datapoint explanations and integrated tightly
with the AllenNLP (Gardner et al., 2017) frame-
work. Lal et al. (2021) present a tool to visualize
token embeddings through each layer of a Trans-
former and highlight distances between certain to-
ken embeddings. No such visualization work exists
for energy consumption of NLP models.

3 IrEne - Prediction Engine

We briefly review the IrEne system which we use
as the energy prediction engine. Please refer to
(Cao et al., 2021) for more details. IrEne is an in-
terpretable energy prediction system. It represents
transformer models in a tree-based abstraction, and
generates energy prediction for each node of the
tree, thus directly supporting interpretability. IrEne
also comes with data it was trained on – for each
tree node, it has associated resource utilization and
model-related features, and ground-truth energy
measured with a hardware power monitor.

Tree Abstraction

IrEne uses a model tree abstraction that represents
the model nodes in three-levels: math level, ma-
chine learning (ML) level and module level. Math
level nodes are a finite set of mathematical oper-
ations (like addition, subtraction, matrix multipli-
cation etc); they form model-agnostic ML level
nodes (such as Linear, LayerNorm etc.), which fur-
ther can be used to construct complex module level
nodes. Module level nodes are groups of lower ML
level node operations that reflect the logic units of
the NLP algorithms defined by model authors. The
model tree abstraction is such that each parent node
captures computation of all of its children nodes.
Figure 1 shows an example tree representation for a
1-layer BERT transformer. This abstraction makes
energy calibration more interpretable by allowing
us to understand and analyze how the components
of a model contribute to its energy usage.
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Figure 2: IrEne works by taking model specifications (for example, model code) as inputs and extracting a model
tree representation using code instrumentation and run-time tracing. IrEne then runs the model once on a given
hardware and feeds resource profiles combined with the model computation features into a regressor to predict the
energy of the entire model tree representation. The root of the tree represents the energy of the entire NLP model
and each child node represents the energy of different modules/ML operators that make up the model.

Figure 3: IrEne-viz has a simple input screen where a user can select which Transformer model they want to
analyze, and specify the input sequence length and batch size for the model.

Resource Usage Collection

For a given transformer model, IrEne generates a
tree representation in the aforementioned abstrac-
tion and populates each node with relevant features
and ground-truth energy measurement.

To construct the tree, the transformer model1

is run on the target hardware on randomly gener-
ated input for given batch size and input sequence
length2. This provides execution graph and the
JIT trace containing runtime information, which is
combined as to form the final tree representation.

Irene uses resource utilization and model-based

1We used HuggingFace Transformers library v4.2.2
2The batch size and input sequence length together decide

the amount of input data to the model, therefore, they both
affect the model energy consumption.

features. Resource features capture how the models
use hardware resources and cause energy activities.
Model features like input size and number of pa-
rameters are obtained from PyTorch model directly.
A list of features, as described in Cao et al. (2021),
is shown in Table 1.

Irene collects ground-truth energy for each node
using a highly accurate power monitor, and runs it
several times to get a reliable estimate. One can
use the power monitor to measure energy directly
at runtime for visualization. However, this is cum-
bersome and requires physical access to the device
which is not always feasible with cloud-based de-
ployments.
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Figure 4: The user will be able to see an interactive visualization of the model components in a tree format. They
will be able to expand and collapse it as per their need for granularity in energy analysis. Additionally, to the right,
a list of model operations, in order of energy consumption, is provided for easy browsing.

Training and Prediction

IrEne predicts the energy for every node in the
model tree in a bottom-up fashion. At the leaves,
where the nodes correspond to the ML primitives,
IrEne uses separate regression models for each type
of ML primitive (e.g., one regressor for Linear
Layer, another for LayerNorm etc.). For the inter-
mediate nodes, their energy is predicted recursively
using a single regressor that makes a weighted com-
bination of the predicted energy values from its
children, and mean squared loss between predicted
and ground-truth energy for all tree nodes is jointly
minimized. For both types of regressors, IrEne uses
features that are derived from resource utilization
(e.g. cpu utilization) and generalized node features
(e.g. size of inputs) enabling accurate multi-level
energy prediction. Using the model tree abstrac-
tion and multi-level prediction model makes IrEne
generalizable, in the sense that once trained, it can
work on unseen NLP models with similar compo-
nents.

4 User Interface and Functionality

The goal of IrEne-viz is to provide an easy way
for users to analyze the energy of a given Trans-
former model (for a specified input size). To do
so, we design a browser-based user interface (UI)

batch_size : batch size
seq_len : # of input tokens
flops : floating point operations (unit: million)
mem_bytes : memory read and write (unit: MiB)

cpu_util : CPU utilization (unit: %)
mem_usg : memory usage (unit: %)
gpu_util : GPU processor utilization (unit: %)
gm_usg : GPU memory usage (unit: %)
g_clk : GPU processor clock speed (unit: MHz)
gm_clk : GPU memory clock speed (unit: MHz)
latency : inference latency (unit: s)
gpu_energy : GPU driver energy (unit: joule)

Table 1: Features used for energy estimation in IrEne.

in IrEne-viz that controls the input size and selects
the model, as shown in Figure 3. We then estimate
the energy consumption of the model and visual-
ize the energy for each part in the Transformer
model. Specifically, an user selects a predefined
Transformer model3 via the dropdown menu and
enters the batch size and input sequence length. Af-
ter pressing the visualize button, IrEne-viz backend
server will run the energy estimation and send the
energy result back to the browser for visualization.

3We are adding functionality to support customized models
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Figure 5: Hovering over any node provides the user
with additional information about that node. This in-
cludes measurements of memory usage, flops and CPU
cycles. Users can select models optimal for their hard-
ware requirements.

In IrEne-viz, we support two core functionalities:
Functionality 1 - Explore the energy consump-
tion of the model. Besides the entire model
energy, users can interactively explore the energy
consumed by any block inside the model, as shown
in Figure 4. Additionally, we support inspecting
the resource and model features used to estimate
the energy, as described in Figure 5.

Functionality 2 - Find energy bottlenecks. At
each level of the model, users can easily identify op-
erations that can be improved (or pruned) in terms
of their relative energy usage. The visualization
dashboard also displays a list of model operations
along with their predicted energy usage, as pre-
sented in Figure 6.

5 System Implementation

To make IrEne-viz modular and extensible, we de-
sign an energy analysis pipeline consisting of three
components: a visualization panel that accepts user
requests and presents energy results, a prediction
engine (IrEne) that predicts energy consumption
and a backend server that encapsulates IrEne and
serves information through an API endpoint. The
API and the prediction engine can be used as in-
dividual entities as well. They are also designed
to be extensible, so adding new features is easy.
The visualization panel is intuitive and informative,
allowing easy exploration of data.

Figure 7 shows the full pipeline used for this

Figure 6: The dashboard also provides a list of all
model operations along with their predicted energy con-
sumption for easy identification of bottlenecks.

application. The visualization panel queries the
API with the user-desired model name, input se-
quence length and batch size. This information
is passed on to the prediction engine. The engine
performs resource collection for the corresponding
model specifications and predicts the energy usage
of each component. The API sends the visualiza-
tion panel a full tree representation of the model
containing all the model information.

5.1 Visualization Panel

The browser-based UI is built up of HTML web-
pages using a bootstrap template. The visualization
widget is developed using D3.js (Bostock, 2012)
embedded in a Flask (Grinberg, 2018) application.
A user can decide which model they want to ana-
lyze, and provide desired values for batch size and
input sequence length. Upon selection, a full tree
with information about the model is presented. We
also provide an option to display the entire tree
at once and, since there are lot of components in
a model, collapse it into one root component for
easier analysis. Users are able to interact with dif-
ferent components to explore every component in
the model. They can click on a component to ex-
pand and show all the components in that subtree.
When the cursor hovers over it, all the resource
information about that component is shown to the
user. At any level, the color of the component in-
dicates the percentage of energy consumption it is
responsible for. Additionally, we present a list of
model components with their predicted energy use
on one part of the screen. This frontend applica-
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Figure 7: Full system pipeline. The visualization panel queries the backend with the model name, input sequence
length and batch size. This information is passed on to the prediction engine, which performs resource collection
and predicts the energy usage of each component. The prediction engine generates full tree with all the model
information and prediction energy back to the backend, which in turn passes it to visualization panel .

tion is deployed on Heroku and will be available
publicly soon.

5.2 Backend
First, we download the configuration of the spec-
ified model from Huggingface Hub (Wolf et al.,
2020) and use it convert it into a tree object. A
model is composed of multiple module-level com-
ponents, and a module-level component itself is
made up of other module-level or ML-level com-
ponents. Each parent component encapsulates the
computation of all of its child components.

First, we run the model to extract the model tree
structure. A profiler process is started in the back-
ground to monitor usage of various resources. For
each type of abstraction described, we find every
component in the model.4 It is run with dummy
inputs of the required input size for a fixed number
of times so that the profiler can log energy usage
reliably (low standard deviation in energy measure-
ments). We reconcile resource usage logs with
their respective components using the timestamp at
which they were run. Next, we annotate the model
tree objects with these features.

To generate energy predictions, we use the Cao
et al. (2021) model. We load the saved weights, use
the features we just collected to perform inference.
The same model tree object is populated with the
predicted energy numbers, and can now be used
for visualization. The backend encapsulates the
prediction engine, which is deployed as a Flask

4For the profiler to collect correct energy statistics, we
make sure no other significant process is running on the same
machine.

API hosted on a GPU desktop using nginx.
For currently supported models, it takes 15-25

minutes to gather resource usage and make pre-
dictions. So, to speed up visualization, we cache
results for these models and serve them to the user.

We expose the full end-to-end-pipeline as a Flask
API endpoint, and make it available for public use.
Querying it for model energy usage information
only requires a simple GET request to be made.
In addition to this, we plan to expose the model
tree abstraction as another API endpoint so that
the community can use it for other purposes like
runtime analysis.

6 Conclusion and Roadmap

IrEne-viz provides an integrated UI and compo-
nents for visualizing and exploring the energy con-
sumption of various Transformer models. It is un-
der active development and is being constantly re-
fined for release. We are adding support for live
models immediately. For new models, users will be
sent an email with a custom link to their requested
visualization. As the community uses it, we will
cache resource usage and predictions for more inter-
mediate nodes found in various transformer-based
models. This optimization will gradually result in
lower times for newer models.

Our end-to-end pipeline, served as an API, can
be used to build an energy leaderboard. This plat-
form can be extended to compare the energy of ar-
chitectural modifications (e.g. activation or normal-
ization function) of different models for given input.
By extending this work to other harware, we aim to
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provide energy optimization suggestions based on
energy profiles of a model on the given hardware.
In our previous work, (Cao et al., 2021) we also
studied accuracy vs energy trade-offs, which will
be integrated into the dashboard.
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