
Proceedings of the 4th Workshop on e-Commerce and NLP (ECNLP 4), pages 150–157
August 5, 2021. ©2021 Association for Computational Linguistics

150

Combining semantic search and twin product classification for
recognition of purchasable items in voice shopping

Dieu-Thu Le
Amazon.com, Inc.

deule@amazon.com

Verena Weber
Amazon.com, Inc.

wverena@amazon.com

Melanie Bradford
Amazon.com, Inc.

neunerm@amazon.com

Abstract

The accuracy of an online shopping system
via voice commands is particularly important
and may have a great impact on customer
trust. This paper focuses on the problem
of detecting if an utterance contains actual
and purchasable products, thus referring to a
shopping-related intent in a typical Spoken
Language Understanding architecture consist-
ing of an intent classifier and a slot detec-
tor. Searching through billions of products to
check if a detected slot is a purchasable item
is prohibitively expensive. To overcome this
problem, we present a framework that (1) uses
a retrieval module that returns the most rele-
vant products with respect to the detected slot,
and (2) combines it with a twin network that
decides if the detected slot is indeed a pur-
chasable item or not. Through various exper-
iments, we show that this architecture outper-
forms a typical slot detector approach, with
a gain of +81% in accuracy and +41% in F1
score.

1 Introduction

Spoken Language Understanding (SLU) consti-
tutes the backbone of voice-controlled devices such
as Amazon Alexa or Google Assistant. SLU is
typically divided into two sub-tasks, intent classi-
fication (IC) and slot filling (SF). IC determines
the user’s intent and slot filling (SF) extracts the se-
mantic constituents. For instance, if a user says
buy batteries, IC should classify the intent as
BuyItem and SF should label the utterance as
buy|Other batteries|ItemName. The slot in
this example is ItemName and the slot value is bat-
teries. This constitutes a way to map the utterance
on a semantic space. Throughout this paper the
term carrier phrase denotes all tokens that are not
part of the slot, e.g. buy in the previous example.

In typical SLU architectures, the final confidence
score is obtained through multiplication of the two

scores from the IC and the SF model. For each
utterance, the model produces n-best hypotheses
ranked by the final confidence score. One hypothe-
sis consists of an intent and slot labels.

Problem statement - The complexity for both
IC and SF tasks is continuously increasing due
to the growth of voice-controlled device func-
tionalities. Investigations have revealed that the
model tends to put more weight on the carrier
phrase than the slot value. This bias implies that
particular slot labels are assigned based on the
carrier phrase rather than the slot value. Since
with a rising amount of functionalities carrier
phrases can be identical across functionalities
and the correct class then solely depends on the
slot value. Label confusions are particularly ob-
served for Shopping intents, e. g. BuyItem.
For example, how much is {toilet paper}
/ was kostet {Klopapier} is a request that
falls into the realm of Shopping functionalities
because the user could actually purchase this
item through the device. In contrast, if the
user asks how much is {Ronaldo} worth
/ was kostet {Ronaldo} the request needs
to be processed by QA functionalities. Note
that in German the two sentences have an iden-
tical pattern How much is {slot value} /
wie viel kostet {slot value} while the carrier
phrase slightly differs in English.

Shopping functionalities in a voice-controlled de-
vice have a particular importance due to their high
potential impact on customer trust and experience.
If a user has the feeling they could accidentally buy
something, this may reduce trust in the system and
drive customers away. On the contrary, not recog-
nizing Shopping intents is equally harmful as users
will not shop with the device anymore.

Contribution and approach - In this paper, we
focus on solving the problem of label confusions,
where detected slots are mistaken as ItemName,

151

hence are routed to Shopping (false accept) and
the other way around, when an item name is not
identified as ItemName, hence are not correctly
handled as Shopping (false reject). In order to cor-
rectly determine if an item is purchasable or non-
purchasable, one needs to match the ItemName
candidates to products sold on the respective plat-
form. If the item is similar (enough) to products in
the product catalog, it is purchasable.
A straightforward way of solving this problem is to
search through the whole Shopping catalog to iden-
tify if the detected slot is found within the catalog
or not through simple string or substring matching.
However, this approach has two main drawbacks:
First, it is extremely expensive to search through
the full catalog for all slot candidates and is there-
fore prohibitive in real applications. Second, the
approach is not precise and does not utilize mean-
ing at all. Take the non-purchasable ItemName can-
didate lamborghini as an example. A Lamborghini
cannot be purchased on e-commerce platforms and
is therefore non-purchasable in this context. String
or substring matching however returns matches
like lego lamborghini, toy lamborghini from the
product catalog and as such would indicate that a
lamborghini could be bought through the device.
Instead, we need an approach that is able to detect
the difference between a lego lamborghini and a
lamborghini.
To improve the accuracy of the detected slots with
respect to the ItemName entities, we propose to
combine a retrieval module with a Twin Product
Classifier. Instead of searching through all billions
of possible products, this approach uses a twin net-
work (Bromley et al., 1994; Reimers and Gurevych,
2019a) to compare the candidate slot only with the
semantically most similar products returned by the
retrieval module from the product catalog. By look-
ing at negative (non-purchasable) and positive (pur-
chasable) examples of ItemName candidates and
their matched (retrieved) items from the product
catalog, the twin network learns to pull together
pairs that result in a correct match (positive) and
push apart pairs that are not a match (negative).
The Twin Product Classifier can be used as a signal
to adjust the final confidence scores for the n-best
hypotheses from IC-SF.
This framework overcomes the problem of high
numbers of false accept and false reject for Shop-
ping functionalities in voice-controlled devices,
while taking into account the efficiency and speed

requirement for a real world application.

2 Related Work

Pre-trained transformer (Devlin et al., 2018; Liu
et al., 2019) models have proven successful in many
language applications including Spoken Language
Understanding (SLU) (Radfar et al., 2020; Chen
et al., 2019; Do and Gaspers, 2019). Transform-
ers are typically used to create an embedding of
input tokens that is then fed to a downstream task.
However, as explained in more detail by Reimers
and Gurevych (2019a), transformer models such as
BERT are unsuitable for semantic similarity search
as well as for unsupervised tasks like clustering.
Reimers and Gurevych (2019a) therefore proposed
Sentence-BERT (SBERT). SBERT is a modifica-
tion of the pretrained BERT network based on a
twin network to derive semantically meaningful
sentence embeddings that can be compared via co-
sine similarly.
In e-commerce, product retrieval plays a key role
and is a well-researched topic (Lu et al.; Ahuja
et al., 2020). E-commerce systems typically per-
form two steps: a retrieval and a ranking step. In
the retrieval step relevant products are retrieved
from the product catalog. In the second step, the
retrieved products are ranked by relevance with re-
spect to the query. Semantic search (Huang et al.,
2020; Nigam et al., 2019; Johnson et al., 2017;
Huang et al., 2013) is state-of-the-art for product
retrieval and replaced previously prevalent keyword
matching (Schütze et al., 2008).
In this paper we propose a product retrieval stage
in the context of SLU to retrieve potential matches
for tokens labelled as ItemName by the SF model
(ItemName candidate) from a product catalog. We
then replace the ranking stage with a similarity-
based classification to identify if the ItemName
candidate is indeed a purchasable item or not. The
goal of this approach is to reduce false accepts and
false rejects for voice commerce functionalities as
explained in Section 1.

3 Twin Product Classifier

In order to solve the problem of deciding if an Item-
Name candidate is purchasable or non-purchasable,
we leverage information from the product catalog
and employ a twin network to differentiate between
these two categories. Figure 1 illustrates the gen-
eral architecture of the proposed approach, which
consists of two main components: (1) the catalog

152

Figure 1: The general architecture of the Twin Product Classifier

retrieval module and (2) the Twin Product Classifier.
In the retrieval module, the detected ItemName can-
didate will be matched with similar items indexed
from the product catalog in order to find the best
matching items with respect to the candidate. After
that, we employ a twin network architecture (Brom-
ley et al., 1994) and pass the original utterance on
the left side and the set of matching items on the
right side. Instead of learning to classify the in-
puts, twin networks aim at learning to differentiate
between two inputs, i.e., to learn the similarity be-
tween them and to identify pairs that don’t match.
The similarity between these two parts (the original
utterance vs. the matching items) will be computed.
After that, the twin network is trained using a con-
trastive loss to learn to differentiate between pairs
of utterances and matching catalog items to finally
decide if the given item name is purchasable, i.e.,
could be matched with items from the product cat-
alog.

Let u be an input utterance and cu be the Item-
Name candidate that this utterance contains. Our
task is to decide if u should be classified as a Shop-
ping intent or not based on checking if cu is a pur-
chasable product. Note that the candidate cu is
provided by the n-best hypotheses from the IC-
SF architecture described in the previous section.
From the product catalog, we retrieve a set of prod-
ucts p = {p1, p2, .., pk} that are semantically most

similar to cu, with p ∈ P where P denotes the
product catalog. u and p are passed through the
twin network, which yields two embeddings Eu
and Ep respectively. We define a pair of utterance
u and matched products p to be positive if the Item-
Name candidate cu contained in u can be poten-
tially found in the product catalog P and negative
if cu is a non-purchasable item.
Once p is retrieved from the catalog, we compute
the distance between Eu and Ep using the Euclidean
distance and the contrastive loss L:

(1)L(u, p) = y ∗ d(Eu, Ep)2 + (1− y)
∗max(τ − d(Eu, Ep), 0)2

where y denotes the output, which is 0 for negative
samples and 1 for positive samples. The distance d
is computed as:

d(Eu, Ep) =

√√√√ N∑
i=1

(Eui − Epi)2 (2)

N is the embedding size and τ the margin parame-
ter which determines the minimum distance a pair
should have in order to be classified as negative.
The final loss is the sum of both positive and neg-
ative loss. Contrastive loss has been shown to be
very effective for training twin networks (Raden-
ovic et al., 2017; Reimers and Gurevych, 2019b),

153

which pulls together similar pairs and push dissimi-
lar pairs apart. The gradient of the constrastive loss
is computed as:

∇L(u, p) =

{
d(Eu, Ep) y = 1

min(d(Eu, Ep)− τ, 0) y = 0

(3)

In practice, to accelerate the training process
and improve the performance, we employ online
contrastive loss, which selects only hard positive
and hard negative samples in each mini-batch. In
particular, the distance between each pair is com-
puted and the loss is only added for pairs with the
smallest or biggest distances.

With the aim of finding the best set of matching
products p for an ItemName candidate cu, we ar-
gue that the top products returned by fast semantic
search provide essential information to the twin net-
work to learn the similarity between cu and p for
purchasable items and generalize on unseen items.
Keyword exact match search is usually faster using
a reverse indexing system, but is limited since it
cannot find items that are differently spelled, writ-
ten or semantically close.
We use FAISS (Johnson et al., 2017), a library
that has shown to be fast and efficient in similar-
ity search for billion-scale data sets. FAISS takes
embedded catalog vectors as inputs and starts the
indexing process, which involves clustering the
data into different clusters represented by their cen-
troids - which are used as inverted file or index.
When a query vector comes in, the most suitable
cluster found based on its similarity with the cen-
troids is returned together with the top K nearest
items. FAISS is implemented for running both in
CPU and GPU, supporting single and multi-GPUs
together with batch processing. The encoding and
indexing of P is done once completely offline and
could be stored in memory for instant RAM search
of incoming ItemName candidates cu.

Integration of the Twin Product Classifier
into the SLU system
Finally, the integration of the Twin Product Classi-
fier in the whole SLU architecture is displayed in
Figure 2. It illustrates the previous SLU architec-
ture (IC-SF) on the left and the added Twin Product
Classifier on the right. The IC-SF component illus-
trated on the left side is an independent part that
one can integrate together with the twin product
classifier proposed here. The flow would be as fol-
lows: the utterance is first encoded using character,

positional and catalog embeddings. The catalog
embedding is a fixed-size real vector for each to-
ken that indicates if the token or a substring of the
token is present in one of the catalogs. Note that
the product catalog used for generating the cata-
log embedding is a superset of the product catalog
used in the Twin Product Classifier (see next Sec-
tion 4.2). This first-stage embedding is then fed
through a tinyBERT encoder block. The resulting
encoding is then passed to the respective decoders,
the SF and the IC decoder. Since the model as is
has difficulties to distinguish between purchasable
and non-purchasable items, we pass the utterances
with ItemName candidates in the n-best hypothesis
through the Twin Product Classifier. Dependent on
the classifier feedback, the Shopping IC-SF score
can be adjusted accordingly.

4 Data

4.1 Product catalog

We replace the full product catalog with the top
product search queries to reduce the size and
improve the matching between cu and p ∈ P. The
product catalog entries contain too many details
that a user would usually not include in their
request, e.g Samsung Galaxy Book Pro 15.6” —
i5 11th Gen, 8GB Memory, 512GB SSD — Mystic
Blue — (NP950XDB-KB2US) 2021 versus just
Samsung Galaxy Book Pro. Moreover, the actual
product catalog has a size and granularity that is
not needed to detect if an item is purchasable or
not. The top one million search queries already
cover a wide variety of products and product
categories that are representative of the full product
catalog. Note that the this catalog is a subset of the
catalog used for the catalog embedding in IC-SF.
For simplicity, we will refer to the one million
product search queries as product catalog.

4.2 Training and test data

We use a dataset with positive and negative exam-
ples to train the classifier. One example contains
(utterance, ItemName candidate, product matches,
class label). The ItemName candidate is produced
by the IC-SF architecture. The catalog matches are
retrieved via semantic search from the product cat-
alog using the ItemName candidate as a query. The
data was collected and annotated over the time span
of one year. All data is in German and anonymized
such that users are not identifiable.

154

Figure 2: Integrating the Twin Product Classifier into the SLU system

To create positive and negative examples, we use
all utterances for which any slot in the n-best hy-
potheses from IC-SF is an ItemName slot. The
hypothesized slot is recorded as ItemName candi-
date. If the ground-truth annotation of the utterance
is Shopping, the utterance serves as positive exam-
ple. If the ground-truth annotation is not Shopping,
we use it as a negative example. Table 1 shows
that we have slightly more negative than positive
examples in our dataset.
Table 2 displays the sequence length distribution
for utterance, ItemName candidate and product
matches when split by white space. While the utter-
ances tend to be rather short sentences (on average
only 5.8 tokens), the slot value can take up a sub-
stantial portion of the request itself, on average 2.2
tokens out of 5.8. For each ItemName candidate an
average of about 19 product matches is retrieved
from the product catalog using semantic search.

Dataset Share unique
ItemName cand.

Share
positive

train 35 % 41 %
test 51 % 41 %

Table 1: Dataset statistics.

5 Results

5.1 Experimental setup
BERT model for Twin network - For the BERT
embedding block shown in Figure 1, we use a pre-
trained German BERT model, gbert-base (Chan
et al., 2020; Devlin et al., 2018), fine-tuned on

Utterance Item name
candidate

Product
matches

mean 5.8 2.2 19.0
std 2.5 1.6 8.8
min 1.0 1.0 10.0
25 % 4.0 1.0 11.0
50 % 5.0 2.0 18.0
75 % 7.0 3.0 24.0
max 53.0 30.0 85.0

Table 2: Sequence length distribution when split by
white space for training set. Displays min, max, mean,
std and standard quantiles of number of tokens in se-
quence.

annotated data sampled from live traffic. For fine-
tuning we use a dataset of 1.5 million live traffic
utterances. Shopping utterances as well as Shop-
ping false rejects are upsampled moderately in this
dataset. The BERT model is fine-tuned in a multi-
task fashion to predict two binary targets: (1) is
the utterance a Shopping utterance or not, (2) is
the utterance a Shopping false reject or not. Later
we discard the classification layer and only use the
fine-tuned BERT for the purposes of this paper.
Retrieval module - We see that semantic search
works well for numbers (e.g., hundred liter matches
100 liter) and different variants of a product (i.
phone x. matches i phone x, i phone xs, öl matches
öle). The results are quite as expected: the matches
for shoppable items are usually more relevant,
whereas the matches for negative examples are not
immediate matches (e.g., porsche is matched with
porges, porsche shoes, porsche lego, porsche knife,
porsche book, porsche watch).
Twin network setup - For the implementation of

155

the classifier, we use the sentence transformer pack-
age1 to setup the experiments. In each experiment,
we set the number of epochs to four, the batch size
for the contrastive loss is 64 and the margin τ is 0.5.
We experiment with two more loss functions, mul-
tiple negatives ranking loss and multi-task learning
loss. The multiple negatives ranking loss is defined
as follows: Let {ui, pi} be all positive pairs in our
training data. Multiple negative ranking loss will
generate all {ui, pj} for ∀i 6= j and compute the
negative log-likelihood (Reimers and Gurevych,
2019b). The multi-task learning loss combines
both contrastive loss and multiple negatives rank-
ing loss by alternating between both in each batch.
For experiments with the multiple negatives rank-
ing loss and the multi-task learning loss we use a
batch size of 128 together with a max sequence
length of 50.

5.2 Experimental results

We design the experiments to (1) quantify the effect
of the number the retrieved products, (2) compare
the effect of adding the Twin Product Classifier to
the original IC-SF classifier outputs. Finally, we
conduct a couple of experiments using different
loss functions such as multiple negatives ranking
and multi-task learning and compare them to the
contrastive loss, as well as cosine, Manhattan and
Euclidean distance measurement in the twin net-
work.

First of all, we compare our proposed system
to the baseline, which takes the utterance as input
and the hypothesis ranked first to classify if the
utterance has a Shopping intent. In this baseline,
the catalog is used to produce a catalog embedding
to encode the utterance, but no product classifier is
used. The results of this experiment are reported in
Table 3.

We see a significant improvement in both accu-
racy (+81.6%) and F1 score (+42.2%) when adding
the product classifier compared to the baseline us-
ing only intent and slot classifier with catalog em-
beddings as input. We observe a slight decrease in
recall of -11.6% compared to an increase of +97.7%
in precision. This is due to the fact that the dataset
created for training and testing as described in Sec-
tion 4 contains many more false accept samples
than false reject samples. This is the case since
the dataset was created by pulling and annotating
utterances where any of the hypothesis in the n-best

1https://github.com/UKPLab/sentence-transformers/

from IC-SF was Shopping and contained an Item-
Name slot, hence entails that IC-SF Shopping false
accepts are much better represented in the dataset
than IC-SF Shopping false rejects. This is hard to
circumvent since annotating random samples from
the overall live traffic only yields few IC-SF Shop-
ping false rejects. Therefore, creating a dataset
with many false reject samples is challenging due
to the annotation limits.

Metrics Twin Product Classifier
Accuracy +81.58%
F1 +42.27%
Precision +97.67%
Recall -11.55%

Table 3: Relative difference between the baseline and
Twin Product Classifier. Note that the IC-SF architec-
ture is evaluated here on a binary task similar to the
Twin Product Classifier. The IC-SF classification is
evaluated as correct if the first hypothesis is a Shopping
intent.

Figure 3: Performance on validation set in terms of Ac-
curacy & F1 at each epoch using cosine, Manhattan and
Euclidean distance.

We quantify the effect of the number of retrieved
products in the retrieval module by comparing the
results of the classifier when using only the first
matched item vs. using the top five matched items.
As expected, retrieving more relevant products in-
stead of using only the first matched product gives
a much better result with a gain of +14.95% in ac-
curacy and +10.88% in precision. Interestingly, we
also see a small increase in recall when using only
one matched product. This can be explained by the

156

fact that when using only one matched item, it is
likely to classify more items as purchasable (posi-
tive) and get a few more false accepts since the first
matching item might not reflect the full character-
istics of the ItemName candidate. An example we
often observe is when a user searches for a Lam-
borghini (which is not purchasable on e-commerce
platforms), the returned matches are Lamborghini
toys, legos, etc. Retrieving more matching items
helps to better characterize and hence to give better
accuracy for purchasable items.

Metrics Cosine Manhattan Euclidean
similarity distance distance

Accuracy +14.95% +14.92% +14.95%
F1 +10.69% +10.84% +10.88%
Precision +23.30% +24.95% +23.88%
Recall -3.65% -4.88% -3.85%

Table 4: Relative difference between the system us-
ing the first matching product and the top five matching
products

In the next experiment, we further extend the left
side of the twin network with the whole utterance,
instead of using only the ItemName candidate. We
see a big gain in both accuracy (+8.5%) and F1
(+9.72%) (Table 5). In this case, the whole utter-
ance is proven to contain important information
for deciding if the intent is related to Shopping
or not. Hence extending the comparison between
itemName candidates and matched products with
the whole utterance information is beneficial.

Metrics Cosine Manhattan Euclidean
similarity distance distance

Accuracy +8.53% +8.49% +8.54%
F1 +9.79% +9.64% +9.72%
Precision +18.72% +18.11% +18.26%
Recall +1.17% +1.56% +1.44%

Table 5: Relative difference between the system using
only the ItemName candidate vs. using the whole utter-
ance in training the classifier

Next, we quantify the effect of different similar-
ity and distance measures for computing the con-
trastive loss (Table 6). Taking the cosine similarity
as the baseline, we compute the relative changes
when using the Manhattan distance and Euclidean
distance. From the experimental results, we do not
see much difference overall with respect to using
different distance measures. Euclidean distance
gives a slightly better result though.

Finally, we evaluate the impact of using different
loss functions for our approach. We compare on-
line contrastive loss with multiple negatives rank-

Metrics Manhattan Euclidean
distance distance

Accuracy -0.03% +0.01%
F1 -0.11% +0.00%
Precision +0.50% -0.14%
Recall -0.70% +0.10%

Table 6: Relative difference when using different dis-
tance metrics (with cosine similarity as the baseline)

ing loss and the multi-task loss. The results are
reported in Table 7. We see that using the multiple
negatives ranking loss function as well as the multi-
task loss function gives much lower performance
than the contrastive loss. The multiple negatives
ranking loss function is usually more useful in the
information retrieval use case, when one has more
positive pairs. Overall, the contrastive loss function
has shown to yield the best performance for this
use case.

Metrics Negative Multi-task
ranking loss

Accuracy -30.02% -12.64%
F1 -32.33% -13.21%
Precision -50.74% -22.56%
Recall +6.23% -1.69%

Table 7: Relative difference when using alternative
loss functions compared to online contrastive loss

We also report the performance (Accuracy and
F1) at each epoch measured on a validation set that
has same size and class distribution as the test set
for the three different distance metrics, where we
see steady improvement at each epoch (Figure 3).

6 Conclusion

We have presented an architecture with a retrieval
module and a twin product classification module
to verify if a detected ItemName slot from the SF
model contains a purchasable item or not. The ex-
perimental results have shown the effectiveness of
the framework to increase accuracy by +81% for
purchasable item detection. For the retrieval mod-
ule, we have experimented with different numbers
of matching products returned by semantic search.
We showed that using the top five most relevant
product names yields the best results. Moreover,
adding the whole utterance in the twin network and
using an online contrastive loss function resulted in
the best performance. This approach can be lever-

157

aged in a voice-based shopping system to decrease
the number of false rejects and false accepts and
thereby improve customer experience.

References
Aman Ahuja, Nikhil Rao, Sumeet Katariya, Karthik

Subbian, and Chandan K Reddy. 2020. Language-
agnostic representation learning for product search
on e-commerce platforms. In Proceedings of the
13th International Conference on Web Search and
Data Mining, pages 7–15.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1994. Signature veri-
fication using a ”siamese” time delay neural network.
In Advances in Neural Information Processing Sys-
tems, volume 6. Morgan-Kaufmann.

Branden Chan, Stefan Schweter, and Timo Möller.
2020. German’s next language model. arXiv
preprint arXiv:2010.10906.

Q. Chen, Z. Zhuo, and W. Wang. 2019. Bert
for joint intent classification and slot filling.
arXiv:1902.10909.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Quynh Ngoc Thi Do and Judith Gaspers. 2019. Cross-
lingual transfer learning for spoken language under-
standing. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 5956–5960. IEEE.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia,
David Zhang, Philip Pronin, Janani Padmanab-
han, Giuseppe Ottaviano, and Linjun Yang. 2020.
Embedding-based retrieval in facebook search. In
Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, pages 2553–2561.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-
edge Management, pages 2333–2338.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. CoRR,
abs/1702.08734.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Hanqing Lu, Youna Hu, Tong Zhao, Tony Wu, Yiwei
Song, and Bing Yin. Graph-based multilingual prod-
uct retrieval in e-commerce search.

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lak-
shman, Weitian Ding, Ankit Shingavi, Choon Hui
Teo, Hao Gu, and Bing Yin. 2019. Semantic product
search. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining, pages 2876–2885.

Filip Radenovic, Giorgos Tolias, and Ondrej Chum.
2017. Fine-tuning CNN image retrieval with no hu-
man annotation. CoRR, abs/1711.02512.

Martin Radfar, Athanasios Mouchtaris, and Siegfried
Kunzmann. 2020. End-to-end neural transformer
based spoken language understanding. arXiv
preprint arXiv:2008.10984.

Nils Reimers and Iryna Gurevych. 2019a. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019b. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for
Computational Linguistics.

Hinrich Schütze, Christopher D Manning, and Prab-
hakar Raghavan. 2008. Introduction to information
retrieval, volume 39. Cambridge University Press
Cambridge.

https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
http://arxiv.org/abs/arXiv:1902.10909
http://arxiv.org/abs/arXiv:1902.10909
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1711.02512
http://arxiv.org/abs/1711.02512
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410

