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Abstract

We present RepGraph, an open source visu-
alisation and analysis tool for meaning repre-
sentation graphs. Graph-based meaning rep-
resentations provide rich semantic annotations,
but visualising them clearly is more challeng-
ing than for fully lexicalized representations.
Our application provides a seamless, unifying
interface with which to visualise, manipulate
and analyse semantically parsed graph data
represented in a JSON-based serialisation for-
mat. RepGraph visualises graphs in multi-
ple formats, with an emphasis on showing the
relation between nodes and their correspond-
ing token spans, whilst keeping the represen-
tation compact. Additionally, the web-based
tool provides NLP researchers with a clear, vi-
sually intuitive way of interacting with these
graphs, and includes a number of graph anal-
ysis features. The tool currently supports the
DMRS, EDS, PTG, UCCA, and AMR seman-
tic frameworks. A live demo is available at
https://repgraph.vercel.app/.

1 Introduction

Broad-coverage semantic graphs provide richer
representations of sentence meaning than surface-
level syntax or lexicalised semantic dependencies
(Oepen et al., 2019). The breadth of meaning repre-
sentation approaches now includes a large number
of semantic graph frameworks — each with their
own respective strengths and weaknesses at encod-
ing the meaning of natural language (Koller et al.,
2019). Recently, a growing body of work has fo-
cused on parsing to or generating from graph-based
meaning representations (Hershcovich et al., 2017;
Buys and Blunsom, 2017; Zhang et al., 2019; Song
et al., 2018). The outputs of many other syntactic
and semantic analysis tasks can also be represented
as graphs, where labelled nodes correspond to to-
ken spans and edges to relations between these
spans (Jiang et al., 2020).

∗ These authors contributed equally to this work

Figure 1: Hierarchical visualisation of the EDS graph
for the sentence “Champagne and dessert followed.”

Visualisations of constituency trees, syntactic
dependency trees and semantic dependency graphs
are well established for teaching, analysing and pre-
senting the outputs of those representations. How-
ever there is no similar established standard for
visualising broad-coverage semantic graphs, due
to diverging approaches to representing semantics
in different frameworks, as well as the challenges
involved in visualising both the graph and the cor-
respondence to the sentence it represents clearly.

To stem the “Balkanisation” caused by
framework-specific approaches, CoNLL 2019 and
2020 hosted shared tasks on Cross-Framework
Meaning Representation Parsing (MRP; Oepen
et al., 2019, 2020). These tasks provided a uniform
abstract graph representation with a JSON-based
serialization format and standardized datasets.
However, current visualisation tools are either
framework-specific or fail to represent graphs
clearly and consistently across frameworks (§5).

RepGraph is an open source, web-based visu-
alisation and analysis tool for meaning representa-
tion graphs, with support for multiple frameworks.

https://repgraph.vercel.app/
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The tool provides three novel visualisation formats,
each designed to better elicit specific inherent qual-
ities of the graphs (§3). In contrast to previous
approaches, two of our visualisations (hierarchical
and tree-like) represent the graph and sentence to-
kens in an integrated manner, clearly showing the
relationship between nodes and the tokens or token
spans they correspond to. The third (flat) is akin to
existing dependency graph visualisations.

The tool provides a unified, intuitive and feature-
rich platform for interacting with meaning repre-
sentation graphs. Analysis functionality includes:
displaying subgraphs, searching graphs by node la-
bel or subgraph, comparing graphs visually, testing
graph properties such as planarity, and providing
dataset-level statistics (§4).

RepGraph is targeted towards everyone work-
ing with meaning representation graphs, including:
researchers developing parsers or generators; com-
putational linguists performing semantic analysis;
NLP practitioners using graphs in downstream ap-
plications; and students learning about these repre-
sentations. Parsing is not currently integrated, but
parser output can easily be processed. RepGraph
is also not intended to be an annotation tool; such
functionality is orthogonal to what we provide.

Five semantic graph frameworks are currently
supported: Dependency Minimal Recursion Se-
mantics (DMRS; Copestake, 2009), Elementary
Dependency Structures (EDS; Oepen and Lønning,
2006), Prague Tectogrammatical Graphs (PTG;
Hajič et al., 2012), Universal Conceptual Cognitive
Annotation (UCCA; Abend and Rappoport, 2013)
and Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013). Some framework-specific
normalisations are performed to improve compat-
ibility and enable a unified approach to visualisa-
tion. While our development focused on English
datasets, most of the frameworks also support other
languages, and the tool can easily be extended to
support additional frameworks.1

2 System Description

A semantic graph is a triple (T,N,E), where N
is a set of nodes, E ⊆ N ×N is a set of directed
edges, and T ⊂ N is a set of top nodes (Oepen
et al., 2019).

Nodes may optionally have zero or more prop-
erties with associated values. The relationship be-

1A demo video is available at https://vimeo.com/
user136369092/repgraph

tween the graph nodes and the input string is re-
ferred to as anchoring or alignment. We assume
that the input is tokenized; a graph node may be
anchored to a token, a token span, or a set of token
spans.2 The alignment is not annotated in all frame-
works; we assume that it can be obtained, using an
aligner, for (most) graph nodes.

The alignment between the nodes and input to-
kens forms the basis of the design of our hierar-
chical and tree-like visualisation formats. We also
distinguish between surface nodes, which repre-
sent the lexical items (tokens) they are aligned to
directly, and abstract nodes, which represent the se-
mantic contribution of grammatical constructions.

This distinction is annotated explicitly in DMRS
and EDS (which are based on the same under-
lying annotations), but we extend it to the other
frameworks based on the alignments and frame-
work properties.

2.1 System Architecture

The system consists of a web-based front-end user-
interface through which users upload a file contain-
ing a bank of MRP graphs in the Uniform Graph
Interchange Format, which is serialised in JSON
Lines format (Oepen et al., 2019). The file is
then uploaded to and parsed by the back-end of
the RepGraph application to create a transitory
structure of the dataset. The user can then pro-
ceed to the main screen of the application (Fig.
2). The main libraries used are React3, visx4, and
material-UI5 for the front end, and Spring-Boot6

for the backend. The source code can be found at
https://github.com/RepGraph/RepGraph.

3 Graph Visualisation

Our application provides three distinct visualisa-
tions of meaning representation graphs in all the
supported frameworks, providing users with multi-
ple perspectives of the same semantic information.

As can be seen in Figures 1–3, the visualisations
use colour and annotations to represent the various
elements of the graphs — for example, surface and
abstract nodes are differentiated and shown in dif-
ferent colours. An expandable legend is provided

2The anchoring is annotated at character level in the MRP
data. We tokenise the input in a manner that is consistent with
the given annotations.

3https://reactjs.org/
4https://github.com/airbnb/visx
5https://material-ui.com/
6https://spring.io/

https://vimeo.com/user136369092/repgraph
https://vimeo.com/user136369092/repgraph
https://github.com/RepGraph/RepGraph
https://reactjs.org/
https://github.com/airbnb/visx
https://material-ui.com/
https://spring.io/
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Figure 2: The RepGraph Main Page with an EDS graph visualised in the Tree-like format. The main elements on
the page are captioned.

to explain the different colours (see Fig. 2).
The user can modify the default colours and spac-

ing of the visualisations from the settings in the
panel on the left of the main page. The placement
of the edges and edge labels can also be manip-
ulated easily by dragging them with the mouse.
The examples in the figures, as well as the demo
data provided in application, come from the sample
annotations of Wall Street Journal (WSJ) corpus
sentences provided for MRP 2020.7

We next discuss each of the visualisations, and
in particular how node placement is calculated for
each of them (§3.1 - 3.3). Then we discuss how
edge placement is determined across all the visu-
alisations to minimise collisions (§3.4), and nor-
malisations to make the anchoring more consistent
across frameworks (§3.5).

3.1 Hierarchical

The Hierarchical layout (Fig. 1) focuses on show-
ing the natural hierarchy that occurs between the
anchors of the semantic nodes in the graph. Nodes
with larger spans envelop nodes whose spans they
subsume in their range of tokens. Horizontal bars
(brackets) are placed below the semantic nodes in
the graph to represent the alignment with their span
of tokens in the input sentence. Tokens are dis-
played in the bottom row. For example, in Fig. 1,
the top-most node with the label udef_q has a
bracket covering the token span “Champagne and
dessert” below it.

7http://svn.nlpl.eu/mrp/2020/public/
sample.tgz

3.2 Tree-like

The Tree-like visualisation (Fig. 2), places em-
phasis on each node’s number of descendants. A
tree-like structure is created by having nodes with
a larger number of descendants positioned above
nodes with a lower number of descendants. The an-
choring of nodes that are positioned at the bottom
of the graph (directly above the tokens) is repre-
sented with a dotted line to the tokens(s) they span.
These nodes are positioned vertically in line with
the start of their token span. The alignment of other
nodes is not indicated visually. The node placement
is computed by running a topological sort on each
node in order to get a list of its descendants, which
is used to determine its level in the tree.

3.3 Flat

The flat visualisation (Fig. 3), orders nodes hori-
zontally based on the first token alignment. Ties be-
tween nodes that are aligned to the same first token
are broken by prioritising nodes with smaller span
lengths. Edges are curved above and below the
linear plane according to whether they are directed
right or left. No tokens are shown in this format.
The span(s) of each node and its corresponding text
phrase(s) are present inside a tool-tip that appears
when they are hovered upon. This visualisation
is similar to the way that dependency graphs are
traditionally visualised (albeit using graph nodes
rather than tokens as basic elements).

 http://svn.nlpl.eu/mrp/2020/public/sample.tgz
 http://svn.nlpl.eu/mrp/2020/public/sample.tgz
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Figure 3: Example of the flat visualisation of the PTG
graph for the sentence “Champagne and dessert fol-
lowed.”

3.4 Edge Handling

Edges are created as Quadratic Bézier Curves de-
fined through 3 points (P0, P1 and P2):

B(t) = (1−t)2P0+2(1−t)tP1+t2P2, 0 ≤ t ≤ 1

where P0 is the edge’s source node position and P2

is the edge’s target node position.
We designed a set of edge handling heuristics

that determine the value of P1 for each graph edge,
with the aim to minimise overlap between edges,
edge labels and nodes. The heuristics take into ac-
count attributes of edges and their source and target
nodes that include their distance, whether they are
in the same row or column, and the relative posi-
tions of other nodes. Users can also drag edges and
edge labels with their mouse pointer, manipulating
the value of P1.

3.5 Framework Normalisation

In order to visualise and analyse graphs across all
frameworks in a standardised way, we performed
framework-specific normalisations that capture la-
tent information whilst ensuring accuracy of the
graph visualisations.

We extract DMRS annotations from the Red-
woods treebank8 using PyDelphin.9 Tokenisation
and some additional normalisations were derived
from the Redwoods syntactic layer.

For the other frameworks we use the data pro-
vided by the MRP 2020 shared task (Oepen et al.,
2020). Input sentences were tokenised with Stan-
ford CoreNLP (Manning et al., 2014).10

8http://svn.delph-in.net/erg/tags/
1214/

9https://github.com/delph-in/pydelphin
10https://stanfordnlp.github.io/

CoreNLP/

In EDS, nodes with the CARG property (named
entities) are treated as surface rather than abstract
nodes, and displayed as such in the visualisation.

PTG graphs may contain nodes without token
alignments. We align those nodes to their leftmost
aligned children, or if that is not possible, their
leftmost aligned parents. These induced alignments
are use only to determine the node layout, and are
not displayed visually.

UCCA nodes do not have explicit labels. We
treat nodes with spans as surface nodes; their labels
are implicitly derived from their spans, using the
corresponding token strings as labels. Abstract
nodes (nodes without annotated spans) implicitly
derive their spans as the union of the spans of their
descendent nodes. We do not assign labels to them.

AMR annotations do not include node spans. As
our hierarchical and tree-like visualisations require
node spans, an AMR aligner is used to obtain align-
ments. The rule-based JAMR Aligner11 (Flanigan
et al., 2014) is integrated into our tool to process
only AMR graphs that are uploaded without align-
ments - this does not impact the language support
of the other frameworks. All aligned nodes are
designated as surface nodes. Nodes that are left
unaligned by the aligner are aligned in the same
way as PTG to determine the layout.

Multiple Spans Graphs in the UCCA and PTG
frameworks have nodes that are anchored to multi-
ple, potentially discontiguous token spans. These
nodes are handled as follows: If the multiple spans
are contiguous, node are aligned to the union of
their spans. Otherwise, dummy nodes are created
for each additional non-adjacent span; the regu-
lar node corresponds to the left-most span. Each
dummy node is placed above its aligned token span
and distinguished visually. It takes the label of its
original node, with additional information to iden-
tify which span it refers to and from which node it
was created. When the user hovers over the original
node, the dummy nodes are highlighted.

4 Graph Analysis Features

4.1 Subgraph Display

The subgraph display tool allows users to examine
specific subgraphs of the currently visualised graph.
Users can choose between two types of subgraphs:
adjacent and descendent. Upon selection of a sub-
graph type, the user selects a node on the graph

11https://github.com/jflanigan/jamr

http://svn.delph-in.net/erg/tags/1214/
http://svn.delph-in.net/erg/tags/1214/
https://github.com/delph-in/pydelphin
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://github.com/jflanigan/jamr
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Figure 4: The Graph Comparison Tool showing which nodes and edges in the two UCCA graphs are similar (green)
or dissimilar (red).

visualisation and clicks the display button to view
the resulting subgraph.

Adjacent subgraphs are created from the nodes
directly adjacent to the selected node. This allows
users to focus in on the immediate neighbourhood
of a node.

Descendent subgraphs are created from the se-
lected node’s descendants in the graph. This allows
users to focus on a single node and the propagation
of its descendants through the graph.

4.2 Subgraph Search

We provide two ways for users to find graphs match-
ing specific patterns in large datasets:

Search by Node Label Set The user can enter
one or more node labels as a query to search for all
graphs in the dataset which contain all of these node
labels. This gives the user the ability to quickly find
sentences and graphs containing nodes of interest
and see how they are used in different graphs.

Search by Subgraph Pattern The user can also
visually select a connected subgraph of the current
graph by clicking to select the desired nodes and
edges. After selection, the search will return all
other graphs that contain this subgraph, and the
user can visualise any of these graphs.

4.3 Graph Comparison

The graph comparison interface, seen in Fig. 4,
is broken up into two vertically-separated side-by-
side panels that enable direct comparison between
two graphs. The user selects a graph from the
dataset for each side, toggles the comparison set-

tings, and clicks compare. The similarities and
differences between the graphs are displayed visu-
ally through colouring the nodes and edges. If the
same node label appears in both graphs, all nodes
with that label are deemed as similar, even when
the number of nodes with that label differ between
the two graphs.12 The tool also provides the option
to only compare surface or abstract nodes. Two
modes of graph comparison are provided:

Standard Comparison Nodes are compared us-
ing only their labels, whereas edges are matched
if both the edge labels and the labels of the nodes
they are incident to are equal.

Strict Comparison This mode additionally re-
quires that the concatenation of the token spans
corresponding to each node has to be the same (as
strings) in order for the nodes to match.

4.4 Graph Properties
A number of graph properties can be evaluated on
the current graph.

Planarity An important property of a semantic
graph is whether it is planar, also referred to as
non-crossing (Kuhlmann and Oepen, 2016). To de-
termine planarity, the nodes are ordered in a similar
manner as for the flat visualisation (§3.3), except
that nodes with the exact same span are placed be-
low one another in the same horizontal position,
and have their edges transferred to the node rep-
resenting their position in the linear ordering. All

12This contrasts to Smatch (Cai and Knight, 2013) which
finds a 1-to-1 alignment between the nodes to measure graph
overlap, while for visualisation purposes we rather show all
possible correspondences.
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edges are represented as arcs above the nodes.
Nodes with no token alignment are excluded

from the construction as it is assumed they can be
placed anywhere to avoid causing conflicts. Edges
between nodes in the same linear ordering posi-
tion are also excluded as they have no impact on
potential crossing edges.

The check for planarity, once the linear order-
ing has been established, follows the definition of
planarity outlined in (Gómez-Rodríguez and Nivre,
2010). After running the planarity test, the modi-
fied graph can be visualised. Crossing edges are
highlighted in red.

Graph Connectivity A graph is connected if an
undirected path exists between every pair of nodes
(Kuhlmann and Oepen, 2016). AMR graphs are
always connected, but this is not guaranteed for
the other frameworks. Graph connectivity is deter-
mined using a variation of Breadth First Search.

Longest Directed and Undirected Path(s) Our
tool also has functionality to find the longest di-
rected or undirected paths in any graph. The
longest path is highlighted on the graph. If there are
multiple longest paths, the user can cycle through
them. The paths are found using derivations of
Topological Sort and Breadth First Search. Before
the longest path is derived, the graph is checked for
cycles using a derivation of Depth First Search.

4.5 Dataset Statistics

The dataset statistics tool can produce a number
of global statistics on the current dataset, which
may be useful for comparing datasets. The statis-
tics included are a subset of the ones used by
Kuhlmann and Oepen (2016) to compare semantic
graph frameworks, and include average number of
nodes, average span of node, and percentage of
cyclic graphs, amongst others.

5 Related Work

The plethora of tools and visualisation options cur-
rently available are fragmented and often built with-
out semantic graphs in mind. In the context of
the MRP Shared Tasks, mtool13 was developed
to provide various functionality including format
conversion, graph analysis, and evaluation. How-
ever, mtool is a command-line only tool and does
not provide a simple and intuitive way to interact
with large datasets of semantic graphs. In terms
of graph visualisation, mtool supports the output

13https://github.com/cfmrp/mtool

(a) DMRS graph visualised with delphin-viz

(b) UCCA graph visualised with mtool

Figure 5: Visualisations provided by previous work

of graphs in DOT language that is compiled with
Graphviz.14 Unfortunately, since Graphviz is a
general-purpose visualization tool, the visualisa-
tions produced are often complex and inadequate
at capturing framework-specific assumptions. As
an example, the UCCA visualisation in Fig. 5b
lacks lexical information.

A number of other framework-specific visualisa-
tion tools exist, including for DMRS15 and AMR
(Saphra and Lopez, 2015), but are limited in terms
of their functionality and framework support. The
delphin-viz DMRS visualisation (Fig. 5a) is simi-
lar to our flat visualisation, but lacks the structure
conveyed by our other visualisations.

6 Conclusion

The proliferation of graph-based and span-based
meaning representations has created the need for
a general platform for analysing these represen-
tations. RepGraph provides such a unified plat-
form for the visualisation and analysis of semantic
graphs in multiple frameworks. The tool allows
users to explore and analyse these representations

14https://www.graphviz.org/
15http://delph-in.github.io/

delphin-viz/demo/

 https://github.com/cfmrp/mtool
https://www.graphviz.org/
http://delph-in.github.io/delphin-viz/demo/
http://delph-in.github.io/delphin-viz/demo/
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in an interactive and intuitive manner that is not pos-
sible with existing tools. Our work aims to make
meaning representations accessible to a broader
audience than researchers invested in a particular
framework, while providing new insights into these
representations through novel visualisations.

For future work, we plan to include support for
additional semantic frameworks, including span-
based representations such as semantic role la-
belling. We also intend to integrate parsers for
all supported frameworks. This will provide signif-
icant utility by allowing users to upload text files or
enter sentences directly, and use RepGraph straight
away rather than having to run a parser separately.
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