SupportNet: Neural Networks for Summary Generation and Key Segment
Extraction from Technical Support Tickets

Vinayshekhar Bannihatti Kumar

Mohan Yarramsetty

Sharon Sun Anukul Goel

Amazon Web Services
Seattle, WA, USA

{vinayshk, ymohank,

Abstract

We improve customer experience and gain
their trust when their issues are resolved
rapidly with less friction. Existing work has
focused on reducing the overall case resolu-
tion time by binning a case into predefined
categories and routing it to the desired sup-
port engineer. However, the actions taken
by the engineer during case analysis and res-
olution are altogether ignored, even though
it forms the bulk of the case resolution time.
In this work, we propose two systems that
enable support engineers to resolve cases
faster. The first, a guidance extraction model,
that mines historical cases and provides tech-
nical guidance phrases to the support en-
gineers. These phrases can then be used
to educate the customer or to obtain criti-
cal information needed to resolve the case
and thus minimize the number of correspon-
dences between the engineer and customer.
The second, a summarization model that cre-
ates an abstractive summary of a case to pro-
vide better context to the support engineer.
Through quantitative evaluation we obtain
an F1 score of 0.64 on the guidance extrac-
tion model and a BertScore (F1) of 0.55 on
the summarization model.

1 Introduction

It is of paramount importance to AWS Support
organization to reduce the resolution time of cus-
tomer cases to ensure their business runs seam-
lessly without any downtime. We have a unique
challenge in that the customers’ issues can be
deeply technical and require technically skilled
agents to resolve it. There is a rapid increase in
the number of users of the services offered by our
cloud company and it is important to improve
tooling for Support Engineers (SEs) in order to
scale. A significant portion of customers’ cases
are business critical and time-sensitive.

sharosun,

164

anukul }@amazon.com

Cases are created by customers for several rea-
sons such as guidance about a specific service
or troubleshooting when a production service is
down. A typical customer creates a case with a
title of the case (case title) and a detailed corre-
spondence on their issue as a part of the case
(communication text). The agents then have to
read this case, understand the customer’s prob-
lem and suggest ways for them to resolve the is-
sues. This requires the agents to spend a lot of
time to completely read the case and then guide
the customer to solve the problem. We have de-
veloped two systems that can use the inputs from
the customer in the form of case text (case title +
communication text) to speed up the agent’s time
to resolve a case. The first system is a summariza-
tion system that presents the customers problem
to the agent to give them a head start in tackling
the case. The second system provides them snip-
pets from similar historical cases to reduce the
time the agent takes to respond to the customer.

Prior work in the domain of customer support
has focused on improving the time to resolve a
case by improving routing and detecting the cus-
tomer problems into one of several predefined
categories (Gupta et al., 2013; Hui and Jha, 2000;
Muni et al., 2017; Molino et al., 2018). While these
methods reduce average total time to resolve is-
sues throughout the case journey, they do not
focus on reducing the active handle time by SEs,
i.e., the time a SE has to invest to understand and
respond to the customer. In our work, we address
this gap by introducing two novel solutions as
previously described.

SEs often look to similar previously resolved
cases when beginning to tackle a new case ac-
cording to a few internal studies. A previous simi-
lar case provides them troubleshooting resources,
hints on root causes, and guidance material that
they reuse on the new case. These resources from

Proceedings of the 4th Workshop on e-Commerce and NLP (ECNLP 4), pages 164-173
August 5, 2021. ©2021 Association for Computational Linguistics

previous similar cases have been found to reduce
the handle time by SEs, but it takes time for agent
to browse through the results. Hence, we built
a knowledge mining system based on NLP that
allows SEs to efficiently look up historical cases
without having to read the whole case.

Typical technical cases contain many conver-
sations, and reading through them is a time-
consuming process. In order to solve this prob-
lem, a system was introduced - State of the Case
(SOC) - where SEs update a summary of the cur-
rent state of a case. These updates are made man-
ually by SEs while they hand the case back to the
customer or to another internal team. In addi-
tion to serving as a smooth transition between
SEs throughout the case lifecycle, the SOC of a
case was intended to serve as its expert summary
view, eliminating the vagueness and jargon that
may be present in customers’ case text. However,
the additional manual effort to fill SOC resulted
in a low adoption rate of 9.8% over time. We intro-
duce the solution in Section 3.2 automating SOC
generation based on customer communications.
Table 1 provides a simulated example of the data
we have. The SEs can use the SOC to get a head
start in solving the case.

Customer case text
Case Title: Server down because of full volume

Case description: We had our server go down this
evening because the @gig volume of our EC@ server
full. To avoid this in the future, I have two questions: -
How can we know the amount of free space left in the
Ec@ volume? - Is there a way we can setup alerts to
monitor free usage? Thank you for your help in this
matter. Have a good day, Instance ID(s): How can we
track the storage / volume usage of our EC@ instances

State of Case(SOC) Case Summary: how can we track
the free space remaining on the volume of an EC2 server
?@- how do we set up alerts at certain thresholds

to know to act?

Table 1: The customer can describe their problem in
several different ways. The state of the case summa-
rizes the customer issue into something that is action-
able.

We show that the summary version that a
SE would write in SOC can be automatically
generated using the state-of-the-art encoder
(Bert (Devlin et al., 2018))-decoder (GPT-2 (Rad-
ford et al., 2019)) models with cross attention.

165

We compare this model against recent baseline
models such as Bart (Lewis et al., 2019) and
on traditional encoder decoder models using
LSTMs. We present findings that support using
this model in production when compared to a
more memory efficient model such as LSTM. Any
conditional generation task requires a parallel
dataset on which the model is trained on. Our
dataset on the other hand has labeled data for the
encoder text as well. This allows us to introduce
a classification loss on the encoder to obtain
better encoder representations that can be fed to
the decoder. This also allows us to jointly train
an encoder and a decoder with a simultaneous
multi-task objective. We perform this novel
experiment to show the efficacy of training
the encoder with a cross entropy loss function
while the decoder is trained using Maximum
Likelihood Estimation (MLE).

Thus, the contribution of this work can be sum-
marized as follows:

1. We present a model that is capable of min-
ing technical guidance phrases from support
cases.

2. We present a summarization model that gen-
erates a concise summary of customer prob-
lems from the communication text. We also
compare several summarization models and
discuss the potential impact of production-
izing our model. In addition, we performed
multi-task learning on the encoder to de-
termine if it can improve decoder’s perfor-
mance.

3. We present the results from a human subject
study to show the usefulness of our solution.
Initial results suggest that the SEs considered
the summary generated by our model as a
good starting point to solve a case.

2 Related Work

As mentioned earlier, Molino et al. (2018) built
systems that could categorize case issues into pre-
defined categories. They also suggest predefined
templates to SE. Specific details of the case are
not taken into picture while suggesting these tem-
plates to make them more appropriate. Our sum-
mary model on the other hand ingests the context
of the case and generates a personalized problem

Summary of the case

Respond back to
the customer

Incoming Case

Similar cases

Guidance excerpts from
previous cases

Figure 1: (a) Component 1 reads the contents of the incoming case and sends a summary to the support agent
to get a head start. (b) Component 2 reads the contents of the historical cases and provides guidance excerpts

for the agents to respond back to the customer.

template that a SE can use to update the state of
case.

Prior work (Godse et al., 2018; Chess et al., 2007;
Brittenham et al., 2007; Pathak and Khandelwal,
2017) has looked at providing better Information
Technology Service Management (ITSM) to their
customers by building resources that help the
customers diagnose their own issue and find a
solution for it. However, customers usually try to
self-diagnose their issues before cutting a case.
Hence, our solution focuses on helping the SE
and improve their efficiency.

Other work (Gupta et al., 2013; Hui and Jha,
2000; Muni et al., 2017) has looked at the use of
the support case text along with other metadata
to classify the intent of the case and improve rout-
ing. We on the other hand analyze the case text to
provide assistance to SE in their day-to-day tasks.

3 System and Model Overview

Figure 1 shows the overall architecture of the pro-
posed system. There are two major components
that we propose in this work. The first one uses
a Bert and GPT-2 model to allow the SE to get a
head start in solving the case. The second com-
ponent runs on the case text of previously solved
cases to provide the SE with guidance phrases.
They can use the predicted guidance phrases to
understand how the case can be solved and to
also construct a response back to the customer.

In this section, we provide details of the models
that were built in these components and the steps
that we took to train them.

3.1 Guidance Extraction Model

Support cases that we receive from customers
are filled with jargon rich text that takes highly
skilled agents to read and understand. In order to
train the models that can understand this text, we
need large amounts of supervised data that is very
expensive to obtain as it requires expert annota-
tions. However, we can train large Language Mod-
els (LMs) with the vast amounts of self-supervised
case text that enables the models to understand
this jargon filled technical domain.

Following Lee et al. (2020); Beltagy et al. (2019)
we continue the pre-training of the model pre-
sented by Devlin et al. (2018) . We continue the
pre-training of the Bert model for another 60,000
steps on the support cases that we have received
in the period of 2019 —20. We call this model Sup-
portBert. We show that this model outperforms
the Bert base model trained on English Wikipedia
and the Book corpus (Zhu et al., 2015) on our guid-
ance phrase prediction task. We follow the stan-
dard procedure of fine-tuning this model on a
labeled dataset of guidance excerpts. More about
this dataset is presented in Section 4. We try sev-
eral variants of the models while pre-training and
the details of the experiments are presented in
Section 5.

3.2 Summarization Model

We use a Seq2Seq (Sutskever et al., 2014) model
with the cross attention as our baseline model.
We use a Bert encoder and a GPT-2 decoder to
summarize the case content. For every word W;
that belongs to the case description and the com-
munication text, we pass that word through the

166

Class label

Figure 2: The complete setup of our summary model is shown above. We use the output of the GPT-2 decoder
as a summary of the case description fed into the Bert Encoder. For the multi-task experiment we use the class

label to add more gradients to the encoder.

Bert encoder to obtain the contextualized repre-
sentations of the case content. We use Maximum
Likelihood Estimation (MLE) to train the decoder
on the case summary (S;...S77). The case sum-
maries entered by SEs on historical cases are used
to train our model. Here S; represents every word
of the summary at a time step t'. T’ represents
the overall length of the summary. Our overall
architecture is shown in Figure 2.

We first pass the words(W;) into the Support-
Bert model to get a contextualized representation
of every word(hep.).

hl .=Bert_encoder(W;, Ws...Wy) (1)

We then use these hidden states as the keys to
the cross-attention units of the GPT-2 decoder.
At each stage of the GPT-2 decoder we will see a
probability distribution on the Vocabulary(PY).

P/ =GPT_2(hl,., S1..0 ©)

We use the SOC described in Table 1 for train-
ing the decoder with MLE. We want to maximize
the log likelihood of the probability of the true
word, in other words we want to minimize the
negative log likelihood of the probability of the
true word.

loss; = —logP(W/""¢) 3)

Total decoder loss is averaged cross entropy
loss at each time step of the decoder.

1 Tdecoder

losSgecoder = loss; (4)

Tdecoder =1

During inference, we use the words generated
by the decoder till time ¢t and the Bert embed-
dings to produce the word at time ¢ + 1.

St+1 = arg max [softmax(GPT_Z(heTnc,St))] (5)
14

167

3.2.1 Multi-task training

In this variant of the summarization model, we
also predict the issue category of the case text
along with generating the summary. We have a
unique corpus that has a label for the encoder
text to train the encoder and SOC text to train the
decoder. This enables us to jointly train the en-
coder and the decoder with both these loss func-
tions. The encoder receives gradients from not
only the MLE objective of the decoder but also the
cross-entropy loss from issue categorization (241
pre-defined categories). Multi-task learning has
shown to improve the performance of the Bert
base model (Liu et al., 2019). However, each task
head during this training phase is trained inde-
pendently as parallel labels are not available. Also,
there is a lack of a public corpus that enables us
to jointly train the encoder on a classification task
and the decoder on a text generation task. Our
corpus allowed us to perform this experiment.

241

10SSencoder = Y P(X)10g(Q(X)) (6)
i=0

loss =108S¢ncoder +108Sqecoder ()

4 Datasets

4.1 Guidance Extraction

For the purpose of guidance extraction we asked
annotators to label paragraphs from support
cases as Technical Guidance (T.G) and Educa-
tional Guidance (E.G). Using this paragraph la-
beled case dataset, we want to identify if a para-
graph is a guidance or not. As a first step we will
combine both these guidance into one bucket
and classify if a paragraph is a guidance para-

Examples ‘ #T.G ‘ #E.G
2050 | 109 | 88

Table 2: The number of different types of guidance
present in our guidance extraction dataset.

Train \ # Test \ # Categories
104892 | 5000 | 241

Table 3: Number of training and testing samples used
for the summary model. Total categories column in-
dicates the number of categories that the encoder
text could be classified into. This was used for train-
ing the encoder in a multi-task setup.

graph or not. The statistics of this dataset is
shown in Table 2.

4.2 Summarization Dataset

We used an internally available parallel corpus for
training our summarization model. Our dataset
contains the case subject, first communication
and the Subject Matter Experts (SMEs) anno-
tated customer problem. We show the dataset
statistics in Table 3. We use the case title and the
first communication as the input to the model.
The model summarizes the customer problem.

5 Experiments:

5.1 Guidance Extraction Model

5.1.1 Experimental setup:

The majority baseline would produce an F1 score
of 0.13 if recall is set to 1 by predicting everything
as guidance phrase. This shows that the dataset is
highly skewed and it is not easy to get good perfor-
mance with random guessing. Since the number
of examples in the test set is not very high (20% of
all annotated data in Table 2), we decided to per-
form a 5-fold validation and average the model
performance. For each fold of data, we stop train-
ing after 3 epochs similar to (Devlin et al., 2018).
We then use the 20% test set for each fold to cal-
culate the accuracy of the model prediction with
the ground truth annotation. In order to control
for variance, we repeat the experiment 5 different
times and average the results. We compared the
following 4 variants of the model:

Off the shelf Bert (OSB): We used Bert-base
model that was trained on English Wikipedia and
the Book Corpus and then fine-tuned the model
against our own dataset. During fine-tuning, we

168

Model P R F1

OSB 0.665 0.6114 0.6116
PB 0.7178 0.6268 0.6456
PBK 0.6576 0.5386 0.5636
BUL 0.6742 0.6204 0.6306

Table 4: Performance of different guidance extrac-
tion models. These performance results have been
averaged with 5-fold validation and 5 different runs
to control for variance.

used a batch size of 16, max length of 512, learn-
ing rate of 5e-5 with weight decay (e = 1e - 8).

Bert - Pre-trained with support case data
(PB): Since the language in support cases is wildly
different from that of Wikipedia and the Bookcor-
pus, we continued the pre-training of the Bert
model on a corpus of support cases. We used a
total of 236,354 cases to continue pretraining the
Bert model. We then fine-tuned this Bert model
with the same experimental setup as OSB.

Bert Pre-trained with Keywords in inputs
(PBK): We observed that there were a lot of tech-
nical terms in our dataset that have a different
contextual meaning (e.g. VPC, route). Hence,
we hypothesized that we should add technical
keywords to our model’s vocabulary. To facili-
tate this, we trained a new WordPiece model (Wu
etal., 2016) on our corpus of support cases. There
were 1662 tokens in Bert’s vocabulary after adding
these words. The rest of the training pipeline was
similar to PB.

Bert model with under sampling Limit In-
crease Cases (BUL): When our customers want to
add more resources to their existing account they
create a Limit Increase Case with us. These cases
follow a very generic template (canned email)
that might not be very useful to the model. In
order to test this hypothesis, we under sampled
those cases and re-ran the pre-training and fine-
tuning experiment without adding additional key-
words.

5.1.2 Experiments Discussion

From Table 4, we see that the best performing
model on the guidance phrase dataset is the PB
model. This observation is consistent with sev-
eral other works (Beltagy et al., 2019; Lee et al.,
2020). We see that the model performance signif-
icantly drops when we add the custom keywords.
This is because the word embeddings for these
words are trained from scratch while the word
embeddings of the Bert base vocabulary have al-

ready been tuned. We do see a 2% increase in F1
by under sampling limit increase cases but the
performance is still lower than the PB model.

5.2 Summary Model

5.2.1 Experimental Setup

We train the encoder-decoder model for 3 epochs
on the training data mentioned above. For the
encoder we use a Bert base model. The de-
coder is the GPT-2 model from OpenAl. The
keys to the self-attention units of the GPT-2 de-
coder are the final hidden states of the Bert en-
coder. We used a batch of 16, max length of 512,
Adam (Kingma and Ba, 2014) optimizer learning
rate of 5e — 5 with weight decay of (¢ = 1e—8). We
experiment with several variants of the encoder-
decoder model. They are discussed below:

LSTM Based encoder-decoder (LSTM): We im-
plement an LSTM based encoder-decoder model
with attention (Sutskever et al., 2014; Bahdanau
et al., 2014). There are 512 units in both the en-
coder and the decoder with 2 layers. We use an
Adam optimizer with learning rate of 0.3.

Bert encoder with GPT-2 decoder (BG): We
implement a Bert encoder with a GPT-2 de-
coder. The final hidden states of the Bert base
encoder act as the key to the self-attention
blocks (Vaswani et al., 2017) of the GPT-2 module.

Pre-trained Bert encoder with GPT-2 de-
coder (PBG): This model is similar to the BG
model. But we used the pre-trained Bert model
from Section 5.1.1.

Bert encoder with GPT-2 decoder + encoder
loss (BGE): This model is similar to the BG above.
But we also include a multi-task objective that
classifies the input text into one of the 241 cat-
egories. We want to evaluate if there is any ad-
vantage to either the text generation phase or the
classification phase by performing this multi-task
learning.

Pre-trained Bert encoder with GPT-2 de-
coder + encoder loss (PBGE): This model is a
combination of the PBG model and BGE model.
We pre-train the Bert model and use the multi-
task loss to get better representations of the input
text.

5.2.2 Experiments Discussion

Since Rouge is considered as the industry stan-
dard metric for summary tasks (Zhang et al., 2020;
Lewis et al., 2019), we compare different mod-
els based on ROUGE-L (Lin, 2004) metric. This

169

comparison is consistent with all the other text
generation metrics presented in Table 5. We ob-
serve that the best performing model is the BG
model. The performance is almost the same as
the PBG model. However, when we compare the
models using BertScore (B, R, F1) (Zhang et al,,
2019) we see that PBG model slightly outperforms
the BG model. BertScore has been found to have
more correlation with human judgment. Fur-
ther human evaluation is required to get the nu-
anced differences between the BG model and the
PBG model. Several works have investigated the
use of multi-task learning for classification (Liu
etal., 2019, 2017) and have found that training the
model with several losses increases model perfor-
mance. In our case we see that the multi-task
objective deteriorates the model text generation
metrics. We hypothesize that both the encoder
and the decoder try to modify the Bert represen-
tations to suit their task at hand leading to this
degradation in the performance. We also looked
at the outputs from the Bart (Lewis et al., 2019)
model, but observed that the Bart model did not
perform abstraction and merely copied the words
from the customer text in the decoder response.

We also investigate if we can achieve higher
performance on the encoder classification if we
train with the multi-task objective. From Figure 3
we see that all the models achieve a similar test
performance after 3 epochs of training. However,
itis interesting to see that the classifier achieves
better performance in the initial steps of training
with both the PBGE and the BGE models. The
comparison is made with respect to taking an
off the shelf Bert model and training with the en-
coder objective described in Section 3.2.1.

—— PBGE
BGE
—— encoderOnly

0.60

2500 5000 7500 10000 12500 15000 17500 20000
Number of steps of training

T
0

Figure 3: Comparisons of different encoder classifier
accuracies against the number of steps the model is
trained on.

Model Bleu-1 Bleu-4 Cider ROUGE DIST-1 DIST-2 DIST-3 P R F1

PBGE 0.130 0.063 0.190 0.225 0.043 0.170 0.319 0.529 0.512 0.515
LSTM 0.066 0.032 0.062 0.113 0.015 0.119 0.228 0.479 0415 0.439
BGE 0.131 0.066 0.206 0.294 0.045 0.211 0.415 0.556 0.527 0.535
BG 0.143 0.080 0.220 0.401 0.064 0.275 0.470 0.568 0.539 0.546
PBG 0.132 0.074 0.227 0.436 0.062 0.271 0.470 0.580 0.535 0.551

Table 5: Comparison of all the models. Based on the ROUGE score we see that the BG model performed as well
as the PBG model. The results obtained from BertScore(P, R, F1) closely resembles that of our human evaluation

The performance of a simple model like LSTM
is not close to the transformer based model.
Even though the LSTM models can give a sig-
nificant gain in inference time while deploying
the model in production, from the model perfor-
mance above we can see that we need to have
infrastructure in place to productionize the trans-
former based models for our use case. The trans-
former based models took a total time of 15 min-
utes to decode the test set of 5000 examples which
adds an average latency time of 180ms to summa-
rize each example.

Another important metric that one should look
at is the number of distinct phrases that the
Seq2Seq model is able to generate. Seq2Seq mod-
els are known to suffer from the dull response
problem (Gupta et al., 2019a). If the DIST-* met-
rics are high, that shows that the model is able to
generate more diverse outputs when presented
with different input scenarios (Li et al., 2015;
Gupta et al,, 2019a). From the table we can see
that the DIST-3 metric which captures the num-
ber of unique trigrams is highest for the BG model.
The next closest model is the PBG model. We also
observe that adding encoder loss does not im-
prove the distinct scores.

5.2.3 Human Evaluation

Since the PBG model had the best BertScores and
was pre-trained on support cases we used the
summaries from this model for human evalua-
tion. While automatic evaluation metrics cap-
tures many aspects of the ground truth with the
generated text they have been criticized for the
lack of semantic understanding (Gupta et al.,
2019b; Sulem et al., 2018). In order to evaluate the
efficacy of the summaries generated by our mod-
els and to validate its usefulness, we conducted
a human subject study with the 2 subject mat-
ter experts. We randomly sampled 50 cases from
the test set and asked them to provide feedback
on the accuracy of the summary and if the sum-

mary generated would form a good starting point
to write the summary of the current case. We
observed that 23/50 were considered as a useful
summary from both the SEs. 10/50 were con-
sidered as not useful by both. The other 17 had
mixed ratings. If we consider a summary useful
if either of the individual annotated it as useful,
then 40/50 were useful summaries.

5.2.4 Qualitative Analysis:

We show some of the summaries generated by
our model in Table 6. As we can see from the
model generations, the model has learned to pre-
dict the technical language of our domain. In
row 1 and 2 of Table 6 we see that the model has
learned to predict the customers’ problem well
based on the communication text. This is be-
cause of the knowledge from the historical cases
where in other customers had similar problem.
We can also see from example 3 that the model
has learned to associate CPU spikes with Internet
Information Server. When we manually inspected
a few samples (e.g. row 4) from the human sub-
ject study and spoke to our participants, we found
that the model was penalized because it tried to
generate a very specific customer problem that
might not make sense semantically. We leave the
introduction of semantic knowledge into these
models as future work.

6 Application of the models to Support
Businesses

Extraction of guidance phrases from case text of
previous cases can provide quick tips to SEs and
make it easier for them while working on a case.
Every SE is required to write a reply to the cus-
tomer with the steps they can take to resolve the
issue. These guidance phrases will help them
reuse the text enabling them to spend less time
on the reply email.

The summary models we have built can be
used in a variety of SE tasks. We can use the au-
tomated summary to provide the context of the

170

Customer Text

Ground truth

Generated Sum-
mary

Transfer t3 instance from one account to anotherHello,
There is a t@.large reserved instance in account @ and we
would like to transfer it to the other account that we have

Cx would like as-
sistance on trans-
ferring the t2.large
Reserved instance
from account @ to
account @

Cx wants to trans-
fer instance from
one account to an-
other

Server down because of full volumeHello,

Our Servers went down this evening because the volume
of our EC@ server was completely full.

I have a couple of questions to avoid this in the future: -
How do I know the amount of free space left in the Ec@
volume? - How do I setup alarms to monitor free usage?
Have a good day,

how can we track
the free space
remaining on the
volume of an EC2
server?@- how do
we set up alerts at
certain thresholds
to know to act?

Customer wants to
know how to mon-
itor the disk usage

Performance issue cpu spikesWe have noticed CPU spikes
on an instance that is running an IIS site up to @We
stopped the site and cpu is still spiking up to @ when
running with few services installed. Issue occurs only
when our monitoring services are running @am to @pm.
I need help trying to understand what is causing this spike
with http. Instance ID(s): i-@f@e@a Timestamp (YYYY-
MM-DD HH:MM:SS UTC): @/@/@

We would need
help with moni-
toring http traffic
going in/out of
the box and more
details about cpu
load by process
name.

of the EC2 instance
Customer ex-
perienced high

CPU spikes on an
instance that is
running on IIS and
wanted to know
the cause

Chat: S@ access denied I am getting an error with IAM
user or role experiencing the issue: arn:aws:iam::@:role/
with this role. Not sure what the problem is. Could you
help?

Cx was facing
""lambda access
error: lambda:
GetAccountSet-
tings"" error and
needed assistance
with the same

Customer was get-
ting access denied
error while trying
to access S3 bucket
via IAM user

Table 6: Examples of a few qualitative results produced by our model. Please note we have simulated the

queries in the table to preserve customer privacy.

case to the next SE who picks up the case. When
presenting similar cases to the SE, we can provide
the summaries to let them quickly identify if the
case is useful. The summaries that we generate
can also be used as a starting point when the SEs
are tasked with completing the SOC.

7 Conclusion

It is important for us to scale the support busi-
ness with our rapid user growth. We describe two
components of a system that aims to reduce the
time spent by SE in resolving a support case. The
aim of this work is to promote research at the in-
tersection of NLP and support business. Using
our models, we were able to achieve an F1 score
of 0.64 on the guidance extraction problem and

171

BertScore (F1) of 0.55 on the summarization prob-
lem. These promising results shows us that they
can be deployed in production, create impact and
help SEs in their day-to-day tasks. We hope this
contribution can lead to better tools that can im-
prove the tooling necessary for support agents to
provide a rich customer experience.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scib-
ert: A pretrained language model for scientific text.
arXiv preprint arXiv:1903.10676.

Peter Brittenham, R Russell Cutlip, Christine Draper,
Brent A Miller, Samar Choudhary, and Marcelo Per-
azolo. 2007. It service management architecture
and autonomic computing. IBM Systems Journal,
46(3):565-581.

David M Chess, James E Hanson, John A Pershing,
and Steve R White. 2007. Prospects for simplifying
itsm-based management through self-managing
resources. IBM Systems Journal, 46(3):599-608.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Neha Atul Godse, Shaunak Deodhar, Shubhangi Raut,
and Pranjali Jagdale. 2018. Implementation of
chatbot for itsm application using ibm watson. In
2018 Fourth International Conference on Comput-
ing Communication Control and Automation (IC-
CUBEA), pages 1-5. IEEE.

Narendra Gupta, Mazin Gilbert, and Giuseppe Di Fab-
brizio. 2013. Emotion detection in email customer
care. Computational Intelligence, 29(3):489-505.

Prakhar Gupta, Vinayshekhar Bannihatti Kumar,
Mukul Bhutani, and Alan W Black. 2019a. Writer-
forcing: Generating more interesting story endings.
arXiv preprint arXiv:1907.08259.

Prakhar Gupta, Shikib Mehri, Tiancheng Zhao, Amy
Pavel, Maxine Eskenazi, and Jeffrey P Bigham.
2019b. Investigating evaluation of open-domain
dialogue systems with human generated multiple
references. arXiv preprint arXiv:1907.10568.

Siu Cheung Hui and G Jha. 2000. Data mining for
customer service support. Information & Manage-
ment, 38(1):1-13.

Adam:
arXiv

Diederik P Kingma and Jimmy Ba. 2014.
A method for stochastic optimization.
preprint arXiv:1412.6980.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234-1240.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-
training for natural language generation, trans-
lation, and comprehension. arXiv preprint
arXiv:1910.13461.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting ob-
jective function for neural conversation models.
arXiv preprint arXiv:1510.03055.

172

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74-81.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classifica-
tion. arXiv preprint arXiv:1704.05742.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and
Jianfeng Gao. 2019. Multi-task deep neural net-
works for natural language understanding. arXiv
preprint arXiv:1901.11504.

Piero Molino, Huaixiu Zheng, and Yi-Chia Wang.
2018. Cota: Improving the speed and accuracy of
customer support through ranking and deep net-
works. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery &
Data Mining, pages 586-595.

Durga Prasad Muni, Suman Roy, Yeung Tack Yan John
John Lew Chiang, Antoine Jean-Marie Viallet, and
Navin Budhiraja. 2017. Recommending resolu-
tions of itil services tickets using deep neural net-
work. In Proceedings of the Fourth ACM IKDD Con-
ferences on Data Sciences, pages 1-10.

Ramesh C Pathak and Pankaj Khandelwal. 2017. A
model for hybrid cloud integration: With a case
study for it service management (itsm). In 2017
IEEE International Conference on Cloud Comput-
ing in Emerging Markets (CCEM), pages 113-118.
IEEE.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Ope-
nAl blog, 1(8):9.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018.
Bleu is not suitable for the evaluation of text sim-
plification. arXiv preprint arXiv:1810.05995.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks.
Advances in neural information processing systems,
27:3104-3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998-6008.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144.

Jingging Zhang, Yao Zhao, Mohammad Saleh, and
Peter Liu. 2020. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summariza-
tion. In International Conference on Machine
Learning, pages 11328-11339. PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. 2015. Aligning books and movies: To-
wards story-like visual explanations by watching
movies and reading books. In Proceedings of the
IEEE international conference on computer vision,
pages 19-27.

173

