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Abstract
In this paper, we present an automatic knowl-
edge base construction system from large scale
enterprise documents with minimal efforts of
human intervention. In the design and de-
ployment of such a knowledge mining system
for enterprise, we faced several challenges in-
cluding data distributional shift, performance
evaluation, compliance requirements and other
practical issues. We leveraged state-of-the-art
deep learning models to extract information
(named entities and definitions) at per docu-
ment level, then further applied classical ma-
chine learning techniques to process global sta-
tistical information to improve the knowledge
base. Experimental results are reported on ac-
tual enterprise documents. This system is cur-
rently serving as part of a Microsoft 365 ser-
vice.

1 Introduction

Massive knowledge bases constructed from public
web documents have been successful in enriching
search engine results in Bing and Google for over a
decade (Noy et al., 2019). There is growing interest
in automatically constructing a similar knowledge
base for each enterprise from their internal doc-
uments (e.g., web pages, reports, emails, presen-
tation decks; textual contents in natural language
form are all referred to as documents in this paper).
Such knowledge base can help an enterprise to bet-
ter organize its domain knowledge, help employees
(users) better find and explore knowledge, and to
encourage knowledge sharing.

Mining knowledge from enterprise documents
poses unique challenges. One challenge is that
the system needs to be fully automated without
per enterprise customization or existing (semi-)
structured sources. Knowledge base construction
from web documents is often based on bootstrap-
ping entities from human-curated sources such as
Wikipedia with customized extraction rules (DBpe-
dia: Auer et al., 2007, Freebase: Bollacker et al.,

2008, YAGO2: Hoffart et al., 2013), or the exis-
tence of a prior knowledge base (Knowledge Vault:
Dong et al., 2014). Maintaining such Wiki site and
keep it fresh is costly for enterprise. Another chal-
lenge is that most training data for natural language
processing (NLP) models is from public documents.
Enterprise documents can have different writing
style and vocabulary than the public documents.
The data distributional shift (Quiñonero-Candela
et al., 2008) is a challenge as (a) we need model to
generalize better to enterprise domain and (b) we
need test metrics to reflect the actual performance
on enterprise documents to guide model develop-
ment.

On the other hand, enterprise domain brings new
opportunities. For search engines, the knowledge
base must be extremely accurate. This require-
ment limits the usage of NLP models to extract
information from unstructured text as few models
can achieve the required precision with meaning-
ful coverage. In enterprise domain, we can relax
the requirement on accuracy as enterprise users are
expected to spend more time to absorb and discrim-
inate information. In addition, users can curate and
improve the automatically constructed knowledge
base, which is not an option for search engine users.
The relaxation on accuracy requirement makes it
possible to perform knowledge mining on unstruc-
tured text by heavily relying on NLP techniques.

In this paper, we present the first large-scale
knowledge mining system for enterprise documents
taking advantage of recent advances in NLP such
as pretrained Transformers (Devlin et al., 2019) as
well as traditional NLP techniques. It is in produc-
tion since February 2021 as part of a Microsoft 365
feature (Microsoft Viva Topics1). For an enterprise
that enables this feature, our system will build a
knowledge base from its internal documents that
already exist in Microsoft cloud and will keep it

1https://www.microsoft.com/en-us/
microsoft-viva/topics/overview

https://www.microsoft.com/en-us/microsoft-viva/topics/overview
https://www.microsoft.com/en-us/microsoft-viva/topics/overview
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fresh without the need of any customized interven-
tion. At the core of our knowledge base are entities
mined from documents that are of interest to the en-
terprise, such as product, organization and project.
These entities are loosely referred to as topics to
the end users (not to be confused with topic model-
ing in NLP). The knowledge base is a collection of
“topic cards” with rich information: properties that
help users understand the topic (such as alternative
names, descriptions, and related documents), or
enable users to connect with people who might be
knowledgeable about the topic (related people) or
explore related topics.

The contributions of this work are as follows:

• We demonstrate a system in production that
performs knowledge mining in large scale:
hundreds of millions of documents, thousands
of organizations.

• We apply state-of-the-art deep learning mod-
els in two NLP tasks named entity recognition
(NER) and definition extraction. We discuss
the challenges and how we improve our sys-
tem to reach the desired performance.

2 System description

The overall system architecture is depicted in Fig-
ure 1. In this section, we discuss at length the
knowledge mining system that works “offline”.
The system works in a semi-streaming mode: when-
ever there’s a document update, the content of the
document is sent to the NER and description min-
ing components. The NER component extracts
entities then updates information in the topic candi-
date store. The topic ranker periodically pulls the
topic candidates store to select the top N topics.
The topic card builder then builds topics cards with
various attributes. Note that this is a simplified
view of the actual system. For example, there is
another component that conflates information from
other sources using techniques described in Winn
et al. (2019).

2.1 Named entity recognition for enterprise
NER is the typical first step in information ex-
traction (Jurafsky and Martin, 2009, Chapter 22).
Based on our study on enterprise customers’ de-
mand and an analysis of Bing’s Satori knowledge
graph, we define 8 entity types that are of inter-
est to the enterprises while covering most of real-
world entities. Among them, “person”, “organiza-
tion”, “location”, "event", and “product” are the

common NER types in various public datasets
(CoNLL03: Tjong Kim Sang and De Meulder,
2003, OntoNotes: Hovy et al., 2006; WNUT 2017:
Derczynski et al., 2017), while “project”, “field of
study”, “creative work” are less common but are
also of high interest to enterprises. These 8 types
cover about 85% of entities in Bing’s Satori knowl-
edge graph. The remaining entities are mainly bio-
logical organisms.

Our NER model is based on Transformers with
the pretraining-finetuning paradigm (Devlin et al.,
2019). State-of-the-art results on several NER
benchmarks are achieved with Transformers (Ya-
mada et al., 2020; Li et al., 2020). To make data
collection easier, we train our model on public data
but apply it to enterprise domain. The distributional
shift between training and testing can cause a signif-
icant performance drop (Quiñonero-Candela et al.,
2008). To measure model’s true performance un-
der distributional shift, we construct a test set from
actual internal documents within Microsoft. The
size of this test set is comparable to CoNLL03 test
set (Tjong Kim Sang and De Meulder, 2003).

To mitigate the distributional shift issue, we di-
vide model training into multiple stages, with the
first stage training on large amount of automatically
annotated data using Wikipedia, which has been
shown to help the system generalize better to a new
domain (Ni and Florian, 2016). Entities are identi-
fied by wikilink, and we use Bing’s Satori knowl-
edge graph to find out the corresponding entity type.
We selected paragraphs with at least 10 wikilinks,
which gives us ∼1 million paragraphs. Finally, we
use an entity linking tool NEMO (Cucerzan, 2007,
2014) to annotate entities without wikilinks and get
∼ 50% more entities.

The benefit of Wikipedia training data lies in its
size, but it comes with low annotation quality. Af-
ter training on it, we continue training on smaller
data with high quality human annotation. In the
second stage, we use OntoNotes 5.02 data set and
mapped their types to our 8 types. This stage is
mainly beneficial for the common NER types, but it
does not help our additional “project” and “field of
study” type. In the last stage, the training data is a
combination of a small number of web documents
with 8 types annotation (size is ∼1000 paragraphs)
and CoNLL03 data with “MISC” type being rean-
notated to one of our 8 types. This last stage of

2https://catalog.ldc.upenn.edu/
LDC2013T19

https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
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Figure 1: An illustration of the knowledge mining system.

Figure 2: Scores for selected tokens and selected types
from the sentence “The history of NLP dates back to
the 1950s when Alan Turing proposed a simple test (the
“Turing Test”) to determine . . . ”. The abbreviations in
use are: per for person, fos for field of study, wrk for
creative work, and prj for project.

training data is most aligned with our NER type
definition.

To illustrate the effect of multistage training as
well as additional improvement techniques, we con-
sider BERT-base with cased vocabulary finetuned
only on the last stage of training data as a strong
baseline. The F1 metrics of our model, baseline,
and ablation experiments on our test set from inter-
nal documents are shown in Table 1. The baseline
56% F1 is much lower than the reported F1 > 90%
on CoNLL03 test set (Devlin et al., 2019), which
shows the challenge from the distributional shift
(we also test our baseline model on CoNLL03 test
set and get F1 > 90%). The most common entity
type in our test set is product, which can be more
difficult to detect than the most common entity
types (person, location, organization) in CoNLL03.
Also our test set is noisier than CoNLL03 as in-
ternal documents are often less formal than public
documents such as newswire articles. Our best
model achieved an F1 of 71.1%. In ablation study,
multistage training improves F1 by 5.4% from the
baseline. We find additional techniques that can
robustly improve model performance:

• Data augmentation: we find two most use-

ful data augmentation methods out of many
methods we have tried. One method is simply
lower casing the training data. This method
has been shown to increase NER performance
on uncased text significantly, and even im-
prove performance on cased text when train
and test on different domains (Mayhew et al.,
2019). The second method is to replace an
entity mention with a randomly selected en-
tity of the same type. This is motivated by
our observation that the distribution of entities
roughly follows the Zipf’s law. Randomly re-
placing entities can give more weights to tail
entities. In combination, data augmentation
provides a 0.6% F1 lift.

• Focal loss: NER is an imbalanced classifi-
cation problem as most input tokens are not
entities. We test loss functions suitable for im-
balanced dataset: Dice Loss (Li et al., 2020),
Am-Softmax (Wang et al., 2018), and Focal
Loss (Lin et al., 2017). They all provide simi-
lar improvement. We report focal loss (hyper-
parameter gamma=1.6) results here with an
additional 1.5% F1 lift.

• Viterbi decoding: as there is no hard constraint
on the sequence of labels from BERT, the se-
quence can be invalid under the standard BIO
tagging scheme (Lample et al., 2016). Fig-
ure 2 shows such an example. The scores
for tokens (“Turin”, “##g”, “Test”) give an
invalid label sequence of B-per, I-wrk, I-wrk
(per stands for person, wrk for creative work)
using greedy argmax decoding, which we cor-
rect to O, O, O in the baseline setting. We
observe that the correct sequence B-wrk, I-
wrk, I-wrk has highest sum of scores among
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Experiment Config F1 P R
Best model UniLMv2-large: all techniques 71.1% 72.2% 70.2%
Baseline BERT base: single last stage 56.0% 54.0% 58.2%
Ablation BERT base: multi-stage 61.4% 60.7% 62.1%

+data augmentation 62.0% 60.6% 63.4%
+focal loss 63.5% 62.7% 64.4%
+Viterbi decoding 65.4% 65.8% 65.1%

Table 1: NER results on internal test set.

all valid sequences, for example B-per, I-per, I-
per. Based on this observation, we use Viterbi
algorithm to find the valid path under BIO
scheme with the maximum sum of scores.
This provides a 1.9% F1 lift. We have also
tried adding a CRF layer on top of BERT,
training jointly or separately. We do not see
additional gain (though CRF layer can further
improve 1-layer student model).

• Bigger and better pretrained model: BERT
is pretrained on English Wikipedia and Book-
Corpus, which have limited writing styles. En-
terprise documents can be more diverse, less
formal and noisier. Therefore, pretraining on
more diverse corpora may help our task. We
switched from BERT base-cased to UniLM v2
large-cased, which is pretrained on additional
144GB corpora including OpenWebText, CC-
News, and Stories (Bao et al., 2020). This
provides a 5.7% F1 lift.

For production, we distill knowledge from the
24-layer UniLMv2 teacher model into a 3-layer stu-
dent model, which is initialized from the weights of
the first 3 layers of the teacher model (Hinton et al.,
2015). We use 1 GB Wikipedia data for distillation.
The student model suffers a 5.6% F1 drop. Though
not used in production, we experiment continuing
distillation with only about 50MB of internal docu-
ments. This small amount of data reduces the gap
between student and teacher models to 0.9% F1,
which suggests the usefulness of using in domain
data for knowledge distillation.

Knowledge distillation gives us ∼6x speed up
for inferencing a single input sequence on Nvidia
V100 GPU with f32 precision. On top of student
model, we get another ∼14x speedup by (1) export-
ing model from Pytorch to ONNX (Ning, 2020),
(2) switching from Python to C#, and (3) running
inference in f16 precision and batch mode.

2.2 Topic ranker
In the NER step, tens of millions of topic candi-
dates could be detected. The goal of topic ranker is

to pick the top tens of thousands most salient topics
while reducing the number of noisy topics. We
achieve this in two stages by first simply ranking
topics by their total number of times being detected
by NER (referred to as NER frequency) to produce
a short list of topics. Then we rerank the short list
by scores from a binary classifier. The classifier
is trained to distinguish between good and noisy
topics. It uses features such as NER frequency, doc-
ument frequency, topic-in-title frequency (number
of times the topic appears in the document title)
and the ratios of these counting features.

This classifier is effective as it uses global statis-
tical information not available during NER stage.
For example, the word “Company” could be mis-
labeled as an organization by the NER model. Al-
though the probability is small, it could still make
into the short list as this word appears very often.
The classifier would filter it out as the ratio (NER
frequency/document frequency) is very small.

Our training set contains 6000 annotated topics
detected from about 0.5 million Microsoft internal
documents. Using a single feature NER frequency
as a baseline, the AUC is 0.54. We train a gradi-
ent boosting trees classifier (Ke et al., 2017) using
5-fold cross validation and achieve an average vali-
dation AUC 0.67.

In the production system, as the number of topic
candidates scales up, the topic ranker could play
a more important role as much lower percentage
of topics will be selected. To evaluate its true use-
fulness, we apply the classifier in the end-to-end
system to process all Microsoft documents. We ran-
domly sample a subset of topics before and after
applying the classifier. We observe a 9% reduction
in noisy topics with the classifier.

2.3 Definition mining

A succinct and accurate description is a crucial at-
tribute of a topic. Such descriptions come from two
sources: (1) for some topics such as “field of study”
type, their descriptions exist in public knowledge
and therefore we retrieve this information from
Bing’s Satori knowledge graph using an existing
context aware ranking service, which is in use for
Microsoft Word’s Smart Lookup feature; (2) more
importantly, we build a description mining pipeline
to extract private definitions from enterprise doc-
uments. This pipeline consists of the following
steps:

1. Split a document into sentences.
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2. A deep learning model classifies each sen-
tence into one of 5 categories. Pass a sentence
in the “Sufficient Definition” category to the
next step.

3. Extract topic from the sentence using a list
of patterns, for example: topic is defined as
description text.

4. Remove sentences with negative opinion (or
sentiment) based on lexicon match. We use
the Opinion Lexicon from Hu and Liu (2004).

A large corpus contains definition-like sentences
with a wide range of ambiguity beyond a binary
classification task can capture. Therefore, we make
the task more granular and define 5 categories most
common in enterprise domain: Sufficient, Informa-
tional, Referential, Personal and Non- definitions.
Detailed schema is included in the Appendix.

To collect training data, we need to first collect
sentences with a relative high chance of being a de-
scription. In addition, we want to collect more hard
negative examples such as opinions (e.g., "Cater-
pillar 797B is the biggest car I’ve ever seen.") than
easy negative examples. Using query log from
Bing, we achieved these two goals: we collect
search results for queries that match patterns such
as “what is {term}”, “define {term}” as the results
are highly related to definitions. The search results
also have the advantage of being more diverse than
a single corpus. From the search results, we create
a set of 42,256 annotated sentences, which is re-
ferred as public dataset. As we will show, a model
trained on the public dataset suffers a significant
performance degrade on enterprise documents due
to distributional shift. Therefore, we construct a
second dataset from our internal documents that
have been approved for use after compliance re-
view, which is referred as enterprise dataset. The
model trained on the public dataset is used for iden-
tifying candidate sentences for annotation during
the construction of the enterprise dataset. Using
the enterprise dataset involves many compliance
restrictions. For example, we need to delete a sen-
tence if its source document is deleted or our access
expires; the model is trained within the compli-
ance zone and stays within it. Details for these
two datasets are shown in Table 2, which also in-
cludes the DEFT corpus for comparison (Spala
et al., 2019). Roughly 15% of the data from the
two datasets is withhold from training for testing.

Dataset # of sentences # of positive
Public dataset 42,256 10,927
Enterprise dataset 58,780 49,017
DEFT (Spala et. al. 2019) 23,746 11,004

Table 2: Datasets for definition classification task.

Model Train data Test data F1/P/R
Bert-base Public Public 0.82/0.76/0.89

Enterprise 0.64/0.55/0.77
BERT-base Enterprise Enterprise 0.73/0.68/0.80
BERT-large 0.72/0.70/0.77
UniMLv2-large 0.75/0.71/0.80
Rule based N/A Public 0.48/0.40/0.60

Table 3: Results for definition classification.

Similar to our approach in NER, we consider
BERT-base (with cased vocabulary) as a strong
baseline. First we train BERT-base model on the
public dataset. When testing it on public and enter-
prise datasets, we get F1 results of 0.82 and 0.64 re-
spectively, as shown in Table 3. This performance
degradation again exemplifies the challenge from
distributional shift. Then we train on the enterprise
dataset and compare BERT-base with BERT-large
and UniLMv2-large. UniLMv2-large achieves the
best result with F1 of 0.75, which may again ben-
efit from the bigger pretraining corpus (Bao et al.,
2020). In Table 3, we also add the result from
rule-based classification, which directly uses the
list of patterns in Step 3 (e.g., “is a”, “is defined
as”, “refer to”) to identify definition. It is eval-
uated as a binary classification task: “Sufficient
Definition” vs Others. We get F1 of 0.48 with an
even lower precision of 0.40. This shows the ne-
cessity of model-based classification in Step 2 in
our definition extraction pipeline.

For production, we distill our best model into
a much smaller BiLSTM model. The embedding
of the BiLSTM is initialized from 50-dimensional
Glove vector (Pennington et al., 2014) with a re-
duced vocabulary size of 0.12 million. The hid-
den dimension size is 300. We follow similar
knowledge distillation approach as in Tang et al.
(2019). The student model reaches F1 of 0.72
while achieves about 30x speedup vs. the 24-layer
teacher.

2.4 Topic card builder

Topic card builder builds topics cards with rich
information by aggregating information like defi-
nition and acronym from other components. More
importantly, it computes the relatedness between
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topics, documents and users. Using relatedness, it
links the top related topics, documents, and users
to each topic. By adding related users to a topic,
we enable the “expert finding” scenario, which is
important for enterprise users to explore expertise.
Topic card builder also conflates two topics if their
degree of relatedness exceeds a threshold and they
pass additional checks to prevent over conflation.

To compute relatedness between any two items,
we build a dense embedding vector for each topic,
document and user. We apply SVD to decompose
the topic-document matrix M into topic and doc-
ument embeddings, where Mi,j is the BM25 of
topic i in document j. This is a classical algorithm
in collaborative filtering (Koren et al., 2009) and
semantic embedding (Bellegarda, 2000; Levy et al.,
2015), but the challenge is the size of the matrix M
in the j dimension as it can be on the order of tens
of millions. We improve a randomized SVD algo-
rithm that iterates on smaller batches of documents
so it can solve problem of our scale on a single
machine under 8 GB memory limit (Halko et al.,
2011). User embedding is represented as the aver-
age of embeddings of the documents that the user
has authored. Relatedness is computed as the dot
product of two embedding vectors. Top K topics
and users most related to a given topic are added
to the topic card in this manner. For related docu-
ments, embedding is used as a recall-oriented step
to select candidate documents, and we apply an
additional reranking step using additional signals.

To evaluate the overall quality of the system, we
conduct human evaluation on the quality of gen-
erated topic cards (70K) mined from Microsoft
internal documents (40 million). We ask users (Mi-
crosoft employees) to judge the overall quality of
randomly sub-sampled topic cards by considering
all the information. A good topic card means that it
has sufficient information to help users understand
the topic. In this study, we achieve 85% good rate.

3 Use Cases

The detailed user guide and licensing information
can be found on Microsoft Viva Topics website3.
Here we briefly introduce two ways user can inter-
act with the knowledge base. Figure 3 shows the
topic highlighting feature. Topic mentions in doc-
uments get automatically linked to the knowledge
base. User can hover over the topic mention to see

3https://docs.microsoft.com/en-us/
microsoft-365/knowledge/

Figure 3: Snapshot of an example topic card impres-
sion in enterprise web document.4

Figure 4: Snapshot of a personalized topic center home-
page.4

the topic card and click the link in the topic cards to
checkout more information. Figure 4 shows an ex-
ample topic center homepage. The view is person-
alized as the related topics for a user is presented
for the user to confirm. Users can also checkout all
the topics from Manage Topics page.

4 Conclusion

Organizing resources inside an enterprise into one
centralized location facilitates knowledge and ex-
pertise sharing and improves productivity. We
present a system that automatically constructs a
knowledge base from unstructured documents to
help enterprises achieving this goal. The system is
built upon a combination of deep learning models
and classical techniques. We show the challenge
of applying NLP models in enterprise domain. We
also discuss how we improve the models and the
whole system to meet our requirements with de-
tailed experiment results. Finally, we show two
typical use cases. We hope our experience can
benefit researchers and practitioners in this field.

4The contents (company name, topic information) are not
real internal information but are created for demo purpose.

https://docs.microsoft.com/en-us/microsoft-365/knowledge/
https://docs.microsoft.com/en-us/microsoft-365/knowledge/
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Category Description Example
Sufficient
Definition

Can uniquely define and can only
define this term.

Statistics is a branch of mathematics dealing
with data collection, organization, analysis, in-
terpretation, and presentation.

Informational
Definition

Informational but cannot
uniquely define this term or can
also apply to other terms.

Statistics is a branch of mathematics.

Referential
Definition

Is a definition but does not con-
tain the term but instead a refer-
ence (“it/this/that”).

This method is used to identifying a hyper-
plane which separates a positive class from the
negative class.

Personal Def-
inition

Associated with the name of a
person.

Tom is a Data Scientist at Acme Corporation
working on natural language processing.

Non-
definition

Does not fall in the other cate-
gories. It can be an opinion (hard
negative) or not related to defini-
tion at all (easy negative).

The Caterpillar 797B is the
biggest car I’ve ever seen.
"Effective Date" means the date 5th May
2020.

Table 4: Schema for definition categories.


