
Proceedings of the 4th Workshop on e-Commerce and NLP (ECNLP 4), pages 101–110
August 5, 2021. ©2021 Association for Computational Linguistics

101

Scalable Approach for Normalizing E-commerce Text Attributes
(SANTA)

Ravi Shankar Mishra
India Machine Learning

Amazon
rmsam@amazon.com

Kartik Mehta
India Machine Learning

Amazon
kartim@amazon.com

Nikhil Rasiwasia
India Machine Learning

Amazon
rasiwasi@amazon.com

Abstract

In this paper, we present SANTA, a scal-
able framework to automatically normalize E-
commerce attribute values (e.g. “Win 10 Pro”)
to a fixed set of pre-defined canonical values
(e.g. “Windows 10”). Earlier works on at-
tribute normalization focused on fuzzy string
matching (also referred as syntactic match-
ing in this paper). In this work, we first
perform an extensive study of nine syntactic
matching algorithms and establish that ‘co-
sine’ similarity leads to best results, showing
2.7% improvement over commonly used Jac-
card index. Next, we argue that string simi-
larity alone is not sufficient for attribute nor-
malization as many surface forms require go-
ing beyond syntactic matching (e.g. “720p”
and “HD” are synonyms). While semantic
techniques like unsupervised embeddings (e.g.
word2vec/fastText) have shown good results in
word similarity tasks, we observed that they
perform poorly to distinguish between close
canonical forms, as these close forms often oc-
cur in similar contexts. We propose to learn
token embeddings using a twin network with
triplet loss. We propose an embedding learn-
ing task leveraging raw attribute values and
product titles to learn these embeddings in a
self-supervised fashion. We show that provid-
ing supervision using our proposed task im-
proves over both syntactic and unsupervised
embeddings based techniques for attribute nor-
malization. Experiments on a real-world at-
tribute normalization dataset of 50 attributes
show that the embeddings trained using our
proposed approach obtain 2.3% improvement
over best string matching and 19.3% improve-
ment over best unsupervised embeddings.

1 Introduction

E-commerce websites like Amazon are market-
places where multiple sellers can list and sell their
products. At the time of product listing, these sell-

ers often provide product title and structured prod-
uct information (e.g. color), henceforth, termed
as product attributes1. During the listing process,
some attribute values have to be chosen from drop-
down list (having fixed set of values to choose
from) and some attributes are free-form text (al-
lowing any value to be filled). Multiple sellers may
express these free-form attribute values in different
forms, e.g. “HD”, “1280 X 720” and “720p” rep-
resents same TV resolution. Normalizing (or map-
ping) these raw attribute values (henceforth termed
as surface forms) to same canonical form will help
improve customer experience and is crucial for
multiple underlying applications like search filters,
product comparison and detecting duplicates. E-
commerce websites provide functionality to refine
search results (refer figure 1), where customers can
filter based on attribute canonical values. Choos-
ing one of the canonical values restricts results to
only those products which have the correspond-
ing attribute value. A good normalization solution
will ensure that products having synonym surface
form (e.g. ‘720p’ vs ‘HD’) are not filtered out on
applying such filters.

Normalization can be considered as a two step
process consisting of - a) identifying list of canoni-
cal forms for an attribute, and, b) mapping surface
forms to one of these canonical forms. Identifica-
tion task is relatively easier as most attributes have
only few canonical forms (usually less than 10),
whereas attributes can have thousands of surface
forms. Hence, we focus on the mapping task in this
paper, leaving identification of canonical forms as
a future task to be explored.

Building an attribute normalization system for
thousands2 of product attributes poses multiple

1We use the terms ‘product attributes’ and ‘attributes’ in-
terchangeably in this paper.

2E.g. Xu et al. (2019) have 77K attributes only from
‘Sports & Entertainment category’

102

Figure 1: Search filters widget on Amazon.

challenges such as:

• Presence of spelling mistakes (e.g. “grey” vs
“gray”, “crom os” vs “chrome os”)

• Requirement of semantic matches (e.g.
“linux” vs “ubuntu”, “mac os” vs “ios”)

• Existence of abbreviations (“polyurethane” vs
“PU”, “SSD” vs “solid state drive”)

• Presence of multi-token surface forms and
canonical forms (e.g. “windows 7 home”)

• Presence of close canonical forms (e.g. “win-
dows 8.1” and “windows 8” can be two sepa-
rate canonical forms)

Addressing these challenges in automated man-
ner is the primary focus of this work. One can
use lexical similarity of raw attribute value (sur-
face form) to a list of canonical values and learn
a normalization dictionary (Putthividhya and Hu,
2011). For example, lexical similarity can be used
to normalize “windows 7 home” to “windows 7” or
“light blue” to “blue”. However, lexical similarity-
based approaches won’t be able to handle cases
where understanding the meaning of attribute value
is important (e.g. matching “ubuntu to “linux” or
“maroon” to “red”). Another alternative is to learn
distributed representation (embeddings) of surface
forms and canonical forms and use similarity in
embedding space for normalization. One can use
unsupervised word embeddings (Kenter and De Ri-
jke, 2015) (e.g. word2vec and fastText) for this.
However, these approaches are designed to keep
embeddings close by for tokens/entities which ap-
pear in similar contexts. As we shall see, these
unsupervised embeddings do a poor job at distin-
guishing close canonical attribute forms.

In this paper, we describe SANTA, a scalable
framework for normalizing E-commerce text at-
tributes. Our proposed framework uses twin net-
work (Bromley et al., 1994) with triplet loss to learn
embeddings of attribute values (canonical and sur-
face forms). We propose a self supervision task for
learning these embeddings in automated manner,
without requiring any manually created training
data. To the best of our knowledge, our work is
first successful attempt at creating an automated
framework for E-commerce attribute normaliza-
tion that can be easily extended to thousands of
attributes.

Our paper has following contributions : (1)
we do a systematic study of nine lexical match-
ing approaches for attribute normalization, (2) we
propose a self supervision task for learning em-
beddings of attribute surface forms and canonical
forms in automated manner and describe a fully
automated framework for attribute normalization
using twin network and triplet loss, and, (3) we
curate an attribute normalization test set of 2500
surface forms across 50 attributes and present an
extensive evaluation of various approaches on this
dataset. We also show an independent analysis
on syntactic and semantic portions of this dataset
and provide insights into benefits of our approach
over string similarity and other unsupervised em-
beddings. Rest of the paper is organized as follows.
We do a literature survey of related fields in Section
2. We describe string matching and embeddings
based approaches, including our proposed SANTA
framework, in Section 3. We describe our experi-
mental setup in Section 4 and results in Section 5.
Lastly, we summarize our work in Section 6.

2 Related Work
2.1 E-commerce Attribute normalization
The problem of normalizing E-commerce attribute
values have received limited attention in literature.
Researchers have mainly focused on normalizing
brand attribute, exploring combination of manual
mapping curation or lexical similarity-based ap-
proaches (More, 2016; Putthividhya and Hu, 2011).
More (2016) explored use of manually created key-
value pairs for normalizing brand values extracted
from product titles. Putthividhya and Hu (2011)
explored two fuzzy matching algorithms of Jaccard
similarity and Jaro-Winkler distance and found n-
gram based Jaccard similarity to be performing
better for brand normalization. We use this Jaccard
similarity approach as a baseline for comparison.

103

2.2 Fuzzy String Matching
Fuzzy string matching has been explored for mul-
tiple applications, including address matching,
names matching (Cohen et al., 2003; Christen,
2006; Recchia and Louwerse, 2013), biomedical
abbreviation matching (Yamaguchi et al., 2012)
and query spelling correction. Although extensive
work has been done for fuzzy string matching, there
is no consensus on which technique works best.
Christen (2006) explored multiple similarity mea-
sures for personal name matching, and reported
that best algorithm depends upon the character-
istics of the dataset. Cohen et al. (2003) experi-
mented with edit-distance, token-based distance
and hybrid methods for matching entity names
and reported best performance for a hybrid ap-
proach combining TF-IDF weighting with Jaro-
Winkler distance. Recchia and Louwerse (2013)
did a systematic study of 21 string matching meth-
ods for the task of place name matching. While
they got relatively better performance with n-gram
approaches over commonly used Levenshtein dis-
tance, they concluded that best similarity approach
is task-dependent. Gali et al. (2016) argued that
performance of the similarity measures is affected
by characteristics such as text length, spelling ac-
curacy, presence of abbreviations and underlying
language. Motivated by these learnings, we do a
systematic study of fuzzy matching techniques for
the problem of E-commerce attribute normaliza-
tion. Besides, we use latest work in the field of
neural embeddings for attribute normalization.

3 Overview

Attribute normalization can be posed as a matching
problem. Given an attribute surface form and a list
of possible canonical forms, similarity of surface
form with each canonical form is calculated and
surface form is mapped to the canonical form with
highest similarity or mapped to ‘other’ class if none
of the canonical forms is suitable (refer Figure 2
for illustration). Formally, given a surface form
si (i ∈ [1, n]) and a list of canonical forms cj (j ∈
[0, k]), where c0 is the ‘other’ class, n is number of
surface forms and k is number of canonical forms.
The aim is to find a mapping function M such that:

M(si) = cj where i ∈ [1, n] , j ∈ [0, k] (1)

In this paper, we explore fuzzy string match-
ing and similarity in embedding space as matching

Figure 2: Illustration of Attribute Normalization Task

Figure 3: SANTA framework for training embeddings
suitable for attribute normalization

techniques. We describe multiple string match-
ing approaches in Section 3.1, followed by un-
supervised token embedding approaches in Sec-
tion 3.2 and our proposed SANTA framework in
Section 3.3.

3.1 String Similarity Approach
We study three different categories of string match-
ing algorithms3 and explore three algorithms in
each category4:

• Edit distance-based: These algorithms com-
pute the number of operations needed to trans-
form one string to another, leading to higher
similarity score for less operations. We ex-
perimented with six algorithms in this cat-
egory, a) Hamming, b) Levenshtein, and c)
Jaro-Winkler.

• Sequence-based: These algorithms find com-
mon sub-sequence in two strings, leading to
higher similarity score for longer common
sub-sequence or a greater number of com-
mon sub-sequences. We experimented with
three algorithms in this category, a) longest
common subsequence similarity, b) longest
common substring similarity, and c) Ratcliff-
Obershelp similarity.

3https://itnext.io/string-similarity-the-basic-know-your-
algorithms-guide-3de3d7346227

4For algorithms which return distance metrics rather than
similarity, we use lowest distance as substitute for highest
similarity.

104

• Token-based: These algorithms represent
string as set of tokens (e.g. ngrams) and com-
pute number of common tokens between them,
leading to higher similarity score for higher
number of common tokens. We experimented
with three algorithms in this category - a) Jac-
card index, b) SorensenDice coefficient, and
c) Cosine similarity. We converted strings to
character ngrams of size 1 to 5 before apply-
ing this similarity.

We used python module textdistance5 for all string
similarity experiments. For detailed definition of
these approaches, we refer readers to Gomaa and
Fahmy (2013) and Vijaymeena and Kavitha (2016).
3.2 Unsupervised Embeddings
Mikolov et al. (2013) introduced word2vec model
that uses a shallow neural network to obtain dis-
tributed representation (embeddings) of words, en-
suring words that appear in similar contexts are
closer in the embedding space. To deal with unseen
and rare words, Bojanowski et al. (2017) proposed
fastText model that improves over word2vec em-
beddings by considering sub-words and represent-
ing word embeddings as average of embeddings
of corresponding sub-words. To learn domain-
specific nuances, we trained a word2vec and fast-
Text model using a dump consisting of product
titles and attribute values (refer Section 4 for de-
tails of this dump). We found better results with
using concatenation of title with attribute value as
compared to using only title, likely due to includ-
ing surface form from title and attribute canonical
form (or vice versa) in a single context.
3.3 Scalable Approach for Normalizing Text

Attributes (SANTA)
Figure 3 gives an overview of learning embeddings
with our proposed SANTA framework. We de-
fine an embedding learning task using twin net-
work with triplet loss to enforce that embeddings
of attribute values are closer to corresponding titles
as compared to embeddings of a randomly cho-
sen title from the same product category. To deal
with multi-word values, we use a simple step of
treating each multi-word attribute value as a single
phrase. Overall, we observed 40K such phrases,
e.g. “back cover”, “android v4.4.2”, “9-12 month”
and “wine red”. For both attribute values and prod-
uct titles, we converted these multi-token phrases
to single tokens (e.g. ‘back cover’ is replaced with
‘back cover’).

5https://pypi.org/project/textdistance/

We describe details of the embedding learning
task and triplet generation in Section 3.3.1, and
twin network in Section 3.3.2.
3.3.1 Triplet Generation
There are scenarios when title contains canonical
form of attribute value (e.g. “3xl” could be size
attribute value for a title ‘Nike running shoes for
men xxxl’). We can leverage this information to
learn embeddings that not only capture semantic
similarity but can also distinguish between close
canonical forms. Motivated by work in answer
selection (Kulkarni et al., 2019; Bromley et al.,
1994), we define an embedding learning task of
keeping surface form closer to corresponding title
as compared to a randomly chosen title. We cre-
ated training data in form of triplets of anchor (q),
positive title (a+) and negative title (a−), where q
is attribute value, a+ is corresponding product title
and a− is a title selected randomly from product
category of a+. One way to select negatives is to
pick a random product from any product category,
but that may provide limited signal for embedding
learning task (e.g. choosing an Apparel category
product when actual product is from Laptop cate-
gory). Instead, we select a negative product from
same product category, which acts as a hard nega-
tive (Kumar et al., 2019; Schroff et al., 2015) and
improves the attribute normalization results. Se-
lecting products from same category may lead to
few incorrect negative titles (i.e. negative title may
contain the correct attribute value). We screen out
incorrect negatives where anchor attribute value (q)
is mentioned in title, reducing noise in the training
data.
3.3.2 Twin Network and Triplet Loss

Figure 4: Illustration of Twin network with Triplet loss.

We choose twin network as it projects surface
forms and canonical forms in same embedding

105

space and triplet loss helps to keep surface forms
closer to the most appropriate canonical form. Fig-
ure 4 describes the architecture of our SANTA
framework. Given a (q, a+, a−) triplet, the model
learns embedding that minimize the triplet loss
function (Equation 2). Similar to fastText, we rep-
resent each token as consisting of sub-words (n-
gram tokens). Embedding for a token is created us-
ing a composite function on sub-word embeddings,
and similarly, embeddings for title are created us-
ing composite function on word embeddings. We
use averaging of embeddings as composite func-
tion (similar to fastText), though the framework is
generic and other composite functions like LSTM,
CNN and transformers can also be used.

Let E denote the embedding operator and cos
represent cosine similarity metric, then triplet loss
function is given as:

Loss = max {0,M − cos(E(q), E(a+))

+ cos(E(q), E(a−))}
(2)

where M is margin.
The advantage of this formulation over unsuper-

vised embeddings (Section 3.2) is that in addition
to learning semantic similarities for attribute values,
it also learns to distinguish between close canon-
ical forms, which may appear in similar contexts.
For example, the embedding of surface form ‘720p’
will move closer to embedding of ‘HD’ mentioned
in a+ title but away from embedding of ‘Ultra HD’
mentioned in a− title.

4 Experimental Setup

In this section, we describe our experimental setup,
including dataset, metrics and hyperparameters of
our model. There is no publicly available data set
for attribute normalization problem. More (2016)
and Putthividhya and Hu (2011) worked on brand
normalization problem but the datasets are not pub-
lished for reuse. Xu et al. (2019) published a
dataset collected from AliExpress ‘Sports & Enter-
tainment’ category for attribute extraction use-case.
This dataset belongs to a single category and is re-
stricted to samples where attribute value is present
in title, hence limiting its applicability for attribute
normalization. To ensure robust learnings, we cu-
rate a real-world attribute normalization dataset
spread across multiple categories and report all our
evaluations on this dataset.

4.1 Training and Test data
We selected 50 attributes across 20 product cate-
gories including electronics, apparel and furniture
for our study and obtained their canonical forms
from business teams. These selected attributes have
on average 7.5 canonical values (describing the ex-
act selection process for canonical values is outside
the scope of current work). For each of these at-
tributes, we picked top 50 surface forms and manu-
ally mapped these values to corresponding canon-
ical forms, using ‘other’ label when none of the
existing canonical forms is suitable. We, thus, ob-
tain a labelled dataset of 2500 samples (50 surface
forms each for 50 attributes), out of which 38%
surface forms are mapped to ‘other’ class. Surface
forms mapping to ‘other’ are either junk value (e.g.
“5MP” for operating system) or coarser value (e.g.
“android” when canonical forms are “android 4.1”,
“android 4.2” etc.). It took 20 hours of manual ef-
fort for creating this dataset. We split this data into
two parts (20% used as dev set and 80% as test
set).

For training, we obtain a dump of 100K prod-
ucts corresponding to each attribute, obtaining a
dump of 5M records (50 attributes X 100K prod-
ucts per attribute), having title and attribute values.
This data (5M records) is used for training unsuper-
vised embeddings (Section 3.2). For each record,
we select one negative example for triplet genera-
tion (Section 3.3.1) and use this triplet data (5M
records) for learning SANTA model. Kindly note
that training data creation is fully automated, and
does not require any manual effort, making our
approach easily scalable.

4.2 Metric
There are no well-established metrics in literature
for attribute normalization problem. One simple
approach is to consider canonical form with highest
similarity as predicted value for evaluation. How-
ever, we argue that an algorithm should be penal-
ized for mapping a junk value to any canonical
form. Based on this motivation, we define two
evaluation metrics that we use in this work.

4.2.1 Accuracy

Figure 5: Illustration for Accuracy metric.

106

We divide predictions on all samples (N) into
two sets using a threshold x1 (see Figure 5). ‘Other’
class is predicted for samples having score less
than x1 (low similarity to any canonical form) and
canonical form with highest similarity is consid-
ered for samples having score greater than x1 (con-
fident prediction). We consider prediction as cor-
rect for samples in X1 set if true label is ‘other’
and for samples in N −X1 set, if model prediction
matches the true label. We define Accuracy as ratio
of correct predictions to the number of cases where
prediction is made (N in this case). The threshold
x1 is selected based on performance on dev set.
4.2.2 Accuracy Coverage Curve

Figure 6: Illustration for Accuracy Coverage metric.

It can be argued that a model is confident about
surface forms when prediction score is on either
extreme (close to 1 or close to 0). Motivated by this
intuition, we define another metric where we divide
predictions into three sets using two thresholds x1
and x2 (see Figure 6). ‘Other’ class is predicted for
samples having score less than x1 (low similarity to
any canonical form), no prediction is made for sam-
ples having score between x1 and x2 (model is not
confidently predicting any canonical form but con-
fidence score is not too low to predict ‘other’ class)
and canonical form with highest similarity is con-
sidered for samples having score greater than x2.
We define Coverage as fraction of samples where
some prediction is made ((X1+N −X2)/N), and
Accuracy as ratio of correct predictions to the num-
ber of predictions. For samples in X1 set, we con-
sider prediction correct if true label is ‘other’ and
for samples in N −X2 set, we consider prediction
correct when model prediction matches the true
canonical form. The thresholds are selected based
on performance on dev set and based on different
choice of thresholds, we create Accuracy-Coverage
curve for comparison.

4.3 SANTA Hyperparameters
We set the value of M as 0.4, embedding dimen-
sion as 200, minimum n-gram size as 2 and maxi-
mum n-gram size as 4. We run the training using
Adadelta optimizer for 5 epochs, which took ap-
proximately 8 hours on a NVIDIA V100 GPU. The
parameters to be learned are ngram embeddings

Table 1: Evaluation of String similarity approaches.

STRING SIMILARITY ACCURACY

EDIT DISTANCE BASED
HAMMING 51.6
LEVENSHTEIN 61.1
JARO-WINKLER 62.1

SEQUENCE BASED
LC SUBSEQUENCE 57.6
LC SUBSTRING 64.7
RATCLIFF-OBERSHELP 64.9

TOKEN BASED
JACCARD INDEX 74.6
SORENSEN-DICE 74.6
COSINE SIMILARITY 76.6

(0.63M ngrams X 200 embedding dimension =
127M parameters). Ngram embeddings are shared
across the twin network.

5 Results
We present systematic study on string similarity ap-
proaches in Section 5.1, followed by experiments
of unsupervised embeddings in Section 5.2. We
compare best results from Section 5.1 and Section
5.2 with our proposed SANTA framework in Sec-
tion 5.3. We study these algorithms separately on
syntactic and semantic portion of test dataset in
Section 5.4 and perform qualitative analysis based
on t-SNE visualization in Section 5.5.

5.1 Evaluation of String Similarity
Table 1 shows comparison of string similarity ap-
proaches for attribute normalization. We observe
that token based methods performs best, followed
by comparable performance of sequence based
and edit distance based methods. We believe that
token based approaches outperformed other ap-
proaches as they are insensitive to the position
where common sub-string occurs in the two strings
(e.g. matching “half sleeve” to “sleeve half ” for
sleeve type attribute). Putthividhya and Hu (2011)
evaluated n-gram based ‘Jaccard index’ (token
based approach) and ‘Jaro-Winkler distance’ (char-
acter based approach) for brand normalization and
got similar observations, obtaining best results with
‘Jaccard index’. We observe that ‘Cosine similarity’
obtains 2.7% accuracy improvement over Jaccard
index in our experiments.

5.2 Evaluation of Unsupervised Embeddings
Table 2 shows performance of word2vec and fast-
Text approach. We observe that presence of n-
grams information in fastText leads to significant
improvement over word2vec, as use of n-grams
helps with matching of rare attribute values. How-
ever, fastText is not able to match string similarity

107

Table 2: Comparison of normalization approaches

MODEL ACCURACY

RANDOM 37.8
MAJORITY CLASS PREDICTION 48.5

JACCARD INDEX 74.6
COSINE SIMILARITY 76.6

WORD2VEC 48.4
FASTTEXT 65.7

SANTA (WITHOUT NGRAMS) 47.4
SANTA (WITH NGRAMS) 78.4

baseline (refer Table 1). We believe unsupervised
embeddings shows relatively inferior performance
for attribute normalization task, as embeddings are
learnt based on contexts in product titles, keeping
different canonical forms (e.g. “HD” and “Ultra
HD”) close by as they occur in similar context.

5.3 Evaluation of SANTA framework
Table 2 shows comparison of SANTA with multiple
normalization approaches, including best solutions
from Section 5.1 and Section 5.2. To understand
the difficulty of this task, we introduce two base-
lines of a) randomly mapping surface form to one
of the canonical forms (termed as ‘RANDOM’),
and b) predicting the most common class based
on dev data (termed as ‘MAJORITY CLASS’).
We observe 37.8% accuracy with ‘RANDOM’ and
48.5% accuracy with ‘MAJORITY CLASS’, es-
tablishing the difficulty of the task. SANTA (with
ngrams) shows best performance with 78.4% accu-
racy, leading to 2.3% accuracy improvement over
‘Cosine Similarity’ (best string similarity approach)
and 19.3% over fastText (best unsupervised embed-
dings). We discuss few qualitative examples for
these approaches in appendix.

Figure 7 shows Accuracy-Coverage curve for
these algorithms. As observed from this curve,
SANTA consistently outperforms string similarity
and fastText across all coverages.

5.4 Study on Syntactic and Semantic Dataset
In this section, we do a separate comparison of
normalization algorithms on samples requiring se-
mantic and syntactic matching. We filtered test
dataset where true label is not ‘Others’, and manu-
ally labelled each surface form as requiring syntac-
tic or semantic similarity. Based on this analysis,
we observe that 45% of test data requires syntac-
tic matching, 17% requires semantic matching and
remaining 38% is mapped to ‘other’ class. For
current analysis of syntactic and semantic set, we

Figure 7: Accuracy-Coverage plot for various Normal-
ization techniques.

Figure 8: Study of various normalization algorithms on
semantic and syntactic dataset

use a special case of metric defined in section 4
(since ‘other’ class is not present). We set x1 = 0,
ensuring that ‘other’ class is not predicted for any
samples of test data. We show Accuracy-Coverage
plot for semantic and syntactic cases in Figure 8.

For semantic set, we observe that fastText per-
forms better than string similarity, due to its ability
to learn semantic representation. Our proposed
SANTA framework, further improves over fastText
for better semantic matching with close canoni-
cal forms. For syntactic set, we observe compa-
rable performance of SANTA and string similar-
ity. These results demonstrate that our proposed
SANTA framework performs well on both syntac-
tic and semantic set.

5.5 Word Embeddings Visualization
For qualitative comparison of fastText and SANTA
embeddings, we project these embeddings into 2-
dimensions using t-SNE (van der Maaten and Hin-
ton, 2008). Figure 9 shows t-SNE plots6 for 3 at-
tributes (Headphone Color, Jewelry Necklace type
and Watch Movement type). For color attribute,
we observe that values based on SANTA have ho-

6https://scikit-learn.org/stable/
modules/generated/sklearn.manifold.TSNE

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE

108

mogenous cohorts of canonical values and corre-
sponding surface forms (e.g. there is a cohort for
‘black’ color on bottom-right and ‘blue’ color on
top-left of the plot.). However, with fastText, the
color values are scattered across the plot without
any specific cohorts. Similar patterns are seen with
necklace type where SANTA results show better co-
horts than fastText. These results demonstrate that
embeddings learnt with SANTA are better suited
than fastText embeddings to distinguish between
close canonical forms.

6 Conclusion
In this paper, we studied the problem of attribute
normalization for E-commerce. We did a sys-
tematic study of multiple syntactic matching al-
gorithms and established that use of ‘cosine simi-
larity’ leads to 2.7% improvement over commonly
used Jaccard index. Additionally, we argued that at-
tribute normalization requires combination of syn-
tactic and semantic matching. We described our
SANTA framework for attribute normalization, in-
cluding our proposed task to learn embeddings in
a self-supervised fashion with twin network and
triplet loss. Evaluation on a real-world dataset for
50 attributes, shows that embeddings learnt using
our proposed SANTA framework outperforms best
string matching algorithm by 2.3% and fastText by
19.3% for attribute normalization task. Our evalua-
tion based on semantic and syntactic examples and
t-SNE plots provide useful insights into qualitative
behaviour of these embeddings.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. TACL, 5:135–146.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Säckinger, and Roopak Shah. 1994. Signature veri-
fication using a” siamese” time delay neural network.
In NIPS, pages 737–744.

Peter Christen. 2006. A comparison of personal name
matching: Techniques and practical issues. In Sixth
IEEE ICDM-Workshops (ICDMW’06), pages 290–
294. IEEE.

William W Cohen, Pradeep Ravikumar, and Stephen E
Fienberg. 2003. A comparison of string distance
metrics for name-matching tasks. In IIWeb, pages
73–78.

Najlah Gali, Radu Mariescu-Istodor, and Pasi Fränti.
2016. Similarity measures for title matching. In
2016 23rd ICPR, pages 1548–1553. IEEE.

Wael H Gomaa and Aly A Fahmy. 2013. A survey of
text similarity approaches. International Journal of
Computer Applications, 68(13):13–18.

Tom Kenter and Maarten De Rijke. 2015. Short text
similarity with word embeddings. In 24th ACM
CIKM, pages 1411–1420.

Ashish Kulkarni, Kartik Mehta, Shweta Garg, Vidit
Bansal, Nikhil Rasiwasia, and Srinivasan Sen-
gamedu. 2019. Productqna: Answering user ques-
tions on e-commerce product pages. In Companion
Proceedings of The 2019 WWW Conference, pages
354–360.

Sawan Kumar, Shweta Garg, Kartik Mehta, and Nikhil
Rasiwasia. 2019. Improving answer selection and
answer triggering using hard negatives. In Pro-
ceedings of the 2019 EMNLP-IJCNLP, pages 5913–
5919.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS, pages 3111–3119.

Ajinkya More. 2016. Attribute extraction from
product titles in ecommerce. arXiv preprint
arXiv:1608.04670.

Duangmanee Pew Putthividhya and Junling Hu. 2011.
Bootstrapped named entity recognition for product
attribute extraction. In EMNLP, pages 1557–1567.
Association for Computational Linguistics.

Gabriel Recchia and Max M Louwerse. 2013. A com-
parison of string similarity measures for toponym
matching. In COMP@ SIGSPATIAL, pages 54–61.

Florian Schroff, Dmitry Kalenichenko, and James
Philbin. 2015. Facenet: A unified embedding for
face recognition and clustering. In CVPR, pages
815–823.

MK Vijaymeena and K Kavitha. 2016. A survey
on similarity measures in text mining. Machine
Learning and Applications: An International Jour-
nal, 3(2):19–28.

Huimin Xu, Wenting Wang, Xinnian Mao, Xinyu Jiang,
and Man Lan. 2019. Scaling up open tagging from
tens to thousands: Comprehension empowered at-
tribute value extraction from product title. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5214–
5223.

Atsuko Yamaguchi, Yasunori Yamamoto, Jin-Dong
Kim, Toshihisa Takagi, and Akinori Yonezawa.
2012. Discriminative application of string similar-
ity methods to chemical and non-chemical names
for biomedical abbreviation clustering. In BMC ge-
nomics, volume 13, page S8. Springer.

http://jmlr.org/papers/v9/vandermaaten08a.html

109

(a) FastText: Headphone Color (b) SANTA: Headphone Color

(c) FastText: Necklace type (d) SANTA: Necklace type

(e) FastText: Watch movement type (f) SANTA: Watch movement type

Figure 9: Figure showing t-SNE plot of fastText and SANTA embeddings for three attributes. Surface forms are
shown with green dots and canonical forms with red triangles. For better understanding of results, we use green
oval selection to show correct homogenous cohorts and red oval selection for incorrect cohorts. This figure is best
seen in colors.

110

7 Appendix

We list few interesting examples in Table 3. It
can be observed that string similarity makes cor-
rect predictions for cases requiring fuzzy match-
ing (e.g. matching “multi” with “multicoloured”),
but, makes incorrect predictions for examples re-
quiring semantic matching (e.g. incorrectly match-
ing “cane” with “polyurethane”). With fastText,
we get correct predictions for many semantic ex-
amples, however, we get incorrect predictions for
close canonical forms (e.g. incorrectly mapping
“3 seater sofa set” to “five seat” as “three seat”
and “five seat” occur in similar contexts in title).
Our proposed SANTA model does well for most
of these examples, but it fails to make correct pre-
dictions for rare surface forms (e.g. “no assembly
required, pre-aseembled”).

Surface Form
Actual

Canonical Form
Cosine Similarity

Prediction
FastText

Prediction
SANTA

prediction
Comment

multi multicoloured multicoloured green multicoloured
thermoplastic plastic plastic silicone plastic
amd radeon r3 ati radeon ati radeon nvidia geforce ati radeon

free size one size one size small one size

FastText fails

2 years 2 - 3 years 11 - 12 years 3 - 4 years 2 - 3 years
Both String

Similarity and
fastText fails
but SANTA
gives correct

mapping

elbow sleeve half sleeve 3/4 sleeve short sleeve half sleeve
cane bamboo polyurethane rattan bamboo

product will
be assembled

requires
assembly

already assembled d-i-y
require

assembly

3 seater
sofa set

three seat four seat five seat three seat

nokia os symbian palm web os symbian symbian
silicone rubber silk rubber rubber
coffee brown off-white brown brown

String Similarity
fails

no assembly
required,

pre-aseembled

already
assembled

requires assembly already assembled
requires

assembly

mechancial hand driven hand driven hand driven automatic

SANTA fails

Table 3: Qualitative Examples for multiple normaliza-
tion approaches. Correct predictions are highlighted in
green color and incorrect predictions are highlighted in
red color.

