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Abstract

Every day, millions of people sacrifice their
privacy and browsing habits in exchange for
online machine translation. Companies and
governments with confidentiality requirements
often ban online translation or pay a premium
to disable logging. To bring control back to the
end user and demonstrate speed, we developed
translateLocally. Running locally on a desk-
top or laptop CPU, translateLocally delivers
cloud-like translation speed and quality even
on 10 year old hardware. The open-source
software is based on Marian and runs on Linux,
Windows, and macOS.

1 Introduction

Neural Machine Translation (Bahdanau et al., 2015;
Vaswani et al., 2017) is pervasive but has a reputa-
tion for high computational cost. The combination
of the typically high computational cost, however,
has pushed its delivery to the cloud, with a number
of cloud providers available (Google, Microsoft,
Facebook, Amazon, Baidu, etc.). Using a cloud
based translation provider carries an inherent pri-
vacy risk, as users lose control of their data once it
enters the web. Potential issues include public dis-
closure due to not understanding terms of service
(Tomter et al., 2017), contractors reading user data
(Lerman, 2019), use of user data for advertising,
and data breaches.

To preserve privacy, we made a translation sys-
tem that runs locally: translateLocally. Once a
translation model is downloaded, it does not use an
Internet connection. Running locally is challeng-
ing due to a number of factors: the model needs to
be small enough to download on a user hardware;
translation latency can’t be hidden by splitting and
parallelising the translation of a large documents
across multiple machines; consumer hardware has
highly variable computing power; availability of
GPU computational resources can’t be assumed.

We therefore focused on trimming model size
and optimising speed for CPUs while aiming to pre-
serve translation quality. The result is fast enough
that users see translations update as they type with
latency comparable to ping times to the cloud.

Targeting non-expert users, the open-source
(primarily MIT) software1 is also available as
compiled binaries for Linux, Windows and
Mac from the official webpage: https://
translatelocally.com. Translation mod-
els for several language pairs are provided, while
advanced users can add their own models.

2 Design

Our product is based on the Marian machine trans-
lation toolkit (Junczys-Dowmunt et al., 2018),
heavily optimised for speed with a Qt based GUI.

2.1 Translation Engine

For the translation engine core, we used the same
Marian fork as the one used by Bogoychev et al.
(2020) for participating in the 2020 Workshop
on Neural Generation and Translation’s efficiency
shared task (WNGT 2020, Heafield et al., 2020).
We introduce binary lexical shortlists and stream-
lined binary model loading to the codebase, result-
ing in a comparable translation speed, but slightly
faster loading time. We also add sentence splitting
and formatting preservation are handled by a C++
wrapper around Marian.2

2.2 Translation Models

Our models are built with knowledge distilla-
tion (Kim and Rush, 2016), use lexical shortlists
(Schwenk et al., 2007; Le et al., 2012; Devlin et al.,
2014; Bogoychev et al., 2020) to reduce the size of
the output layer, 8-bit integer arithmetic, and the

1https://github.com/XapaJIaMnu/
translateLocally

2https://github.com/browsermt/
bergamot-translator

https://translatelocally.com
https://translatelocally.com
https://github.com/XapaJIaMnu/translateLocally
https://github.com/XapaJIaMnu/translateLocally
https://github.com/browsermt/bergamot-translator
https://github.com/browsermt/bergamot-translator
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Machine Year CPU Cores WPS

Laptop: Vaio PCG-41412L 2012 i5-2430M 2 1066
Desktop: iMac 27 inch 2012 i7-3770 4 3146
Desktop 2016 i7-6700 4 6548
Laptop: Dell XPS 9360 2017 i7-7500U 4 3378
Laptop: Dell Alienware 13R3 2017 i7-7700HQ 4 5888
Desktop 2019 AMD Ryzen 3600X 6 8791
Desktop 2019 i7-9700 8 9401

AWS c5.metal 2019 2x8275CL 48 70037

Table 1: Translation speed, in words per second (WPS), of the English→German model with 8-bit precision on
various hardware. Translation used all cores. The table shows physical core count, not hyperthread count. WPS
is averaged over 1M sentences. The timing measurement includes loading time but excludes sentence splitting,
which was done in advance for this experiment.

simplified simple recurrent unit (Kim et al., 2019)
for decoding.

We tested translation speed on a range of con-
sumer hardware, shown in Table 1, using the
million-sentence test set from the WNGT 2020
efficiency shared task and the tiny11 preset English-
German translation model from Bogoychev et al.
(2020). This test set is already sentence split, so we
did not include sentence splitting and format preser-
vation in timing. Translating a million sentences
provides ample opportunity to batch sentences of
similar length and use all threads; users translating
a few sentences will see slower throughput, but
lower latency.

All of our student models available in the initial
release are trained with the same tiny11 config-
uration preset. Training, knowledge distillation
and quantisation instructions are described in de-
tail on github.3 Users can follow those instructions
to train, distil and quantise their custom models,
achieving noticeable speedup over vanilla float32
marian models, although any marian compatible
models are supported in principle.

2.3 Language pairs

Our initial release includes 10 language pairs built
for the Bergamot project (Table 2). We report aver-
age BLEU scores on WMT test sets up to WMT19
(Barrault et al., 2019), for all languages except for
Icelandic and Norwegian. For Icelandic and Nor-
wegian we report BLEU scores on self-crawled
TED Talks test set, available on github.4

3https://github.com/browsermt/
students/tree/master/train-student

4https://github.com/browsermt/
students/tree/master/isen/data

Languages pair BLEU

en-es 35.0
es-en 35.3
en-et 25.1
et-en 30.8
cs-en 33.2
en-cs 25.9
en-de 41.8
is-en 23.7
nn-en 41.7
nb-en 42.7

Table 2: Language pairs and their BLEU scores in the
initial release.

The models are distributed together with a lex-
ical shortlist in an archive that is approximately
15MB in size. We are building and adding new
models to the project.

2.4 GUI and user interaction

We chose the Qt5 framework to build our graphical
interface. The Qt framework is widely used, open
source, free for non-commercial use and in active
development. We support building against both Qt5
and Qt6, which allows us to support older Linux
software distributions, like Ubuntu 16.04, which
do not have easy access to Qt6 packages.

We took a minimalist approach the GUI, where
the user is presented with a drop-down menu to

https://github.com/browsermt/students/
tree/master/nnen/data

https://github.com/browsermt/students/
tree/master/nben/data

5https://www.qt.io

https://github.com/browsermt/students/tree/master/train-student
https://github.com/browsermt/students/tree/master/train-student
https://github.com/browsermt/students/tree/master/isen/data
https://github.com/browsermt/students/tree/master/isen/data
https://github.com/browsermt/students/tree/master/nnen/data
https://github.com/browsermt/students/tree/master/nnen/data
https://github.com/browsermt/students/tree/master/nben/data
https://github.com/browsermt/students/tree/master/nben/data
https://www.qt.io
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select or download models, as well as a resizeable
box where the user may input text. Translations
will be shown underneath or besides the input text.
Translations will start to appear as soon as the user
begins inputting text. The view of the first run of
the program is shown in Figure 1.

Figure 1: First run view of translateLocally.

Downloading models from the Internet is done
through a drop-down menu, as shown on Figure 2.
In line with our privacy promise, the application
only uses Internet access following explicit user
action: to retrieve the list of available models and
to download a new model. These downloads are
static files. The HTTP request includes a user-
agent field with the application version number.
There is no cookie or other unique identifier. The
directory containing downloaded models can also
be copied to another machine to setup a system
without Internet access; we are planning to ship a
version with models included.

Once the model is downloaded, typing in the
input box results in a translation, shown in Figure 3.

The application attempts to optimise thread
count based on available cores and batch size based
on available RAM though these can be overridden
by the user, as shown on Figure 4. Fonts can also
be changed through an OS-dependent dialog. Re-
translating as a user types consumes power, so this
feature can be disabled.

We also provide a model management screen
where a user may delete downloaded models, or
import custom models, as shown in Figure 5.

Our translation engine preserves whitespace be-

Figure 2: Select a model to download.

Figure 3: Translation view.

tween sentences, so users can copy/paste content
and get a well formatted text, as shown on Figure 6,
which also features the side-by-side view mode.

2.5 Distribution

Precompiled and packaged binaries for Windows,
macOS and Ubuntu 20.04 are available on the offi-
cial website. Users may fetch the source code from
GitHub and build it on their local machines using
CMake. The matrix multiplication library manu-
ally dispatches SSSE3, AVX2, AVX512BW and
AVX512VNNI implementations based on CPUID.
However, other kernels like activation functions are
currently compiled without multiple versions and
will be somewhat faster if compiled explicitly for a
particular vectorised instruction set.
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Figure 4: Settings selection for the translation engine.

Figure 5: Model management and import window.

Figure 6: Translating a Big chunk of text from
Wikipedia, with preservation of formatting.

3 Comparison against existing solutions

We compare against two existing desktop machine
translation solutions: Argos Translate6 and OPUS-
CAT MT Engine (Nieminen, 2021). They both have
slightly different use-cases and support different
translation languages. We compare BLEU scores
(Papineni et al., 2002) on a WMT19 test set (Bar-
rault et al., 2019) for the English-German language
pair, as well as wall-clock and CPU time. We mea-
sure only the time necessary for the actual transla-
tion. We ignore startup time and issue a translation
of an unrelated text before running our test in order
to discard any lazy initialisation time.

As only translateLocally supports all three plat-
forms, we do pairwise comparison, once on Win-
dows for OPUS-CAT vs translateLocally, and once
on macOS for Argos Translate vs translateLocally.

3.1 Quality comparison
For the quality comparison we used the following
models:

• For translateLocally, we used Bergamot’s
English-Germany tiny model7 which is just
15 MB to download.

• For OPUS-CAT we used the English-German
opus+bt-2021-04-13.zip8 model, which is 275
MB in size.

• For Argos Translate we used their default
English-German model which is downloaded
through the UI, which is 87 MB in size when
downloading.

We compare the BLEU scores on Table 3.

System Model Size BLEU

translateLocally 15 MB 41.8
OPUS CAT 275 MB 40.8
Argos Translate 87 MB 34.9

Table 3: BLEU score on WMT19 English-German as
well as model sizes.

translateLocally’s student architecture, coupled
with 8bit integer model compression delivers the

6https://github.com/argosopentech/
argos-translate

7http://data.statmt.org/bergamot/
models/deen/ende.student.tiny11.tar.gz

8https://github.com/Helsinki-NLP/
Tatoeba-Challenge/tree/master/models/
eng-deu#opusbt-2021-04-13zip

https://github.com/argosopentech/argos-translate
https://github.com/argosopentech/argos-translate
http://data.statmt.org/bergamot/models/deen/ende.student.tiny11.tar.gz
http://data.statmt.org/bergamot/models/deen/ende.student.tiny11.tar.gz
https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-deu##opusbt-2021-04-13zip
https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-deu##opusbt-2021-04-13zip
https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-deu##opusbt-2021-04-13zip
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smallest model size and the highest BLEU score.
OPUS CAT has a comparable BLEU score, but
the model is more than 15 times larger compared
to translateLocally. Argos Translate has a much
lower BLEU score than either of the two, and a
model size that is right in the middle.

3.2 Argos Translate comparison

Argos Translate is based on OpenNMT and sup-
ports 13 language pairs, with more planned in the
future.

Argos Translate is not fully cross-platform as
there are no windows binaries provided. The de-
velopers do advertise that it is possible for users to
self-build the product on Windows.

Finally, the macOS version is also available
through the Apple app store, but it is paid,9 whereas
translateLocally is free.

We present our test results on Table 4. Both sys-
tem were tested on a MacBook Pro 16” 2019, using
8 CPU threads to translate the whole WMT19 test
set, which around 40k tokens. CPU time was mea-
sured using the Activity Monitor, and Words per
second (WPS) is approximately calculated. Argos
Translate does not allow the CPU threads to be con-
figured by the user, so we matched the number of
threads they use in translateLocally.

System WPS CPU Time BLEU

translateLocally 7350 40s 41.8
Argos Translate 76 4378s 34.9

Table 4: translateLocally vs Argos Translate, translat-
ing 40k tokens for speed benchmark and BLEU scores
on WMT19 English-German.

TranslateLocally is about 100 times faster and
delivers vastly superior translation quality com-
pared to Argos Translate.

3.3 OPUS-CAT comparison

Just like translateLocally, OPUS-CAT MT Engine
(Nieminen, 2021) uses Marian as its translation
engine. Unlike translateLocally, its translation en-
gine is not optimised for speed. Furthermore the
GUI is slow when handling large amounts of text.
Simply pasting large chunks of text, such as the full
“Crime and Punishment”10 into OPUS-CAT takes

9Free macOS version is distributed through pip.
10https://www.gutenberg.org/files/2554/

2554-0.txt

nearly as long as translateLocally takes to paste
and translate all the text.

The strength of OPUS-CAT comes from its plug-
ins that integrate it with popular professional trans-
lator software, whereas our product does not sup-
port any CAT software.

OPUS-CAT has more language pairs available,
which could also be used with translateLocally, but
they are not optimised for speed.

Finally OPUS-CAT is only available for Win-
dows, as it is build using the dot NET framework,
whereas translateLocally is cross-platform.

For comparing OPUS-CAT vs translateLocally,
we used a single threaded mode for both applica-
tions, as we found no way to force OPUS-CAT to
use multiple threads, whether it is through their
translation interface, or through their memoQ plu-
gin.11 We tested on a Windows Machine with 4
CPU core i9-9800H inside Parallels, measuring
the CPU time from the task manager. We pre-
split the input of OPUS-CAT, as it doesn’t have
its own sentence splitter. Furthermore we excluded
the copy/paste time from the OPUS-CAT measure-
ments, as its XAML user interface is bad at han-
dling large amounts of text. We present our results
on Table 5.

System WPS CPU Time BLEU

translateLocally 1250 34s 41.8
Opus-CAT 12 3363s 40.8

Table 5: translateLocally crippled to run single-
threaded vs Opus-CAT, translating 40k tokens for
speed benchmark and BLEU scores on WMT19
English-German.

Even with the added benefit of sentence-splitting
and ignoring copy/paste time, and forcing single-
threaded mode, OPUS-CAT is about 100 times
slower than translateLocally.

4 Conclusion

We presented translateLocally, a desktop transla-
tion application, capable of high speed translations
on a variety of hardware. Our software provides
a viable alternative to cloud translation for users
who are conscious of their privacy. Our product
is 100 times faster than competing software and
has none of the rate limitations of freemium cloud
providers. We start with 10 high quality, optimised

11https://www.memoq.com

https://www.gutenberg.org/files/2554/2554-0.txt
https://www.gutenberg.org/files/2554/2554-0.txt
https://www.memoq.com
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models and we aim to continuously add additional
language pairs. As our product is open-source and
cross-platform, it can be adopted by a wide range
of users. The use of Marian as a translation engine
allows for users to easily train their own models,
potentially facilitating internal use for large organi-
zations.
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