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Abstract

The growing popularity of Virtual Assistants
poses new challenges for Entity Resolution,
the task of linking mentions in text to their
referent entities in a knowledge base. Specif-
ically, in the shopping domain, customers tend
to mention the entities implicitly (e.g., “or-
ganic milk”) rather than use the entity names
explicitly, leading to a large number of candi-
date products. Meanwhile, for the same query,
different customers may expect different re-
sults. For example, with “add milk to my cart”,
a customer may refer to a certain product from
his/her favorite brand, while some customers
may want to re-order products they regularly
purchase. Moreover, new customers may lack
persistent shopping history, which requires us
to enrich the connections between customers
through products and their attributes. To ad-
dress these issues, we propose a new frame-
work that leverages personalized features to
improve the accuracy of product ranking. We
first build a cross-source heterogeneous knowl-
edge graph from customer purchase history
and product knowledge graph to jointly learn
customer and product embeddings. After that,
we incorporate product, customer, and history
representations into a neural reranking model
to predict which candidate is most likely to be
purchased by a specific customer. Experiment
results show that our model substantially im-
proves the accuracy of the top ranked candi-
dates by 24.6% compared to the state-of-the-
art product search model.

1 Introduction

Given an entity mention as a query, the goal of
entity resolution (or entity linking) (Ji and Grish-
man, 2011) is to link the mention to its correspond-
ing entry in a target knowledge base (KB). In an
academic shared task setting, an entity mention

∗* This work was done when the first author was on an
internship at Amazon Alexa AI.

is usually a name string, which can be a person,
organization or geo-political entity in a news con-
text, and the KB is usually a Wikipedia dump with
rich structured properties and unstructured text de-
scriptions. State-of-the-art entity resolution meth-
ods can achieve higher than 90% accuracy in such
settings (Ji and Grishman, 2011; Ji et al., 2015;
Agarwal and Bikel, 2020), and they have been suc-
cessfully applied in hundreds of languages (Pan
et al., 2017) and various domains such as disaster
management (Zhang et al., 2018a) and scientific
discovery (Zheng et al., 2014; Wang et al., 2015).
Therefore, we tend to think entity resolution is a
solved problem in academia. However, in indus-
try, with the rise in popularity of Virtual Assistants
(VAs) in recent years, an increasing number of cus-
tomers now rely on VAs to perform daily tasks
involving entities, including shopping, playing mu-
sic or movies, calling a person, booking a flight,
and managing schedules. The scale and complex-
ity of industrial applications presents the following
unique new challenges.

Unpopular majority. There is a massive num-
ber of new entities emerging every day. The entity
resolver may know very little about them since
very few users interact with them. Handling these
tail entities effectively requires the use of property
linkages between entities and shared user interests.
Similarly, there might be many new users with lim-
ited interaction history, and we need to infer their
interests from other users who have interacted with
similar entities.

Large number of ambiguous variants. When
interacting with VAs, users tend to use short and
less informative utterances with the expectation
that the VAs can intelligently infer their actual in-
tentions. This raises the need for personalization
when resolving the entities. In the shopping do-
main, this problem is even more challenging as
customers typically use implicit entity mentions
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Figure 1: An illustration of the cross-source heterogeneous customer-product graph.

(e.g., “organic milk”) instead of explicit names
(e.g., “Horizon Organic Shelf-Stable 1% Lowfat
Milk”) which usually leads to a large number of
candidates due to the ambiguity. However, with
VAs’ voice user interface (VUI), the number of
products that can be presented to the customers is
very limited, if not only one. In this work, we focus
on the problem of personalized entity resolution in
the shopping domain. Given a query and a list of
retrieved candidates, we aim to return the product
that is most likely to be purchased by a customer.

Beyond ambiguity. In the traditional news en-
tity linking setting, each entity in the KB refers to
a unique world object. In contrast, in e-commerce,
the same product can have multiple variants. For
example, a customer may like to stick to a tooth-
paste product of a certain brand and flavor, but
choose different sizes (thus different entities) in
each purchase. These entities in the target KB refer
to the same product but have different properties
(in this case, size). Therefore it is important to
construct fine-grained knowledge graphs to profile
products and capture the implicit connections be-
tween customers based on the properties of their
purchased products.

We make three assumptions: (H1) customers
tend to purchase products they have purchased in
the past; (H2) customers tend to purchase prod-
ucts that share some properties; (H3) customers
who purchased products with similar properties
share similar interests. Based on these assumptions,
we propose to represent customers and products
as low-dimensional vectors learned from a graph
of customers and products. Unlike social media
networks with rich interactions among users, the
customers of most shopping services are isolated,

which prevents us from learning customer embed-
dings effectively. To address this issue, we propose
to build a cross-source heterogeneous knowledge
graph as Figure 1 depicts to indirectly establish
rich connections among customers from a) users’
purchase history (customer-product graph) and b) a
product knowledge graph, and further jointly learn
the representations of nodes in this graph using a
Graph Neural Network (GNN)-based method. In
Figure 1(c), for instance, we can build connections
between Customer 1 and Customer 2 because their
purchased products share the same ingredient at-
tribute, and thus possibly recommend Product 2
to Customer 1 even though it does not appear in
his/her purchase history. In addition to static cus-
tomer embeddings, we further propose an attentive
model to dynamically generate a history represen-
tation for each user based on the current query.
Finally, the model predicts how likely a candidate
will be purchased using entity, customer, and his-
tory representations.

Experiments on real purchase records collected
from an online shopping service show that our
method significantly improves the purchase rate
of the top ranked products.

2 Methodology

Given a query q from a customer c, and a list of
candidate products P = {p1, ..., pL}, where L is
the number of candidates, our goal is to predict
the product that the customer will purchase based
on their purchase history and the product knowl-
edge graph. Specifically, we use purchase records
{r1, ..., rH} where H is the number of historical
records. As Figure 2 illustrates, we jointly learn
customer and product embeddings from a cross-
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source customer-product graph using GNN. To
perform personalized ranking, we incorporate the
learned customer embedding and history represen-
tation as additional features when calculating the
confidence score of each candidate. We then rank
all candidates by confidence score and return the
top one.
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Encoder
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Figure 2: An illustration of our framework.

2.1 Candidate Retrieval

We first retrieve candidate products for each query
using QUARTS (Nigam et al., 2019; Nguyen et al.,
2020), which is an end-to-end neural model for
product search. QUARTS has three major compo-
nents: (1) an LSTM-based (long short-term mem-
ory) classifier adapted from the entailment model
in (Rocktäschel et al., 2016) to predict whether a
product-query pair is matched; (2) a variational
encoder-decoder (VED) query generator that gener-
ates difficult negative examples to tackle the class
imbalance issue in the training data as a search
engine typically returns much more matched query-
item examples than mismatched ones, and (3) a
state combiner that switches between query repre-
sentations computed by the classifier and generator.
During training, the VED generator takes as input
a matched product-query pair (I,Q) and gener-
ates a mismatched query Qgen which is lexically
similar to Q. The state combiner then merges H ,
the representation computed by the classifier, and
Hgen, the representation computed by the gener-
ator, as sHgen + (1 − s)H , where s is a binary
value that controls which query to use and whether
the gradients are back-propagated to the classifier
or generator.

2.2 Joint Customer and Product Embedding
The next step is to obtain the representations of
customers and products. Customer embeddings are
usually learned from user-generated texts (Preoţiuc-
Pietro et al., 2015; Yu et al., 2016; Ribeiro et al.,
2018) or social relations (Perozzi et al., 2014a;
Grover and Leskovec, 2016; Zhang et al., 2018b),
neither of which are available in the shopping
dataset we use. Alternatively, we establish indi-
rect connections among customers through their
purchased products under hypothesis H3, and form
a customer-product graph as shown in Figure 1(a).
This graph only contains a single type of relation
(i.e., purchase) and ignores product attributes. As
a result, it tends to be sparse and less effective for
customer representation learning.

In order to learn more informative embeddings,
we propose to incorporate richer information from
a product knowledge graph (Figure 1(b)) where
products are not only connected to different at-
tribute nodes (e.g., brands, flavors), but they
may also be associated with textual features (e.g.,
title) and boolean features (e.g., isOrganic, en-
coded as a boolean vector).

By merging the product knowledge graph and
the customer-product graph, we obtain a more com-
prehensive graph (Figure 1(c)) of higher connectiv-
ity. For example, in the original customer-product
graph, Customer 1 and Customer 2 are discon-
nected because they do not share any purchase. In
the new graph, they have an indirect connection
through Product 2 and Product 3, which share
the same flavor and ingredient.

From this heterogeneous graph, we jointly learn
customer and product representations using a
two-layer Relational Graph Convolutional Net-
work (Schlichtkrull et al., 2018). The embedding
of each node is updated as:
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where hl
i is the representation of node i at the l-th

layer, N r
i is the set of neighbor indices of node i un-

der relation r ∈ R, and W l
0 and W l

r are learnable
weight matrices.

In order to capture textual features (i.e., prod-
uct titles, descriptions, and bullet1), we use a pre-
trained RoBERTa (Liu et al., 2019) encoder to gen-
erate a fix-sized representation for each product.

1Bullet points that outline the main features of a product.
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Specifically, we concatenate textual features us-
ing a special separator token [SEP], obtain the
RoBERTa representation for each token, and then
use the averaged embedding to represent the whole
sequence. To reduce the runtime, we calculate cus-
tomer and product embeddings offline and cache
the results.

2.3 Candidate Representation
In addition to the product embedding, we further
incorporate the following features to enrich the
representation of each candidate.

Rank: the order of the candidate returned by the
product retrieval system.

Relative Price: how much a product’s absolute
price is higher or lower than the average price of all
retrieved candidates as price is an important factor
that affects purchasing decision.

Previously Purchased: a binary flag indicating
whether a candidate has been purchased by the
customer or not.

Textual Feature: we use RoBERTa to encode
each candidate’s textual features (i.e., title, bullet,
description). This RoBERTa encoder is fine-tuned
during training.

We concatenate these features with the product
embedding and project the vector into a lower di-
mensional space using a feed forward network.

2.4 History Representation
Although customer embeddings can encode pur-
chase history information, they are static and may
not effectively provide the most relevant informa-
tion for each specific query. For example, if the
query is “bookshelf”, the furniture-related purchase
records are more likely to help the model predict
the product that the customer will purchase, while
if the query is “sulfate-free shampoo”, the purchase
records of beauty products are more relevant. To
tackle this issue, we propose to generate a query-
aware history representation v based on the current
query q from all purchase record representations
{v1, ...,vH} of the customer.

We first represent each purchase record as the
concatenation of the product embedding, prod-
uct price, and purchase timestamp. The query-
aware history representation is then calculated as
a weighted sum of the customer’s purchase record
representations using an attention mechanism as
follows.

ei = v> tanh
(
W qq +W vvi

)
,

ai = Softmax(ei) =
exp (ei)∑M
k exp (ek)

,

v =
H∑
i

aivi,

where v>, W q, and W v are learnable weights.

2.5 Candidate Ranking

We adopt a feed forward neural network that takes
in the candidate, customer, and history represen-
tations, and returns a confidence score ŷi which
indicates how likely a candidate will be purchased.
The confidence score is scaled to (0, 1) using a Sig-
moid function. During training, we optimize the
model by minimizing the following binary cross
entropy loss function.

L = − 1

N

N∑
i=1

yi log ŷi + (1− yi) log (1− ŷi),

where N denotes the total number of candidates,
and yi ∈ {0, 1} is the true label. In the inference
phase, we calculate confidence scores for all candi-
dates for each session and return the one with the
highest score.

3 Experiment

3.1 Data

Product Knowledge Graph. In our experiment,
we use a knowledge graph of products in five cat-
egories (i.e., grocery, beauty, luxury beauty, baby,
and health care), which contains 24,287,337 unique
product entities. As Figure 1(b) depicts, the prod-
ucts in this knowledge graph are connected through
attribute nodes, including brands, scents, flavors,
and ingredients. This knowledge graph also pro-
vides rich attributes for each product node. We
use two types of attributes in this work, textual fea-
tures (i.e., title, description, and bullet) and binary
features (e.g., isOrganic, isNatural).
Evalution Dataset. We randomly collect 1 million
users’ purchase sessions from November 2018 to
October 2019 on an online shopping service. Each
session contains a query, an obfuscated identifier,
a timestamp, and a list of candidate products re-
trieved using QUARTS where only one product is
purchased.

We split the sessions before and after Septem-
ber 1, 2019 into two subsets. The first subset only
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serves as the purchase history and is used to con-
struct the customer-product graph. From the sec-
ond subset, we randomly sample 22,000 customers
with at least one purchase record in the first subset
and take their last purchase sessions for training or
evaluation. Specifically, we use 20,000 sessions for
training, 1,000 for validation, and 1,000 for test. If
a customer has multiple purchase sessions in the
second subset, other sessions before the last one
are also considered as purchase history when we
generate history representations, while they are ex-
cluded from the customer-product graph, which is
constructed from the first subset.

3.2 Experimental Setup
We optimize our model with AdamW (Loshchilov
and Hutter, 2018) for 10 epochs with a learning
rate of 1e-5 for the RoBERTa encoder, a learning
rate of 1e-4 for other parameters, weight decay of
1e-3, a warmup rate of 10%, and a batch size of
100.

To encode textual features, we use the RoBERTa
base model2 with an output dropout rate of 0.5. To
represent query words, we use 100-dimensional
GloVe embeddings (Pennington et al., 2014) pre-
trained on Wikipedia and Gigaword3. We set the
size of pre-trained customer and product embed-
dings to 100 and freeze them during training.

We use separate fully connected layers to project
candidate and history representations into 100-
dimensional feature vectors before concatenating
them for ranking. We use a two-layer feed forward
neural network with a hidden layer size of 50 as
the ranker and apply a dropout layer with a dropout
rate of 0.5 to its input.

3.3 Quantitative Analysis
We compare our model to the state-of-the-art prod-
uct search model QUARTS as the baseline. Be-
cause our target usage scenarios are VAs where
only one result will be returned to the user, we use
accuracy as our evaluation metric. We implement
the following baseline ranking methods.
Purchased: We prioritize products previously pur-
chased by the customer. If multiple candidates are
previously purchased, we return the one ranked
highest by QUARTS.
ComplEx: Customer and product embeddings are
learned using ComplEx (Trouillon et al., 2016), a

2https://huggingface.co/transformers/
pretrained_models.html

3https://nlp.stanford.edu/projects/glove/

widely used knowledge embedding model that rep-
resents nodes in a knowledge graph as complex
vectors and is able to capture antisymmetric rela-
tions using efficient dot product.

In Table 1, we show the relative gains compared
to the baseline model QUARTS. With personalized
features, our method effectively improves accuracy
on both development and test sets.

We also conduct ablation studies by removing
the following features and show results in Table 2.
Ranking: In this setting, our model ignores the
original retrieval ranking returned by QUARTS.
Personalized Features: We remove personalized
features (e.g., customer embedding, whether a prod-
uct is previously purchased) in this setting.
Product Embedding: We remove pre-trained
product embedding but still use textual features
and binary features to represent products.
Joint Embedding: Customer and product embed-
dings are not jointly learned from the merged graph.
Alternatively, customer embeddings are learned
from the customer-product graph, and product em-
beddings are learned from the product knowledge
graph.

In Table 2, from the results of Methods 6 and
7, we can see that removing either product or cus-
tomer embedding degrades the performance of the
model. The result of Method 8 shows that em-
beddings jointly learned from the merged cross-
source graph achieve better performance on our
downstream task. We also observe that the ranking
returned by the product search system is still an
important feature as Method 6 shows.

Method Dev Accuracy Test Accuracy
1 QUARTS 0.0 0.0
2 Purchased +10.5 +8.5
3 ComplEx +25.7 +16.1
4 Our Model +32.9 +24.6

Table 1: Relative gains compared to QUARTS. (%)

Method Dev Acc Test Acc
4 Our Model +32.9 +24.6
5 w/o Ranking -17.1 -20.4
6 w/o Personalized Features -10.5 -18.0
7 w/o Product Embedding +25.2 +19.0
8 w/o Joint Embedding +28.1 +20.4

Table 2: Ablation study. (%, relative gains compared to
QUARTS.)

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
https://nlp.stanford.edu/projects/glove/
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Query Candidates History
#1 vitamin c
serum

* [3] instanatural vitamin c serum with hyaluronic acid
& vit e - natural & organic anti wrinkle ...

* foundation makeup brush flat top kabuki for face -
perfect for blending liquid, cream or flawless powder

* [1] truskin vitamin c serum for face, topical facial
serum with hyaluronic acid, vitamin e, 1 fl oz

* women’s rogaine 5% minoxidil foam for hair thin-
ning and loss, topical treatment for women’s hair ...

* [2] vitamin c serum for face - anti aging facial serum * vita liberata advanced organics fabulous self-tanning
gradual lotion with marula oil, 6.76 fl oz

* [4] vitamin c serum plus 2% retinol, 3.5% niaci-
namide, 5% hyaluronic acid, 2% salicylic acid ...

* instanatural vitamin c serum with hyaluronic acid &
vit e - natural & organic anti wrinkle reducer ...

Our model promotes candidate 3 as this product was purchased by the customer.
#2 toothpaste * [2] crest 3d white whitening toothpaste, radiant mint,

3.5oz, twin pack
* crest 3d white toothpaste radiant mint (3 count of 4.1
oz tubes), 12.3 oz packaging may vary

* [1] crest + scope complete whitening toothpaste,
minty fresh, 5.4 oz, pack of 3

* skindinavia the makeup of countrol finishing spray,
8 fluid ounce

* [3] pronamel gentle whitening enamel toothpaste for
sensitive teeth, alpine breeze-4 ounces (pack of 3)

* crest 3d white toothpaste radiant mint (3 count of 4.1
oz tubes), 12.3 oz packaging may vary

* [4] colgate cavity protection toothpaste with fluoride
- 6 ounce (pack of 6)

* nivea shea daily mointure body lotion - 48 hour
moisture for dry skin - 16.9 fl. oz. pump bottle, ...

Although the previously purchased item is no longer available, with entity embedding learned from the
cross-source graph, our model successfully promotes the most similar product.

#3 sun dried
tomatoes

* [3] 365 everyday value, organic sundried tomatoes
in extra virgin olive oil, 8.5 oz

* #1 usda organic aloe vera gel - no preservatives, no
alcohol - from freshly cut usa grown 100% pure ...

* [1] 35 oz bella sun luci sun dried tomatoes julienne
cut in olive oil (original version)

* organic aloe vera gel with 100% pure aloe from
freshly cut aloe plant, not powder - no xanthan ...

* [2] julienne sun-dried tomatoes - 16oz bag (kosher) * wicked joe organic coffee wicked italian ground
* [4] organic sun-dried tomatoes with sea salt, 8
ounces - salted, non-gmo, kosher, raw, vegan, ...

*thayers alcohol-free original witch hazel facial toner
with aloe vera formula, clear, 12oz

Our model promotes an organic product as the customer probably prefers organic products based on the
shopping records.

Table 3: Positive examples in the data set. Candidates are listed in the order returned by our method. The number
before each candidate is the original ranking returned by QUARTS. In the candidate column, we highlight the
purchased products . In the history column, we highlight related records .

3.4 Qualitative Analysis

In Table 3 and Table 4, we show some positive and
negative examples in the data set. From Table 3
we can see that multiple sources of evidence in
the constructed heterogeneous knowledge graphs
are complimentary and the combination of them
successfully promotes various entities which match
customers’ interests.

Table 4 shows examples where our model fails to
return the correct item. In many cases, such as Ex-
ample #4, the purchased product and the top ranked
one only differ in packaging size. We also observe
that sometimes customers may not repurchase a
product even if it is in the candidate list.

To better understand the remaining errors, we
randomly sample 100 examples where our model
fails to predict the purchased items. As Figure 3
illustrates, we analyze these examples and classify
the possible reasons into the following categories.
Different size. The predicted product and ground
truth are the same product but differ in size. For
example, while our model predicts “Lipton Herbal

Similar Description
12%

Incomplete Description
4%

Attribute
5%

Brand
2%

Purchased
3%

Different Size
48%

Other
27%

Figure 3: Distribution of remaining Errors.

Tea Bags, Peach Mango, 20 ct”, the customer pur-
chases another item “Lipton Tea Herbal Peach
Mango (pack of 2)”, which is actually the same
product in 2 pack.
Purchased. The customer purchased the predicted
product before but decides not to repurchase it.
This usually happens in categories (e.g., toothpaste)
where customers are more willing to try new prod-
ucts. Additionally, customers may be less likely
to repurchase a product in some categories such as
books and electronics.
Uninformative title. The purchased product has
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Query Candidates History
#4 wasabi
almonds

* [8] blue diamond almonds, bold wasabi & soy sauce,
16 ounce (pack of 1)

* epsoak epsom salt 19 lb. bulk bag magnesium sulfate
usp

* [2] blue diamond almonds variety pack (1.5 ounce
bags) (20 pack)

* blue diamond almonds, bold wasabi & soy sauce, 16
ounce (pack of 1)

* [1] blue diamond almonds bold wasabi & soy sauce
almonds, 25 ounce (pack of 1)

* signature trail mix, peanuts, m & m candies, raisins,
almonds & cashews, 4 lb

* [6] blue diamond almonds, bold wasabi & soy, 1.5
ounce (pack of 12)

* amazon brand - happy belly nuts, chocolate & dried
fruit trail mix, 48 ounce

Our model promotes candidate 8 which is previously purchased, whereas the customer selects another size.
#5 cacao
powder

* [5] anthony’s organic cocoa powder, 2 lb, batch
tested and verified gluten free & non gmo

* anthony’s organic cocoa powder, 2 lb, batch tested
and verified gluten free & non gmo

* [1] viva naturals #1 best selling certified organic
cacao powder from superior criollo beans, 1 lb bag

* vör all natural keto nut butter spread (10oz) | only
two ingredients | no sugar, no salt | vegan ...

* [2] navitas organics cacao powder, 16oz. bag - or-
ganic, non-gmo, fair trade, gluten-free

* anthony’s organic cocoa powder, 2 lb, batch tested
and verified gluten free & non gmo

* [3] terrasoul superfoods raw organic cacao powder,
1 lb - raw | keto | vegan

* nutiva organic, neutral tasting, steam refined coconut
oil from non-gmo, sustainably farmed coconuts ...

* [4] viva naturals certified organic cacao powder (2lb)
for smoothie, coffee and drink mixes
Our model promote “Anthony’s Organic Cocoa Powder” as it has been purchased twice by the customer.

Table 4: Negative examples in the data set.

an uninformative title and is therefore not pro-
moted. For example, when the customer searches
for “masaman curry paste maesri”, our model pro-
motes “Maesri Thai Masaman Curry - 4 oz (pack
of 4)”, while the customer purchases “6 Can (4oz.
Each) of Thai Green Red Yellow Curry Pastes Set”,
which is also a Maesri product, but this key infor-
mation is missing from its title.
Similar title. The title of the predicted product is
similar to the titles of some purchased products in
the customer’s history in a less important aspect.
For example, the model promotes a “moisturizing”
shave gel because the customer has purchased a
“moisturizing” body wash, whereas the customer
decides to purchase a product for “sensitive skin”.
Brand. The customer has purchased one or more
products of the same brand.
Attribute. The customer has purchased one or
more products with the same attribute (e.g., organic,
keto, kosher).
Other. The model may fail to predict the pur-
chased item in other uncategorized cases. For ex-
ample, when a customer searches for “nail clippers”
but has purchased only food in the past, the model
is unlikely to utilize the history records to improve
the ranking.

3.5 Remaining Challenges

Although our framework can improve the accu-
racy of predicting products that will be purchased,
there are still some remaining challenges. We pro-

pose the following potential solutions for further
improvement.
Incorporating more informative features. Some
important features that affect purchase decisions
are still missing in our framework, such as the aver-
age rating, customer review comments, and number
of ratings. For example, we may promote the high-
est rated product for a customer who usually buys
products with high ratings.
Building a more comprehensive cross-source
customer-product graph. In this work, we merge
the customer-product graph and product knowledge
graph into a single graph, which has been proved
to produce better embeddings for our target task. A
natural extension is to include records from more
sources, such as music or video playing history,
and multimedia features such as product pictures.
Modeling the interactions among purchase be-
haviors. Our current attention-based method that
generates history representations is “flat” and ig-
nores the relationship among purchase behaviors.
For example, for a customer who previously pur-
chases a pod coffee maker, we should promote
coffee capsules in the candidates over coffee beans
or grounds.
Incorporating cohort features. When dealing
with customers with limited or even no previous
shopping records, a step forward is to cluster cus-
tomers and produce cohort-based representations.
In this way, customers can be better represented
collectively through other similar customers, espe-
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cially when we combine their interaction history
from other domains and build a more comprehen-
sive graph as suggested above.

To sum up, shopping is a complex behavior, the
importance weights of various features may vary
across types of products. For instance, customers
may like to stick to the same brand for beauty prod-
ucts while changing the size, depending on their
needs. In contrast, for clothing customers may care
more about visual features rather than text descrip-
tions, and for books customers rarely purchase the
same book more than once. To tackle these remain-
ing challenges, we aim to extend our framework
to incorporate more multimedia features, extract
knowledge from review comments, and present rec-
ommendation results in a more hierarchical way by
clustering variants of the same product and present-
ing their different attributes.

4 Related Work

4.1 Neural Entity Linking

A variety of neural models (Gupta et al., 2017;
Kolitsas et al., 2018; Cao et al., 2018; Sil et al.,
2018; Gillick et al., 2019; Logeswaran et al., 2019;
Wu et al., 2019; Agarwal and Bikel, 2020) have
been applied to entity linking in recent years. Com-
pared to traditional entity linking, our task is differ-
ent in three aspects: (1) Our mentions are typically
vague and occur in uninformative contexts, such as
“add toothpaste to my cart” ; (2) A mention may be
reasonably linked to multiple entities, while only
one of them is considered “correct” (purchased by
the customer); (3) The ground truth for the same
mention can be different for different customers.

4.2 Personalized Recommendation

A recommender system is an information filter-
ing system that aims to suggest a list of items in
which a user may be interested. Content-based
filtering (Billsus and Pazzani, 2000; Aciar et al.,
2007; Wang et al., 2018) and collaborative filter-
ing (Shardanand and Maes, 1995; Konstan et al.,
1997; Linden et al., 2003; Zhao and Shang, 2010)
are two common approaches used in recommender
systems. In recent years, researchers have also
applied neural methods to improve the quality of
recommendations (Xue et al., 2017; He et al., 2017;
Wang et al., 2019a,b). Recommender systems usu-
ally rank items based on the user’s past behaviors
(e.g., purchasing, browsing, rating) and current con-
text (Linden et al., 2003; Smith and Linden, 2017),

whereas the results are not constrained by queries.
Instead, our task requires a specific query and only
returns the product that is most likely to be pur-
chased from a list of relevant candidates.

4.3 Graph Embedding

Various methods have been proposed to learn low-
dimensional vectors for nodes in knowledge graphs.
Knowledge graph embedding methods, such as
TransE (Bordes et al., 2013), DistMult (Yang et al.,
2014), ComplEx (Trouillon et al., 2016), and Ro-
tatE (Sun et al., 2018), typically represent the head
entity, relation, and tail entity in each triplet in
the knowledge graph as vectors and aim to rank
true triplets higher than corresponding corrupted
triplets. Matrix Factorization-based methods (He
and Niyogi, 2004; Nickel et al., 2011; Qiu et al.,
2018) represent the graph as a matrix and obtain
node vectors by factorizing this matrix. Another
category of frameworks (Perozzi et al., 2014b;
Yang et al., 2015; Grover and Leskovec, 2016) use
random walk to sample paths from the input graph
and learn node embeddings from the sampled paths
using neural models such as SkipGram and LSTM.

4.4 Heterogeneous Network

The earliest study of mining heterogeneous net-
work dates back to (Sun et al., 2009), which coins
the concept of Heterogeneous Information Net-
work. After that, heterogeneous network has been
applied to a range of tasks, including ranking (Ji
et al., 2011), similarity search (Sun et al., 2011),
link prediction (Dong et al., 2015), academic paper
recommendation (Pan et al., 2015), and malicious
account detection (Liu et al., 2018).

Recently, with the advent of graph neural net-
work, many methods based on this new paradigm
have been proposed to learn graph representations
on heterogeneous graphs, such as Heterogeneous
Graph Neural Network (HetGNN) (Zhang et al.,
2019), Heterogeneous Graph Attention Network
(HAN) (Wang et al., 2019c), and Heterogeneous
Graph Transformer (HGT) (Hu et al., 2020).

5 Conclusion and Future Work

We propose a novel framework to jointly learn cus-
tomer and product representations based on a cross-
source heterogeneous graph constructed from cus-
tomers’ purchase history and the product knowl-
edge graph to improve personalized entity resolu-
tion. Experiments show that our framework can
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effectively increase the purchase rate of the top
ranked products. In the future, we plan to investi-
gate better approaches to integrating personalized
features and extend the framework to cross-lingual
cross-media settings and generate conversations for
more proactive and explainable entity recommen-
dation and summarization.
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