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Abstract

This study performs BERT-based analysis,
which is a representative contextualized lan-
guage model, on corporate disclosure data to
predict impending bankruptcies. Prior litera-
ture on bankruptcy prediction mainly focuses
on developing more sophisticated prediction
methodologies with financial variables. How-
ever, in our study, we focus on improving the
quality of input dataset. Specifically, we em-
ploy BERT model to perform sentiment anal-
ysis on MD&A disclosures. We show that
BERT outperforms dictionary-based predic-
tions and Word2Vec-based predictions under
time-discrete logistic hazard model, k-nearest
neighbor (kNN-5), and linear kernel support
vector machine (SVM). Further, instead of pre-
training the BERT model from scratch, we ap-
ply self-learning with confidence-based filter-
ing to corporate disclosure data. We achieve
the accuracy rate of 91.56% and demonstrate
that the domain adaptation procedure brings
a significant improvement in prediction accu-
racy.

1 Introduction

Predicting imminent corporate bankruptcies has
been of great importance both in academia and in
industry. Early studies on bankruptcy prediction
focuses on identifying financial variables that pre-
cede impending insolvencies. Altman (1968) finds
out that z-score, a composite measure of several
financial variables, predicts imminent insolvencies.
Since then, numerous papers document additional
financial variables that seem to predict bankruptcies
(Ding et al., 2012; Bharath and Shumway, 2008;
Dwyer et al., 2004). Among 39 distinct financial
variables, Tian et al. (2015) choose seven key vari-
ables that effectively predict bankruptcies within
12 months by LASSO.

However, in contrast to the fact that the majority of
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corporate disclosures contain non-financial infor-
mation, textual disclosures have received relatively
less attention. Following Li (2008)’s call for re-
search on textual corporate disclosures, there have
been numerous attempts (Tetlock et al., 2008; Li,
2010; Mayew et al., 2015) to analyze the textual
sentiments of corporate disclosures. They com-
monly find that textual non-financial information
has orthogonal informational value to the exist-
ing financial information. However, the majority
of the analyses are based on the dictionary-based
approach suggested by Loughran and McDonald
(2011).

In our study, we perform a BERT-based analy-
sis on corporate disclosure data. BERT (Devlin
et al., 2018) is the pre-trained language model
based on the self-attention mechanism of Trans-
formers (Vaswani et al., 2017). BERT and its im-
proved versions such as GLUE (Wang et al., 2018),
SQUAD (Rajpurkar et al., 2016), and RACE (Lai
et al., 2017), have achieved state-of-the-art results
in several NLP downstream tasks. In this research,
we analyze the management, discussion, and anal-
ysis (MD&A) section of corporate disclosures and
extract its context-specific sentiment. We then pre-
dict bankruptcies that occur within 12 months from
the issuance of annual reports using the sentiment
variables produced by BERT-based model. The
reasons why we choose MD&A sections to be our
target of BERT-based analysis are as follows.
First, managers are obliged to express their opin-
ions regarding the future performance of firms in
MD&A sections. Therefore, MD&A is a rich
source of information to analyze managerial assess-
ment regarding a firm’s ability to operate as a going
concern. Second, negative future predictions are
likely to be accompanied by other positive expla-
nations (see Appendix A, Jung and Kwon, 1988).
Therefore, even though humans can interpret im-
plicit negative nuance in the written disclosures, the
traditional dictionary-based approach likely leads
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to an erroneous conclusion. Lastly, MD&A sec-
tions are required when preparing 10-K filings for
all firms. Therefore, we mitigate the sample selec-
tion bias by confining our analysis to observations
archived in SEC filings.

Our paper makes several contributions to the exist-
ing line of literature. To our best knowledge, this is
by far the first study to predict corporate outcomes
other than stock market returns with BERT-based
sentiment analysis. Unsophisticated investors have
difficulty in understanding corporate disclosures
since the disclosures are complex in nature (Bar-
tov et al., 2000). Therefore, the dictionary-based
approach displays a trivial limitation in analyzing
disclosure texts. We expect that context-specific
linguistic analysis will accurately examine the con-
textual sentiment of corporate disclosures. Specifi-
cally, by comparing the ability to predict impend-
ing bankruptcies, we show that BERT-based analy-
sis outperforms analyses based on dictionary (key
word lists) and word level embedding.

Second, there is no BERT model trained on corpo-
rate disclosures and the open-source BERT model
which is trained on the closest domain is Fin-BERT
(Araci, 2019). Fin-BERT is trained using financial
news data. However, since the corporate disclo-
sures and the financial news texts are in a similar
but different domain, Fin-BERT is not perfectly
suitable for interpreting corporate disclosures. We
need to ensure that the data distributions of the
training domain and the test domain are the same
to improve the performance of machine learning
models. Violation of this requirement, which is
known as domain shift (Shimodaira, 2000), leads to
underperformance of models (Glorot et al., 2011).
Language models that are trained in two stages of
pre-training and fine-tuning such as BERT, satisfy
this assumption only when they are pre-trained and
fine-tuned with a subset of their domain. Domain
shift harms BERT model performance substantially
(Lee et al., 2020; Beltagy et al., 2019). The most
trivial way to overcome this problem is to pre-train
BERT language model from scratch. However,
language model pre-training is highly time and
resource-consuming and it is inefficient to pre-train
language models for only specific tasks.

Another way to deal with domain shift in BERT
application is to fine-tune the model with labeled
data from the target domain. However, in reality,
labeled data for fine-tuning is often not available.
In such cases, unsupervised domain adaption is a
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good alternative (Kim et al., 2020; Kundu et al.,
2020). In this paper, we apply self-learning, one
of the key methodologies of unsupervised domain
adaption. We show that if the distance between the
source and target domains is close enough, super-
vising a BERT-based classification model with self-
generated pseudo-labels filtered with confidence
level leads to a significant improvement in perfor-
mance.

2 Related Studies

2.1 Bankruptcy predictions

In his seminal study, Altman (1968) finds that finan-
cial variables disclosed in annual reports predict
bankruptcies. Shumway (2001) shows that in addi-
tion to financial statement-related variables, stock
market-related variables such as market capitaliza-
tion and stock price are also associated with future
bankruptcies. However, considering that financial
variables convey imperfect corporate information
(Tennyson et al., 1990), prior literature extracts
information from narrative disclosures. Cecchini
et al. (2010) employ a complex vector space model
to predict bankruptcies with MD&A disclosures.
However, they remain silent on whether textual
information has additional predictive ability to fi-
nancial variables. Mayew et al. (2015) find that
narrative disclosures indeed contain information
which is orthogonal to the information provided
by financial variables. They utilize words lists pro-
vided by Loughran and McDonald (2011) to ana-
lyze general tone of MD&A disclosures.

Related to prediction methodology, Wilson and
Sharda (1994) use neural network with financial
variables to predict bankruptcies. Premachandra
et al. (2011) introduce data envelopment analysis
(DEA) and show that bankrupt firms exhibit rela-
tively lower operating efficiency. Shin et al. (2005)
find that SVM is effective in predicting notable
corporate events including bankruptcies and Chen
et al. (2013) develop an adaptive fuzzy k-nearest
neighbor method for insolvency prediction. Over-
all, prior literature has been successful in develop-
ing machine learning models that predict bankrupt-
cies with considerable accuracy. However, few
research focuses on improving the quality of input
variables. Specifically, less effort has been made to
produce precise semantic tone analysis with narra-
tive disclosures.



2.2 Text classification

The most traditional method of text classification
is the dictionary-based approach. The Harvard
Psychological Dictionary is the most commonly
used source in open domain text classification.
Loughran and McDonald (2011) propose a dictio-
nary specialized in the finance domain. However,
dictionary-based approach has a limitation that it
is difficult to create a dictionary that covers all the
keywords needed for text classification and that the
frequency of certain keywords does not necessarily
contain sufficient information to classify sentences.
Therefore, methods based on word embedding are
suggested as alternatives.

Word embedding assigns a vector which encodes
the meaning of the word to each text. Text clas-
sification methods based on word embedding in-
clude frequency-based methods as Tf-Idf (Salton
and Buckley, 1988) and prediction-based embed-
ding methods as Word2Vec (Mikolov et al., 2013).
Word2vec, in particular, places each word in a vec-
tor space which approximates its semantic space.
This algebraic transformation allows the vector op-
erations among words. Therefore, we may set a
word vector as the initial value of neural network
and further classify sentences by exploring their
contextual information. Kim et al. (2014) prove
that CNN structure, combined with Word2Vec em-
bedding, can be used to classify sentences.
Language models based on Recurrent Neural Net-
work(RNN) (Liu et al., 2016) and its variations
(Zhou et al., 2015; Wang et al., 2018) are also
used on text classification. However, recently,
Transformer-based language models as BERT (De-
vlin et al., 2018) and GPT-2(Radford et al., 2019)
outperform RNN-based methods and have drawn
attention with their performance in generic bench-
marks. These models apply self-attention to gener-
ate contextualized embedding. Especially BERT,
the origin of many SOTA (State—Of-The—Art) mod-
els, pre-trains contextual embedding model with
masked LM tasks and sentence prediction tasks,
and is then fine-tuned to be applied to downstream
tasks.

2.3 Domain adaptation

In its early stage, domain adaptation takes a form
of semi-supervised learnings. Semi-supervised do-
main adaptation is used when labeled data exists
in the target domain but when its amount is not
sufficient. For instance, Saenko et al. (2010) and
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Kulis et al. (2011) use metric learnings to solve
domain shifts. In specific, they adopt methods to
learn task-specific distance metrics with labeled
data and assign labels to unlabeled data based on
the learned distance.

However, in reality, we may not be able to find
domains with labeled data. In such a case, unsuper-
vised domain adaptation (UDA) can be an attractive
alternative. The subspace-based methods consider
both source and target domain a subspace of single
domain space. On the other hand, a more popular
approach in UDA is to consider source and target
domain separate spaces and try to align the distribu-
tions of these. Some works first compare the mean
of samples from each domain in Hilbert space and
assign a weight to each sample of source domain
(Gretton et al., 2012) or select samples in the source
domain to minimize the maximum mean discrep-
ancy of the two domains (Gong et al., 2013). But
when source and target domains are significantly
different, we may not expect these methods to per-
form well. To deal with this problem, other studies
(Pan et al., 2010; Baktashmotlagh et al., 2013; Sun
et al., 2016) map data from both domains to a latent
space to deal with this problem.

Recently, with the advent of deep learning, feature
extraction from raw data becomes an important
process in every task. And the models that learn
domain invariant features have become the main-
stream in UDA (Ganin et al., 2016; Saito et al.,
2018; Long et al., 2017). However, these methods
require the data from the source domain to extract
domain invariant features. Therefore, self-learning
can be an alternative since the source domain data
is not required in the setting. The most important
consideration in self-learning is how to generate
or filter accurate pseudo-labels. Kim et al. (2020)
propose confidence-based filtering and similarity-
based pseudo-labeling method in the image classi-
fication task. However, their methodology cannot
be directly applied to NLP tasks since word embed-
ding is more implicit and multidimensional than
image features. Recently, Yoon et al. (2021) prove
that fine-tuning the original model with pseudo-
labels that are filtered based on confidence level
increases accuracy in the target domain in the token
classification task. To our best knowledge, our re-
search is the first to show that self-learning without
using samples from the source domain significantly
improves model performance in sentence classifi-
cation tasks.



3 Methodoloy

3.1 Sentiment analysis'
3.1.1 Dictionary-based approach

Loughran and McDonald (2011) develop word lists
specifically suited for 10-K filings. They provide
word lists that contain negative words and posi-
tive words, respectively. Following their methodol-
ogy to calculate the tone of textual disclosures, we
count the numbers of positive and negative words
in each MD&A section and scale them by the num-
ber of total words in each section (DICTPOS and
DICTNEG). Although the analysis provides value-
relevant information, the measures are compara-
tively less accurate in that they do not consider
context-specific tone of the texts. We calculate the
tone variables with Python.

3.1.2 Word2Vec

Word2Vec is a prediction-based word embedding
method which trains by predicting center words
with context words (CBoW) or vice versa (Skip-
Gram). After training, each word in a corpus cor-
responds one-on-one to a vector that contains its
semantic information. Kim et al. (2014) achieve a
remarkable performance on text classification by
employing a structure with 1-layer convolutional
neural network (CNN) and a fully connected out-
put layer to classify sentences. This model takes
pre-trained Word2Vec embedding as its input and
the width of the filter in CNN equals the dimension
of the word embedding. In our research, we repli-
cate the CNN-static model of Kim et al. (2014)
in which the Word2Vec model freezes during the
training. We use Word2Vec weight trained on the
10-K corpus of 1996-2013 (Tsai et al., 2016), and
train the network with the financial sentiment anal-
ysis dataset provided by Malo et al. (2014) which
consists of 4,846 sentences. The model takes each
sentence as input and assigns probability to each of
three classes: positive, negative, and neutral. We
sum the probabilities of all sentences in a document
and normalize them to calculate the sentiment score
of each document (W2VPOS and W2VNEG). We
use nltk sentence tokenizer? to split each document
to sentences, gensim package? to load Word2Vec

"For dictionary-based approach, we primarily uti-
lize the following: https://github.com/rflugum/
10K-MDA-Section. For the remainder, refer to
our anonymized github: https://anonymous.4open.
science/r/BankruptcyBert-CC19/

2https://www.nltk.org

*https://radimrehurek.com/gensim/
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embedding, and Pytorch to implement CNN-based
classifier. We use Cross-Entropy loss function and
Adam optimizer. We train model for 60 epochs,
with batch size 50. We set sentence length to 50
words in both training phase and inference phase.

3.1.3 BERT

BERT is a pre-trained language model with bidi-
rectional transformers, which can be applied to
downstream tasks after supervised fine-tuning with
relatively low resources. We utilize the model
structure based on the original BERT model (De-
vlin et al., 2018) and the fine-tuned weight of Fin-
BERT (Araci, 2019) trained for financial sentiment
analysis. Fin-BERT is pre-trained on the subset
of Reuters TRC2 dataset which includes financial
press articles and fine-tuned on the financial sen-
timent analysis dataset provided by Malo et al.
(2014), which is identical to the dataset that we use
to train the network of Word2Vec model. Similarly,
the model takes each sentence as its input and as-
signs probability to each of three classes: positive,
negative, and neutral. We sum the probabilities of
all sentences in a document and normalize them
to calculate the sentiment score of each document
(BERTPOS and BERTNEG). Similarly, we use nltk
sentence tokenizer and Huggingface Transformers
package* with Pytorch to implement BERT. We
set max sentence length to 512, which is the max
length limit of BERT.

3.1.4 Unsupervised domain adaptation

We apply self-learning, one of the unsupervised
domain-adaptation methods, to our BERT-based
model. The self-learning procedure follows the
three-step approach. First, we generate pseudo-
labels with sentences from MD&A sections. Then
we filter out “reliable” samples based on the self-
confidence of the sentences. Since it is well known
that erroneous labels may deteriorate the perfor-
mance of the models, we filter the samples with
high self-confidence. Specifically, we proxy for
self-confidence with self-entropy (Zou et al., 2018;
Saporta et al., 2020), Lastly, we perform supervised
learning using the newly-obtained pseudo labels.
Refer to Figure 1 for visual representation of the
algorithm. We use the following equation to calcu-
late self-entropy:

1 2
H(s:) > In(si)logln(si)
=0

log M =

*https://huggingface.co
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Figure 1: This figure portrays the pipeline of our do-
main adaptation method. First, we randomly sample
1,200 documents from the corporate fillings from 1995
to 2020. We label this set of narrative disclosures
X. Then we generate pseudo-labels Y by applying a
BERT-based classifier to every sentence in X (denoted
as s;). To prevent noisy pseudo-labels from harming
the model performance, we filter out only the ‘reliable’
samples (X, Y) by their normalized self-entropy. Then
we supervise the BERT-based classifier with reliable
samples.

,where s; denotes each sentence and [,(s;) de-
notes the probability that s; belongs to class n
(n = 0,1,2). Here, we calculate [,,(s;) with the
BERT-based classification model that we use in sec-
tion 3.1.3. Then we normalize the self-entropy by
scaling the value with log M, which is the natural
logarithm of the number of labels (here, M = 3).
We define three classes O, 1, and 2. Each class rep-
resents positive, negative, or neutral, respectively.
We obtain 59,389 cleansed MD&A filings
merged with financial variables. Then we generate
pseudo-labels by randomly picking 1,200 docu-
ments and doing inference on all sentences in the
documents. In specific, we collect and analyze
589,858 distinct sentences. Next, we filter the re-
sults with the threshold of self-entropy 0.2 and
discard the observations with self-entropy over 0.2.
We obtain 38,703 reliable sentences through this
process (6.56% of the sentence domain). We train
the model for 2 epochs with batch size 32 and set
the learning rate to be 5¢~°. We use Cross-Entropy
loss and Adam optimizer. After training the model,
the inference follows the same procedures as the
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previous two models and we generate sentiment
variables DAPTPOS and DAPTNEG.

3.2 C(lassification model

We implement three basic machine-learning based
classifiers (hazard time-discrete logistic model,
SVM, and kNN) to evaluate the additional informa-
tiveness of textual data. Since models as DNN or
RNN achieve state-of-the-art prediction accuracy
only with financial variables, it is difficult to show
the effect of adding textual variables. Therefore,
we compare the relative performance of the base-
line classifiers to highlight the incremental predic-
tion accuracy from adding BERT-based sentiment
variables.

3.2.1 Hazard model

We use proportional hazards model (Fine and Gray,
1999) to calculate prediction accuracy. Shumway
(2001) finds that maximum log-likelihood estima-
tion of discrete-time logistic regression yields con-
sistent estimates. In specific, we estimate the
following discrete-time logistic regression with
maximum-likelihood estimation:

log h;(t) = BX;(t)

h;(t) refers to the risk of bankruptcy for firm ¢ at
time ¢. X;(¢) refers to a vector of firm ¢ at time ¢
that consists of variables that are known to precede
bankruptcies. In our study X includes financial
variables and MD&A sentiments. Specifically, we
first run the regression with only financial vari-
ables (FIN). Then we add dictionary-based vari-
ables (FIN, DICTPOS, and DICTNEG), Word2Vec-
based variables (FIN, W2VPOS, and W2VNEG),
BERT-based variables (FIN, BERTPOS, and BERT-
NEG), and domain-adapted BERT-based variables
(FIN, DAPTPOS, and DAPTNEG), respectively.
Using the obtained coefficients, we calculate the
fitted values of log h;(t) (log h;(t)) and classify the
observation to be bankrupt if log/h\i(t) > 0.5 and
non-bankrupt otherwise. Continuous variables are
winsorized at 1% level to minimize the effect of
outliers on regression results.

3.2.2 Kk-Nearest Neighbors and Support
Vector Machine

To further enhance the classification performance,
we employ k-nearest neighbors (kNN) and Support
Vector Machine (SVM) algorithms, following prior
literature.

kNN is a simple non-parametric classification



method. First, we calculate the Euclidean distance
between any two pair of observations. That is for
observation vectors X and X5, we compute

d(X1,X2) = VX1 X

, where - denotes the inner product of the two vec-
tors. Specifically, in our research, vector X; in-
cludes variables that precede insolvencies. We start
from five financial variables and sequentially in-
clude sentiment variables calculated using different
sentiment analysis models. Then, the algorithm
computes the distances between observation X;
which belongs to the test set and all other observa-
tions that belong to the train set. Next, it chooses
k smallest distances from the observation X; and
label the distances. In our research, we set k = 5.
The algorithm classifies X; to be bankrupt if the
number of bankrupt labels is greater than the num-
ber of non-bankrupt labels.

Next, SVM aims at finding a hyperplane that di-
vides the dataset into distinct categories with the
largest margin. Let X; be a training data and two
classes are labeled with y; as either +1 or -1. We
solve the following minimization problem with re-
spect to hyperplane w:

1 M
min§ ||wH2 + CZ@
i=1

,where y;(wX; + b) > 1 — &;. Here, £ denotes
a slack variable and C' is a regularization param-
eter. In our setting, we set C = le. Further,
we choose linear kernel for SVM classification.
Linear kernel reduces the cost of computation but
yields comparatively less accurate results. In our
sample, univariate analysis results in section 4.1
indicate that linear kernel is acceptable to classify
the dataset. We choose the most basic models of
kNN and SVM since the primary purpose of our
research is to compare the relative performance of
text sentiment classification models.

3.3 Accuracy calculation

We report two distinct accuracy measures to com-
pare the performance of our models. Al is the ratio
of the number of observations that are classified
as non-bankrupt (CNB) under each model to the
number of total non-bankrupt (NB) observations
(A1 = CNB/NB). On the other hand, A2 is the ratio
of the number of observations that are classified as
bankrupt (CB) under each model to the number of
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BRUPT=1 BRUPT=0 Difference (t-stat)
(D (2) (H-2)
wcC -0.5558 0.2091 -0.7649%**
(-3.91)
RE -0.3977 0.0450 -0.4427%**
(-3.47)
SALE 1.0161 0.9607 0.0554%%*
(2.15)
MVE 1.8010 10.3129 -8.5119%**
(-8.83)
EBIT -0.7172 0.4907 -1.2079%**
(-3.17)
DICTPOS 0.0069 0.0072 -0.0003%**
(-3.36)
DICTNEG 0.0182 0.0136 0.0046%**
(17.79)
W2VPOS 0.3786 0.4042 -0.0256%**
(-5.53)
W2VNEG 0.0969 0.0558 0.0411%**
3.21)
BERTPOS 0.1833 0.2257 -0.0424%%**
(-12.04)
BERTNEG 0.2433 0.2140 0.0293#**
9.41)
DAPTPOS 0.1421 0.2362 -0.094 1 ***
(-13.21)
DAPTNEG 0.3512 0.1528 0.1984#**
(10.55)
n 520 58,867

Table 1: This table reports univariate analysis results.
Column (1) reports the mean of the variables when
BRUPT=1. Column (2) reports the mean of the vari-
ables when BRUPT=0. The last column reports the dif-
ferences in mean values (Column (1) — Column (2)).
We also report t-statistics that examine the statistical
significance of the differences in the parenthesis. *, **,
and *** indicate that the difference is statistically sig-
nificant under 1%, 5%, and 10% confidence level, re-
spectively.

total bankrupt observations (B) (A2 = CB/B).
For hazard model, we also report adjusted R-square
(Nagelkerke et al., 1991; Cox and Snell, 2018).

2 (logl(Fit) —logl(Nwull))

R*=1—exp

logl(F'it) and log (N ull) refer to the maximum
log likelihoods of the fitted model and null model
containing only the intercept term, respectively.
Then, the equation can be rewritten as

logl(Fit) — logl(Nwull)
n

—log (1 - R?) =2
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Figure 2: This figure displays the relative accuracy prediction of the models. Refer to Section 3 for detailed
definitions of FIN, DICT, W2V, BERT and DAPT. A1 measures the accuracy of predicting non-bankrupt firm-years
and A2 measures the accuracy of predicting bankrupt firm-years. We display the prediction performance measured
with hazard discrete logistic regression model, kKNN-5, and linear SVM.

4 Empirical Experiments

4.1 Data

We first identify bankrupt firm-years from Compu-
stat. The dataset provides us with the dates when
firms file for bankruptcy and the dates when the
bankruptcy procedure is complete. In our anal-
ysis, we use the dates when firms first file for
bankruptcy as bankruptcy years. Then, following
Altman (1968) and Mayew et al. (2015), we com-
pute five key financial variables that are known to
precede bankruptcies (WC, RE, EBITDA, MVE, and
SALE). WC refers to the ratio of working capital to
total asset. RE refers to retained earnings to total
liability. EBITDA refers to earnings before interest,
tax, depreciation, and amortization scaled by total
asset. MVE is the market value of equity scaled by
total liability. SALE is the ratio of sales revenue to
total asset.

Next, we construct our main variables by extracting
MD&A sections from annual reports. Specifically,
we inspect 10-K, 10-KSB, 10-K405, and 10KSB40
filings and search for MD&A sections (Item 6 or
Item 7). During the collection process, we exclude
html notations, tables, and page numbers. This
process ensures that we analyze only the textual
components from MD&A sections. Our sample
period spans from 1995 to 2020 since SEC started
to require firms to disclose electronic (machine-
readable) filings from 1995. BRUPT is an indicator
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variable that equals one for observations that face
bankruptcy within 365 days from their issuance
of annual report, and zero otherwise. We require
all financial variables and MD&A section texts
for each observation and obtain 59,389 distinct ob-
servations. Among the sample, we identify 520
bankrupt firm-year observations (BRUPT=1). We
acquire financial data from Compustat database
and filing texts from SEC archive.

To evaluate the performance of SVM and kNN
models, we split the sample into three subsets: 60%
assigned to train set, 20% to validation set, and 20%
to test set. However, since the data that we use is
panel, randomly assigning 20% of the sample to
the test set may bias our results. That is, the model
may learn from future information and use it to
predict the same future. To mitigate this concern,
we implement time-based split. That is, we choose
104 latest bankruptcy observations from 2018 to
2020 and randomly choose 104 non-bankruptcy
observations from the same time period. To further
ensure that our results are not driven by random
sample selection, we repeat the selection procedure
100 times and report the average accuracy with its
standard deviation.

In SVM, we test 10 different hyperparameters rang-
ing from O to 1 and compare their relative perfor-
mances. Next, for kNN model, we experiment five
different hyperparameters (k). Since the model fol-
lows the majority rule, we examine odd parameters



Hazard Model kNN-5 Linear SVM

Vars R2 Al A2 Al A2 Al A2
FIN 16.23% 68.20%  52.23% | 63.88% 53.99% | 66.83% 65.82%
(0.06) (0.05) (0.03) (0.03)

FIN+DICT | 21.33% 7025% 54.55% | 72.01% 66.98% | 85.11% 73.28%
(0.03) (0.03) (0.05) (0.06)

FIN+W2V | 2351% 7239%  5523% | 76.75% 70.93% | 83.20%  76.73%
(0.05) (0.04) (0.02) (0.04)

FIN+BERT | 24.83% 8544% 62.00% | 81.73% 80.32% | 89.98%  85.20%
(0.05) (0.05) (0.03) (0.06)

FIN+DAPT | 26.38% 86.12% 66.12% | 83.22% 85.08% | 93.26% 91.56%
(0.06) (0.04) (0.04) (0.02)

Table 2: This table reports the relative prediction accuracy of the models. We input the set of variables (FIN, DICT,
W2V, BERT, and DAPT) in each of the three classification models. A1l equals (1 — Type I error rate) and A2 equals
(1 — Type II error rate). We repeat the sampling experiment 100 times for each model and report the standard

deviation of the accuracy rate in parenthesis.

3,5,7,9,and 11. We then set the regularization
parameter C' in SVM to be 1e~> and the number
of nearest neighbors £ to be 5.

4.2 Results

To ensure that the selected variables move in ac-
cordance with BRUPT, we report the univariate
analysis results depending on the variable BRUPT
(See Table 1).

As evidenced by Altman (1968) and other prior
studies, we find higher WC, RE, MVE, and EBIT,
and lower SALE for non-bankrupt firms. Further,
we demonstrate that DICTNEG, W2VNEG, BERT-
NEG, and DAPTNEG are higher for bankrupt firms
and DICTPOS, W2VPOS, BERTPOS, and DAPT-
POS are higher for non-bankrupt firms. This con-
firms that managers are likely to disclose negative-
tone MD&A sections before imminent bankrupt-
cies. More importantly, untabulated tests including
quadratic terms do not find any evidence that there
exists non-linear relationship between BRUPT and
other independent variables. Taken together, uni-
variate analysis results imply that we may choose
linear kernel for SVM classification.

Table 2 and Figure 2 report the relative performance
of the models. Consistent with the prior literature
(Zhou et al., 2012; Wu et al., 2007), SVM gener-
ally performs the best among the three classifiers.
Also, Al is generally higher than A2 in all model
specifications, implying that the models generally
predict non-bankrupt firms more accurately than
bankrupt firms.

Our main finding is that BERT-based analysis out-
performs dictionary-based analysis and Word2Vec-
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based analysis. This indicates that context-specific
sentiment analysis produces more accurate tone of
the texts than non-context specific methods. Specif-
ically, SVM with BERT-based sentiment variables
display the bankruptcy prediction accuracy (A2)
of 85.20%. Further, we observe that R-square
increases as we proceed from analyzing only fi-
nancial variables (16.23%) to including domain-
adapted BERT-based sentiment variables (26.38%).
Comparing this result with prior literature that uti-
lizes SVM to predict corporate bankruptcies, we
obtain relatively high accuracy. For instance, Zhou
et al. (2012) obtain the accuracy rate of approxi-
mately 75% by analyzing financial variables with
DSSVM and GASVM models. Taken together, our
results imply that textual information has predic-
tive ability which is orthogonal to the existing set
of financial variables and that adding high-quality
textual information in the classifiers significantly
improves the prediction accuracy.

Next, we also find that domain-adaptation further
improves prediction accuracy. Domain-adapted
BERT-based analysis yields the best accuracy rate
(A2) of 91.56% with linear SVM classifier among
the models. These results strongly indicate that
context-specific sentiment analysis of corporate
disclosure texts provides more value-relevant in-
formation.

5 Conclusion

In our study, we examine whether context-specific
textual sentiment analysis (BERT) improves the
accuracy of corporate bankruptcy prediction. We



utilize five financial variables calculated from the
stock market and annual reports that are known
to precede impending insolvencies. Further, we
collect and examine a large sample of MD&A nar-
rative disclosures from 1995 to 2020 to test whether
textual sentiment is helpful in predicting financial
distress. We find that textual sentiment has addi-
tional predictive ability to well-known financial
variables. Most importantly, we show that BERT-
based analysis outperforms dictionary-based analy-
sis suggested by Loughran and McDonald (2011)
and Word2Vec-based analysis combined with con-
volutional neural network. Further, we acknowl-
edge the domain shifting problem of current BERT
model. To assuage such a limitation, we perform
domain-adaptation to the existing financial BERT
model. This approach reduces computational costs
compared to pre-training the BERT model with
a new corpus and, at the same time, significantly
improves the prediction accuracy.
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A Sample MD&A

The following is an excerpt from an MD&A sec-
tion of 10-K report of Learning Tree International,
disclosed on September 30, 1996. Learning Tree
International filed a bankruptcy in 1997.

In response to the continued strength in en-
rollments, the Company has further accelerated its
development of new course titles, expanded its
future direct mailing plans to capture additional
market share and has taken steps to expand the
number of classrooms in its education centers.
However, there can be no assurance that the
Company will be able to achieve an increase in
market share after making such expenditures or
will maintain its growth in revenues, profitability
or market share in the future.

Positive words are colored in RED and neg-
ative words are colored in BLUE. Humans can
interpret that this document conveys negative
implication. However, there are 1 negative word
and 4 positive words according to Loughran and
McDonald (2011) word lists. In contrast, BERT-
based sentiment vector of the paragraph equals
(1.0365, 2.2161, 1.1704). Normalization yields
BERTPOS = 0.2343 and BERTNEG = 0.5000.
Therefore, BERT-based analysis outperforms the
traditional dictionary-based approach.



