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Abstract

Automatic Speech Recognition (ASR) robust-
ness toward slot entities are critical in e-
commerce voice assistants that involve mone-
tary transactions and purchases. Along with
effective domain adaptation, it is intuitive that
cross utterance contextual cues play an im-
portant role in disambiguating domain spe-
cific content words from speech. In this pa-
per, we investigate various techniques to im-
prove contextualization, content word robust-
ness and domain adaptation of a Transformer-
XL neural language model (NLM) to rescore
ASR N-best hypotheses. To improve con-
textualization, we utilize turn level dialogue
acts along with cross utterance context carry
over. Additionally, to adapt our domain-
general NLM towards e-commerce on-the-fly,
we use embeddings derived from a finetuned
masked LM on in-domain data. Finally, to
improve robustness towards in-domain content
words, we propose a multi-task model that can
jointly perform content word detection and lan-
guage modeling tasks. Compared to a non-
contextual LSTM LM baseline, our best per-
forming NLM rescorer results in a content
WER reduction of 19.2% on e-commerce au-
dio test set and a slot labeling F1 improvement
of 6.4%.

1 Introduction

Task-oriented conversations in voice chatbots de-
ployed for e-commerce usecases such as shopping
(Maarek, 2018), browsing catalog, scheduling de-
liveries or ordering food are predominantly short-
form audios. Moreover, these dialogues are re-
stricted to a narrow range of multi-turn interactions
that involve accomplishing a specific task (Mari
et al., 2020). The back and forth between a user
and the chatbots are key to reliably capture the
user intent and slot entities referenced in the spo-
ken utterances. As shown in previous works (Irie

et al., 2019; Parthasarathy et al., 2019; Sun et al.,
2021), rather than decoding each utterance inde-
pendently, there can be benefit in decoding these
utterances based on context from previous turns. In
the case of grocery shopping for example, knowing
that the context is "what kind of laundry deter-
gent?" should help in disambiguating "pods" from
"pause". Another common aspect in e-commerce
chatbots is that the speech patterns differ among
sub-categories of usecases (Eg. shopping clothes
vs ordering fast food). Hence, some chatbot sys-
tems allow users to provide pre-defined grammars
or sample utterances that are specific for their use-
case (Gandhe et al., 2018). These user provided
grammars are then predominantly used to perform
domain adaptation on an n-gram language model.
Recently (Shenoy et al., 2021) showed that these
can be leveraged to bias a Transformer-XL (TXL)
LM rescorer on-the-fly.

While there has been extensive previous work
on improving contextualization of TXL LM us-
ing historical context, none of the approaches uti-
lize signals from a natural language understanding
(NLU) component such as turn level dialogue acts.
This paper investigates how to utilize dialogue acts
along with user provided speech patterns to adapt
a domain-general TXL LM towards different e-
commerce usecases on-the-fly. We also propose a
novel multi-task architecture for TXL, where the
model jointly learns to perform domain specific
slot detection and LM tasks. We use perplexity
(PPL) and word error rate (WER) as our evaluation
metrics. We also evaluate on downstream NLU
metrics such as intent classification (IC) F1 and
slot labeling (SL) F1 to capture the success of these
conversations. The overall contributions of this
work can be summarized as follows :

• We show that a TXL model that utilizes turn
level dialogue act information along with long
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span context helps with contextualiziation and
improves WER and IC F1 in e-commerce chat-
bots.

• To improve robustness towards e-commerce
domain specifc slot entities, we propose a
novel TXL architecture that is jointly trained
on slot detection and LM tasks which signifi-
cantly improves content WERR and SL F1.

• We show that adapting the NLM towards user
provided speech patterns by using BERT on
domain specific text is an efficient and ef-
fective method to perform on-the-fly adap-
tation of a domain-general NLM towards e-
commerce utterances.

2 Related Work

Incorporating cross utterance context has been well
explored with both recurrent and non-recurrent
NLMs. With LSTM NLMs, long span context is
usually propogated without resetting hidden states
across sentences or using longer sequence lengths
(Xiong et al., 2018a; Irie et al., 2019; Khandelwal
et al., 2018; Parthasarathy et al., 2019). In (Xiong
et al., 2018b), along with longer history, informa-
tion about turn taking and speaker overlap is used
to improve contextualization in human to human
conversations. With transformer architecture based
on self attention (Vaswani et al., 2017) (Dai et al.,
2019) showed that by utilizing segment wise recur-
rence Transformer-XL (TXL) (Dai et al., 2019) is
able to effectively leverage long span context while
decoding. More recently, improving contextualiza-
tion of the TXL models included adding a LSTM
fusion layer to complement the advantages of recur-
rent with non-recurrent models (Sun et al., 2021).
(Shenoy et al., 2021) incorporated a non-finetuned
masked LM fusion in order to make the domain
adaptation of TXL models quick and on-the-fly us-
ing embeddings derived from customer provided
data and incorporated dialogue acts but only with
an LSTM based LM. While (Sunkara et al., 2020)
tried to fuse multi-model features into a seq-to-seq
LSTM based network. In (Sharma, 2020) cross
utterance context was effectively used to perform
better intent classification with e-commerce voice
assistants.

For domain adaptation, previous techniques ex-
plored include using an explicit topic vector as
classified by a separate domain classifier and in-
corporating a neural cache (Mikolov and Zweig,

2019; Li et al., 2018; Raju et al., 2018; Chen et al.,
2015). (Irie et al., 2018) used a mixture of domain
experts which are dynamically interpolated. It is
also shown in (Liu et al., 2020), that using a hybrid
pointer network over contextual metadata can also
help in transcribing long form social media audio.
Joint learning NLU tasks such as intent detection
and slot filling have been explored with RNN based
LMs in (Liu and Lane, 2016) and more recently in
(Rao et al., 2020), where they show that a jointly
trained model consisting of both ASR and NLU
tasks interfaced with a neural network based inter-
face helps incorporate semantic information from
NLU and improves ASR that comprises a LSTM
based NLM. In (Yang et al., 2020) tried to incor-
porate joint slot and intent detection into a LSTM
based rescorer with a goal of improving accuracy
on rare words in an end-to-end ASR system.

However, none of the previous work utilize di-
alogue acts with a non-recurrent based LM such
as Transformer-XL nor optimize towards improv-
ing robustness of in-domain slot entities. In this
paper we experiment and study the impact of uti-
lizing dialogue acts along with a masked language
model fusion to improve contextualization and do-
main adaptation. Additionally, we also propose a
novel multi-task architecture with TXL LM that im-
proves the robustness towards in-domain slot entity
detection.

3 Approach

A standard language model in an ASR system com-
putes a probability distribution over a sequence of
words W = w0, ..., wN auto-regressively as:

p(W ) =

N∏
i=1

p(wi|w1, w2, ..., wi−1) (1)

In our experiments, along with historical con-
text, we condition the LM on additional contextual
metadata such as dialogue acts :

p(W ) =

N∏
i=1

p(wi|w1, w2, ..., wi−1, c1, c2, ..., ck)

(2)
Where c1, c2, ...ck are the turn based lexical rep-

resentation of the contextual metadata. For base-
line, we use a standard LSTM LM as summarized
below :

embedi = ET
kewi−1

ci, hi = LSTM(hi−1, ci−1, embedi)

p(wi|w<i) = Softmax(W T
hohi)

(3)
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Figure 1: Transformer-XL language model architecture
jointly trained with slot detection task with an optional
MLM fusion layer

Utterance i want my shoes delivered to seattle next thursday 
Annotation O O O SLOT O O SLOT SLOT SLOT 

 

Figure 2: Example utterance with slots annotated

where embedi is a fixed size lower dimensional
word embedding and the LSTM outputs are pro-
jected to word level outputs using W T

ho. A
Softmax layer converts the word level outputs
into final word level probabilities.

3.1 Transformer-XL based NLM

Although recurrent language models help in model-
ing long range dependencies to certain extent, they
still suffer from the fuzzy far away problem (Khan-
delwal et al., 2018). Vanilla transformer LMs on
the other hand use fixed segment lengths which
leads to context fragmentation. To address these
limitations and model long range dependencies,
TXL models add segment-level recurrence and use
a relative positional encoding scheme (Dai et al.,
2019). Hence we choose to use a TXL LM directly.
The cached hidden representations from previous
segments helps contextual information flow across
segment boundaries. If sk = [wk,1, ..., wk,T ] and
sk+1 = [xk+1,1, ..., xk+1,T ] are two consecutive
segments of length T and hnk is the n-th layer hid-

den state produced for the k-th segment sk, then,
the n-th layer hidden state for segment sk+1 is pro-
duced as follows:

h̃n−1
k+1 = [SG(hn−1

k ) ◦ hn−1
k+1 ]

qnk+1, k
n
k+1, v

n
k+1 = h̃n−1

k+1Wq
ᵀ

hnk+1 = TL(qnk+1, k
n
k+1, v

n
k+1)

(4)

where SG(.) stands for stop gradient and TL
stands for Transformer Layer. To carry over con-
text from previous turns, we train and evaluate the
model by concatenating all the turns, including the
bot responses, in a single conversation session. The
model is trained with a cross entropy objective as
defined below :

LLM = − 1

T

[
T∑
i=1

log(P (wi | w<i, s<i))

]
(5)

During inference time, we cache a fixed length
hidden representation from previous segments. We
also use the generated bot responses to perform a
forward pass and carry over the context to the next
user turn.

3.2 Slot detection and language modeling
multi-task learning

To make the our domain-general model robust to
e-commerce specific slot entities, we propose a
multi-task learning approach to training the TXL
LM. We train our models on both LM and slot de-
tection tasks. Similar to slot filling, slot detection
is a sequence classification task that involves pre-
dicting if a word, wi at time step i is a domain
specific slot entity. We use a separate slot detection
network, consisting of a simple multi-layer percep-
tron, and use the final layer hidden representation
from the TXL network as inputs to the network.
Figure 2 shows an example utterance with the slot
annotations. Formally, let s = (s0, s1, ..., sT ) be
the slot label sequence, corresponding to a word
sequence w = w0, w1, ...., wT in the k-th segment.
We model the slot label output st as a conditional
distribution over input word sequence up to time
step t, w≤t similar to (Liu and Lane, 2016) :

hnk = TL(qnk , k
n
k , v

n
k )

p(st|w≤t) = SlotLabelDist(hnt )
(6)

We use a cross-entropy training objective for the



21

slot detection task as below :

LSD = − 1

T

[
T∑
i=1

log(P (si | w≤i))

]
(7)

To incorporate this semantic information about
the word from previous time step into the NLM,
we use the logits from the slot detection network
to condition the probability distribution of the next
word in the sequence as shown in Figure 1.

The total loss is then computed using a linear
combination of LM and slot detection losses:

Ltotal = LLM + αSDLSD (8)

where αSD is the weight for the slot detection loss.

3.3 Transformer-XL LM conditioning on
dialogue acts

Dialogue acts (DA) in a conversation represent the
intention of an utterance and is intended towards
capturing the action that an agent is trying to ac-
complish (Austin, 1975). An example conversation
snippet with DA is shown in Table 1. DA classifica-
tion is typically performed in a separate component
that is part of a downstream NLU system and con-
sumes the outputs generated by ASR. The classified
DA is an important contextual signal that provides
hints about the type of speech pattern that can be
expected in the next turn. We utilize these signals
to train our TXL models. Specifically, we augment
the training data with the dialogue act information
prefixed to the user turns and surround them with
explicit <dialogue_act> tags. The expectation is
that the TXL LM learns the usage patterns associ-
ated with different dialogue acts and this informa-
tion should help narrow down the search space for
the model to content words relevant to the current
dialogue context.

3.4 Domain adaptation using contextual
semantic embeddings

In production chatbots, it is common for bot de-
velopers to provide example speech patterns, in
the form of sample sentences or explicit grammars,
which can then be used to bias the n-gram language
models in a ASR system (Gandhe et al., 2018).
This pre-defined set of speech patterns is a useful
source of contextual information that can be also
used to bias NLMs as well. As demonstrated in
(Shenoy et al., 2021), pretrained masked language

Actor Utterance Dialogue Act

Bot how can i help you today general-welcome
User hi i want to track my

online shopping order inform-intent
Bot sure! what is the order

number? request
User my order number is abcdef inform
Bot your order is scheduled to be

delivered tomorrow inform
User thanks thank-you
Bot do you need help with

anything else? req-more

Table 1: A sample user bot conversation snippet show-
ing example dialogue acts.

models (MLM) such as BERT, can be used to de-
rive a fixed size semantic representation from this
lexical information. Large pretrained MLMs are
gaining widespread popularity and are considered
as powerful language learners (Radford et al., 2016;
Brown et al., 2020). However, the sentence or doc-
ument embeddings derived from such an MLM
without finetuning on in-domain data is shown to
be inferior in terms of the ability to capture seman-
tic information that can be used in similarity related
tasks (Reimers and Gurevych, 2019). Instead of
using the [CLS] vector to obtain sentence embed-
dings, in this paper we take the average of context
embeddings from last two layers as these are shown
to be consistently better than using [CLS] vector
(Reimers and Gurevych, 2019; Li et al., 2020).

We use a simple fusion method as experimented
in (Shenoy et al., 2021) where the hidden state from
the last layer of the TXL decoder is concatenated
with the BERT derived embedding. This is then
followed by a single projection layer with a non-
linear activation function σ, such as sigmoid.

gt = σ(W [hTXL
t ; eMLM ] + b) (9)

Where hTXL
t is the hidden state from the last

transformer decoder and eMLM is the BERT de-
rived embedding from in domain sample utterances.
The intuition here is that the model learns to asso-
ciate the domain specific BERT derived embedding
with the occurrences of jargon specific to that do-
main. Thus providing different BERT vectors de-
rived from different domain texts should allow the
model to adapt towards such domains on-the-fly.
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Model Retail Fastfood
CWERR IC F1 SL F1 p-value CWERR IC F1 SL F1 p-value

1 Non-contextual LSTM – – – – – –

2 TXL 1.0% 0.5% 0.4% 0.083 12.3% 0.4% 0.9% 0.048

3 + Dialogue Acts (DA) 1.2% 1.2% 1.3% 0.057 14.4% 1.0% 1.2% 0.041

4 + Joint Slot Detection (SD) 4.3% 2.0% 3.3% 0.046 16.3% 0.9% 2.1% 0.015
5 + Joint SD + DA 8.6% 2.1% 3.3% 0.048 17.3% 1.3% 2.7% 0.009

6 + BERT Fusion 6.4% 2.8% 2.3% 0.030 18.2% 1.8% 4.8% 0.004
7 + BERT Fusion + DA 9.6% 2.9% 2.7% 0.023 19.2% 1.7% 4.8% 0.004

8 + Joint SD + DA + BERT Fusion 11.8% 3.8% 4.3% 0.037 19.2% 2.1% 6.4% 0.002

Table 2: ASR and NLU improvements on two e-commerce sub-domains : Retail and Fastfood. CWERR - Content
Word Error Reduction, IC F1 - Relative Intent Classification F1 Improvement, SL F1 - Relative Slot Labeling F1
Improvement, MPSSWE p-value test on WERR where significant improvements are in bold

Model PPLRgen PPLRecom

TXL –
+ Dialogue Acts (DA) 3.4% 9.9%
+ Joint Slot Detection (SD) 8.5% 11.4%
+ BERT Fusion (BF) 16.3% 23.3%

+ Joint SD + DA 9.8% 13.0%
+ BF + DA 21.5% 25.3%
+ BF + DA + Joint SD 21.0% 25.8%

Table 3: Relative perplexity reduction (PPLR) from
the various TXL models on a general domain eval
set (PPLgen) and on e-commerce domain eval set
(PPLecom).

4 Experimental Setup

4.1 Dataset

We required task-oriented dialogue datasets with
actor, dialogue acts and the slot entities annotated.
Since no single dataset was large enough to train
a reliable language model, we used a combina-
tion of Schema-Guided Dialogue Dataset (Rastogi
et al., 2019), MultiWOZ 2.1 (Eric et al., 2019;
Budzianowski et al., 2018), MultiDoGo (Peskov
et al., 2019) along with anonymized in-house
datasets that belong to two e-commerce usecases
: retail and fastfood delivery. The final LM train-
ing data consisted of 260k training samples, 56k
validation and evaluation samples and around 9.9
million running words. We used a vocabulary of
size 25k. We evaluated our models on anonymized
in-house 8kHz close-talk audio. These audio com-
prised of task-oriented conversations with multiple
speakers and acoustic conditions representative of
real world usage and belonged to the same two
usecases mentioned above. The average number of
turns in the audio dataset was 5.

4.2 ASR setup and NLM setup
We used a hybrid ASR model comprising of a
regular-frame-rate (RFR) model trained on cross-
entropy loss, followed by sMBR (Ghoshal and
Povey, 2013). The first pass LM we used was
a domain-general Kneser-Ney (KN) (Kneser and
Ney, 1995) smoothed 4-gram model estimated on
a weighted mix of datasets spanning multiple do-
mains. The final vocabulary size of the n-gram LM
was 500k words. All our NLM rescorers used a
4-layer Tranformer-XL1 decoder, each of size 512
with 4 attention heads. The input word embedding
size was 512. We used a segment and memory
length of 25. During model training we applied a
dropout rate of 0.3 to both the slot detection net-
work and TXL. For the slot detection layer we used
a 3 layer MLP and used the final layer hidden rep-
resentation from the TXL as the output. To obtain
the BERT embedding from in-domain speech pat-
terns, we finetune huggingface2 pretrained BERT
mode on the retail and fastfood text corpus. The
derived BERT embedding size used was 768. Dur-
ing inference, we extract n-best hypothesis with
n<=50 from the lattice generated by the first pass
ASR model. We rescored the n-best hypothesis by
multiplying the acoustic score with the acoustic
scale and adding it to the scores obtained from the
TXL rescorer. We used a fixed αSD of 0.8 for the
slot detection loss.

5 Results and Discussion

Table 3 summarizes the relative perplexity reduc-
tions (PPLR). Since we are optimizing our models
to improve on the e-commerce domain specific con-

1https://github.com/kimiyoung/transformer-xl
2https://github.com/huggingface/transformers
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tent words we directly report the relative content
word error rate reductions (CWERR) in Table 2
along with the relative impact on the downstream
NLU tasks of IC and SL. For computing CWERR,
we remove all the stop words comprising of com-
monly used function words, such as conjunctions
and prepositions from the transcriptions and eval-
uate only on content words. We also report sta-
tistical significance of our CWER improvements
using matched pairs sentence segment word error
test (MPSSWE). All the WER numbers are relative
to a non-contextual LSTM baseline. The gap in the
performance between the two domains we tested
on is reflective of the underlying training corpus
distribution, which has more text belonging to the
fastfood domain.

Perplexity gains indicate effective domain
adaptation We report both general domain and
e-commerce domain PPLR. Overall, the contextu-
alization and domain adaptation techniques help
with the PPL dropping in both cases. The jointly
trained model on in-domain slot detection how-
ever clearly helps more in the e-commerce case.
Moreover, since we used BERT that was finetuned
on e-commerce text we again see larger gains in
the domain specific testset when compared to the
general domain testset (23.3% vs 16.3%).

Using system dialogue acts improves intent
detection: From our experiments that train the
TXL LMs with dialogue act information, it is clear
that dialogue acts helps with relatively marginal
gains in PPL (3.4% on generic and 9.9% on e-
commerce) and WER (1.2% Retail, 14.4% Fast-
food). When compared to other techniques we
explored, we see that the impact on intent clas-
sification was higher in proportion to the gain in
WER, which indicates that dialogue acts are valu-
able contextual signals to help with intent convey-
ing phrases.

Slot detection loss yields improvements on
domain specific content words: Rows 4 and 5 of
Table 2 report the content WERR, IC and SL F1s
that we obtain by incorporating the joint LM and
slot detection (SD) loss. As expected, the multi-
task model improves on the content words signif-
icantly (1.2% to 4.3% on Retail, 12.3% to 16.3%
on Fastfood). This WER improvement also car-
ries over to a higher SL F1 improvement, but a
relatively small IC F1 improvement. This is again
indicative that the improvements are mainly on
recognition of in-domain slot entities and the auxil-

iary function words that are important to recognize
intents do not benefit as much.

Domain adaptation using BERT fusion pro-
vides maximum gains: Rows 6 and 7 in Table 2
illustrate the performance of the TXL LM that in-
corporates the BERT embedding fusion layer. Com-
pared to the model trained with joint slot detection
loss, BERT fusion model performs better on all
ASR and the NLU metrics. It is evident from the
results that the BERT embeddings that are derived
from different user provided text helps the model
effectively adapt to the domain that the embedding
was derived from. The gains are amplified when
complemented with the dialogue acts ability to im-
prove on intent carrying words and the joint slot
detection model leading to a WERR improving
from 12.3% to 19.2% on the fastfood domain and
1% to 11.8% on the retail domain. This also carries
over to an improvement on IC and SL F1 of 3.8%,
4.3% on retail and 2.1%, 6.4% on fastfood.

6 Conclusion

In this paper we explored different ways to robustly
adapt a domain-general Transformer-XL NLM to
rescore N-best hypotheses from a hybrid ASR sys-
tem for task-oriented e-commerce speech conversa-
tions. We demonstrated that Transformer-XL LM
trained with turn level dialogue acts benefits in-
tent classification by improving the recognition of
content words. Additionally, we show that using
semantic embeddings derived from a masked lan-
guage model finetuned on e-commerce domain can
be effectively used to adapt a domain-general TXL
LM for e-commerce domain utterance rescoring
task. Finally, we introduced a new TXL training
loss function to jointly predict content words along
with language modeling task, this when combined
with BERT fusion and dialogue acts, amplifies the
WER, IC F1 and SL F1 gains. We have also shown
these improvements to be statistically significant.
Future work can look at integrating these methods
into an end-to-end ASR system for both rescoring
task and first pass LM fusion.
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