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Abstract

Large-scale unsupervised abstractive summa-
rization is sorely needed to automatically scan
millions of customer reviews in today’s fast-
paced e-commerce landscape. We address
a key challenge in unsupervised abstractive
summarization – reducing generic and unin-
formative content and producing useful infor-
mation that relates to specific product aspects.
To do so, we propose to model reviews in
the context of some topical classes of inter-
est. In particular, for any arbitrary set of topi-
cal classes of interest, the proposed model can
learn to generate a set of class-specific sum-
maries from multiple reviews of each product
without ground-truth summaries, and the only
required signal is class probabilities or class
label for each review. The model combines
a generative variational autoencoder, with an
integrated class-correlation gating mechanism
and a hierarchical structure capturing depen-
dence among products, reviews and classes.
Human evaluation shows that generated sum-
maries are highly relevant, fluent, and repre-
sentative. Evaluation using a reference dataset
shows that our model outperforms state-of-the-
art abstractive and extractive baselines.

1 Introduction
As volume and scope of online customer reviews
continue to explode, so does the need for online
sellers to digest and draw insights to improve prod-
ucts. Today, both sellers and customers manually
sift through hundreds of reviews across competing
products to decipher systemic or trending concerns
from isolated or irrelevant issues. Opinion summa-
rization technology run across millions of reviews
has drawn much attention due to its potential for
streamline defect discovery, trend analysis, product
development, provided that summaries are infor-
mative and fluent.
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This work concerns abstractive summarization
of product reviews. Abstractive summaries which
contain new phrases and words not found in origi-
nal documents are often more fluent, more concise
and more informative given the same length than
extractive ones which only contain words, phrases
and sentences from the original documents.

Current state-of-the-art methods for abstrac-
tive summarization are based on supervised deep-
learning language models (Sutskever et al., 2014;
Nallapati et al., 2016; Gu et al., 2016; See et al.,
2017), and rely on large amount of human-written
ground-truth summaries. Because text summariza-
tion systems are domain-sensitive (Isonuma et al.,
2017) and ground-truth opinion summaries are ex-
pensive to obtain, unsupervised opinion summa-
rization has recently garnered significant attention
with noteworthy efforts (Ma et al., 2018; Wang
and Ren, 2018; Bražinskas et al., 2020b). Unfortu-
nately, summaries generated by unsupervised mod-
els are often generic and uninformative, and do not
provide useful information about different aspects
of the product.

To make review summaries more useful to users,
we propose a class-specific unsupervised abstrac-
tive summarization model, which can generate
class-specific summaries from multiple reviews of
each product, according to any predefined set of
topical classes of interest for the users. The model
can be trained without using any ground-truth sum-
maries. The only additional signal required for the
model is the class probabilities or class label for
each review generated by an independent black-box
classifier, or provided by annotators. An example
set of such topical classes is the set of major issue
classes that products might be subjected to, includ-
ing misleading product description, poor quality,
sizing/fit/style issues, etc. See Table 1 for example
class-specific summaries generated from reviews
of a product according those topical classes.

To generate class-specific summaries for arbi-
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trary classes, existing opinion summarization mod-
els require either i) a large training set of ground-
truth summaries per class, or ii) a complicated
and costly training set comprising multiple types
of manual annotations such as token tags, aspect-
opinion phrase pairs, and phrase labels (Suhara
et al., 2020). In contrast, our model only needs
review-class label pairs.

The proposed model Class-CopyCat combines
a generative variational autoencoder (VAE) model
with a hierarchical structure that captures depen-
dence among products, reviews and classes, allow-
ing the representation of class-specific information
through class latent variables. We also propose
an integrated two-layer filter mechanism consist-
ing of a class-correlation gate and a set of class-
specific importance coefficients which focus on
class-related words, and thus reduce irrelevant or
generic information and increase informativeness
with respect to (w.r.t.) each class of interest.

Our contributions can be summarized as follows:
• We solve a new, practical problem that has

not been addressed before: to train a model to
generate class-specific summaries from multi-
ple reviews of each product using only class
probabilities or class label for each review.

• We propose a novel hierarchical latent vari-
able generative model to capture dependence
among group/class/review latent variables and
reviews. This allows us to generate class-
specific summaries from the variational distri-
butions of respective class latent variables.

• We propose a two-layer filter mechanism
to extract class-specific information and key
words, and reduce irrelevant information in
the summaries, as detailed in Sec. 3.2.3.

• Our human evaluation and experiments with
a reference dataset show that the proposed
model outperforms state-of-the-art baselines
in a wide range of evaluation metrics.

2 Prior Work

2.1 Abstractive Summarization
Prior to deep-learning language models, ab-

stractive summarization is considered a very hard
problem, with limited success using graph mining
(Ganesan et al., 2010; Filippova, 2010; Yang and
Fang). More recent approaches view abstractive
summarization as a text-to-text generation problem
using sequence to sequence (Seq2Seq) neural mod-
els (Sutskever et al., 2014). These models usually

Summ.
for chosen
classes of
interest

Class 1. Misleading Product Description:
These tights are not pink. The color is very
much nude.
Class 2. Poor Quality:
The tights ripped after one wash. I would
not buy these.
Class 3. Sizing/fit/style issue:
The sizing was way off.

Reviews ... the "pink" color these come in is not the
pink ... ‖ It lasted through one wear and one
wash. After that the threads started streak-
ing. Not worth the buy... ‖ ... The sizing
for these tights was not clear, ... way too big.
‖ ... These tights ripped the first time my
daughter wore them. Take a pass on these. ‖
... these tights are not pink... ‖ ... They all
have holes after first time wear... ‖ The color
says pink, but these are not pink. They are
nude... ‖ These tights are incredibly small
compared to other brands and the pink color
is more in line with nude...

Table 1: Summaries generated by our model for chosen
classes; colors encode their alignment to input reviews.
The reviews are truncated, and delimited with ‘‖’.

employ an encoder-decoder structure. The encoder
encodes documents into feature space, from which
the decoder generates summaries. Such models
tend to be “over creative” and may generate com-
pletely new outputs, which is not desirable. The
prominent strategy to mitigate this problem is to
use pointer networks as used in (Nallapati et al.,
2016; Gu et al., 2016). Pointer networks (Vinyals
et al., 2015) are an extension of attentive recur-
rent neural networks (RNN); they use attention as a
pointer to select which tokens of the input sequence
should be copied to the output. More recently,
pointer-generator networks (See et al., 2017) add
a switching mechanism to select between copying
and generating new words. These supervised deep
models require a large amount of text and human-
written summary pairs for training (Hermann et al.,
2015; Sandhaus, 2008; Narayan et al., 2018). Re-
cent works on unsupervised abstractive summariza-
tion include SummaryLoop (Laban et al., 2020)
for single document summarization, and Mean-
Sum (Chu and Liu, 2019) and CopyCat (Bražinskas
et al., 2020b) for multi-document summarization.

2.2 Context-aware document summarization
Our class-specific summarization problem is

also related to context-aware summarization. In
(Ma et al., 2018) and (Wang and Ren, 2018), the
sentiment class of a product review is used as con-
textual information for summarization. In (Kha-
tri et al., 2018), a contextual text summarization
model based on Seq2Seq architecture is proposed
for product description summarization. It includes



90

three different components as contextual informa-
tion: metadata provided by sellers (e.g. product ti-
tle, tags and category), search query, and document
titles used to discover the document (e.g. via recom-
mendation). In (Narayan et al., 2018) and (Wang
et al., 2018), document topics are pre-learned by a
Latent Dirichlet Allocation topic model, and used
as contextual information for text summarization.
These context-aware models are useful for gener-
ating more document centric summaries, overcom-
ing the problem of generic summaries. However,
these models only target single-document summa-
rization, and they must be trained via supervised-
learning using a large set of human-written ground-
truth summaries.

OpinionDigest is an opinion summarization
framework that does not rely on gold summaries
for training (Suhara et al., 2020). However, to gen-
erate summaries specific to an arbitrary topic or
class, OpinionDigest has to use an Opinion Extrac-
tion model (Miao et al., 2020) pretrained for that
topic using a training set produced with significant
human annotation effort for each review, includ-
ing token tagging, aspect-opinion phrase pairing,
and labelling selected phrases per topic. The high
cost of obtaining such training sets motivated our
proposed solution.

3 Proposed Abstractive Class-Specific
Multi-Review Summarization

We start with a high level description of the pro-
posed model (Sec. 3.1), before presenting in greater
detail the encoder and decoder subnets (Sec. 3.2,
3.3). Later, we introduce the loyalty term that dis-
courages summaries containing false information
(Sec. 3.4), and describe how the trained model gen-
erates class-specific summaries (Sec. 3.5).

3.1 Overview of the proposed model
Given a predefined set of T topical classes,

our model generates multiple summaries, one for
each class that may be present in a group of re-
views; each group corresponds to a product. The
model makes use of an independent classifier β(.),
which probabilistically assign each review to these
classes; β(ri)j denotes the probability that review
ri belongs to a class j for j = 1, ..., T . We propose
a hierarchical latent variable structure to capture
relation among products, reviews and classes as
shown in Figure 1.

The model defines three sets of latent variables
to represent products, classes, and individual re-
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Figure 1: Graphical representation of the model

views. Each product (or group) is associated with a
group variable g, which captures the group’s over-
all semantics. Within each product, each class j is
associated with a class variable tj (j = 1, ..., T ).
Each class latent variable conditions on g, but fo-
cuses more on class-related words and information;
and hence, it captures common themes and opin-
ions about the product for that class. Finally, each
review ri (i = 1, ..., N ) is associated with a review
latent code zi = [zij ]

T
j=1, which conditions on the

class representation and captures content of indi-
vidual reviews; zij denotes the review code for ri
given a class j. The class distribution β(ri) is used
to soft-gate zi in review reconstruction.

Our model’s posterior inference is based on the
VAE model (Kingma and Welling, 2013), also used
in the CopyCat summarization model (Bražinskas
et al., 2020b), with the latter serving as the inspira-
tion for our model. As is standard with VAEs, our
encoder, parameterized with φ, produces the varia-
tional posterior distributions of the latent variables
g ∼ qφ(g|r1:N ), tj ∼ qφ(tj |r1:N , [β(ri)]

N
i=1, g),

and zij ∼ qφ(zij |ri, tj). As shown in Sec. 3.2, the
variational posterior of tj is designed to depend
on class distributions of all reviews in the group
[β(ri)]

N
i=1, and that class-related information rep-

resented by tj is computed using a two-layer filter
mechanism. We also note that we choose to rep-
resent each review ri using a collection of review
variables [zij ]

T
j=1, each corresponding to a class,

instead of using a single review encoding as in
CopyCat and typical VAE models, for better rep-
resentation of class-related information. Encoder
design is discussed in details in Sec. 3.2.

The decoder, parameterized by θ, reconstructs
the review ri from the posterior samples zi, β(ri)
and all other reviews in the group r−i. The
reconstruction probability is hence defined as
pθ(ri|β(ri), zi, r−i). Here, we follow CopyCat’s
recommendation and let the decoder to directly ac-
cess other reviews in the group to allows the recon-
struction of fine-grain common group details, such
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Figure 2: Generation of the latent code zi for a review
ri by the encoder. Yellow boxes represent the neural
networks that compute the prior and variational poste-
rior distributions of latent codes.

as product names, product-specific attributes and
characteristics. As we detail in Sec. 3.5, the trained
model can generate a summary for a group of re-
views for a given class j by decoding the mean of
the class-dependent and review-agnostic z∗j prior.

The variational loss objective for our model is

LVAE(θ, φ, r1:N )= E
g∼qφ(g|r1:N )

[
E

t∼qφ(t|r1:N, [β(ri)]Ni=1, g)(
N∑
i=1

E
zi∼qφ(zi|ri,t)

[− log pθ(ri|zi, β(ri), r−i)]

+
N∑
i=1

DKL[qφ(zi|ri, t)||pφ(zi|t)]

)

+DKL[qφ(t|r1:N , [β(ri)]
N
i=1, g)||pφ(t|g)]

]
+DKL[qφ(g|r1:N )||pφ(g)], (1)

where pφ(.) denotes a prior distribution, and DKL

denotes Kullback Leibler divergence between the
variational posterior and prior distributions of a
latent variable. Later, in Sec. 3.4, we will improve
this loss with an additional loyalty term.

3.2 The Encoder
Fig. 2 shows how the encoder produces latent

codes g, t, and zi. As with standard VAE, we use
Gaussian distributions with diagonal covariances
for the prior and variational distributions.
3.2.1 Text representation component

The encoder starts with a text representation
component which includes a word embedding unit,
a GRU encoder (Cho et al., 2014), and a class-

correlation gate, as shown in Fig. 3.
Words in reviews are embedded into word em-

beddings, and then transformed by a GRU encoder
to obtain hidden states. Let Li denote the length of
review ri; wli and hli denote the word embedding
and GRU hidden state for the l-th word in review
ri, for l = 1, ..., Li. Word embeddings and GRU
hidden states are concatenated into word context
states: ml

i = [wli ◦ hli]. They are later used to
compute group latent codes g (Sec. 3.2.2).

Word context states are also fed to a class-
correlation gate to generate class-based word
representation, which pays more attention to
words related to the class of the review. First,
the concatenation of each word context state and
the class vector β(ri) of the review is fed to a
feed-forward neural network (FFNN) with tanh
non-linearity to give a class influence vector for
each word:

cli = tanh(W [ml
i ◦ β(ri)] + b),

where cli has the same dimension as mi. The
class-based word representation is then computed
as m̌l

i = ml
i � cli,

where � is the element-wise multiplication oper-
ation. The class-based word representations later
contribute to the class latent codes (Sec. 3.2.3).
3.2.2 Distributions for group latent codes g

The group latent code in our model plays a sim-
ilar role to that in Copycat model, and its distri-
butions are computed in a similar way. Its prior
p(g) is set to the standard normal distribution. To
compute the variational posterior qφ(g|r1:N ), we
first compute the importance coefficient of each
word in the review group, which is

αli =
exp(fαφ (ml

i))∑N
i′=1

∑Li′
l′=1 exp(fαφ (ml′

i′))
, (2)

for the l-th word in review ri. Here, fαφ is a 2-
layer FFNN with tanh non-linearity, which takes
as input the word context states and returns a scalar.
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Figure 3: Generation of context states and class-based
representations by text representation component.
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The mean and log covariance of qφ(g|r1:N ) are
then computed by separate affine projections of
the intermediate group representation ĥg, which
is the weighted sum of the word context states:
ĥg =

∑N
i=1

∑Li
l=1 α

l
im

l
i.

We can then sample a latent code g from the
above posterior distribution. The reparameteriza-
tion trick (Kingma and Welling, 2013) is applied
during sampling to allow backpropagation of the
reconstruction error.
3.2.3 Distributions for class latent codes t

The prior for class latent codes is condi-
tioned on the common group latent code g and
shared across different classes, i.e., pφ(tj |g) =
N (tj ;µ

t
φ(g), σtφ(g)I) for j = 1, ..., T , where the

mean and log covariance are computed as a linear
transformation of g.

The variational posterior for latent code tj of
each class j depends on the common group code g,
reviews r1:N , and class probabilities [β(ri)]

N
i=1; it

is qφ(tj |r1:N , [β(ri)]
N
i=1, g). To compute this pos-

terior of tj , we also first compute the importance
coefficient of each word in each review to the class
representation tj , but now we use class-based word
representations instead of word context states as in
g:

α̌lji =
exp(f

α̌j
φ (m̌l

i))∑N
i′=1

∑Li′
l′=1 exp(f

α̌j
φ (m̌l′

i′))
. (3)

We then compute the intermediate class representa-
tion ĥtj =

∑N
i=1

∑Li
l=1 α̌

l
jim̌

l
i. The computation of

ĥtj can be viewed as a two-layer filter mechanism
to extract class-specific information and key words,
and reduce irrelevant and generic information to be
represented in class latent codes. First, the class-
correlation gate pays attention to key words related
to the class of each review. Then, among those
key words from different reviews, the importance
coefficients α̌lji pay attention to those related to the
class j of interest.

Finally, we apply affine transformations on the
concatenation of ĥtj and g to give the mean and
log variance of the variational posterior for tj . We
can sample a latent code tj from this posterior and
generate an assembled code t = [tj ]

T
j=1.

3.2.4 Distributions for review latent codes zi
The prior on the review code zij correspond-

ing to review ri and class j is conditioned on the
class code tj and is shared across different re-
views, i.e. pφ(zij |tj) = N (zij ;µ

z
φ(tj), σ

z
φ(tj)I)

for j = 1, ..., T , where the mean and log covari-
ance are computed as a linear transformation of tj .

To compute the mean and log covariance of vari-
ational posterior qφ(zij |ri, tj), we perform affine
transformation on the concatenation of hLii and tj .
zi = [zij ]

T
j=1 is then sampled from these posteriors.

3.3 The Decoder
The decoder reconstructs the original reviews

by computing the distribution pθ(ri|zi, β(ri), r−i).
First, the aggregated latent code ẑi for each review
ri can be computed as: ẑi =

∑N
j=1 β(ri)jzij . After

that, we follow the structure of CopyCat’s decoder
(Bražinskas et al., 2020b). The decoder takes ẑi and
r−i as input and computes pθ(ri|ẑi, r−i). We use
an auto-regressive GRU decoder with the attention
mechanism and a pointer generator network.

3.4 Loyalty term
The VAE lower bound in Eq. (1) focuses

on reconstructing a review ri from its latent
representation and other reviews r−i of the same
group. Because reviews may vary largely, and it is
not always possible to reconstruct a review from
other reviews, the decoder tends to be creative, and
inclines toward generating a new word, instead of
copying a word from other reviews. As a result, the
generated summaries at test phase often contain
many new words and possibly false information
that is not present in original reviews. To remedy
this problem, inspired by (Bražinskas et al., 2020a),
we add a loyalty term L0 that encourages assigning
the probability mass to words that appear in r−i:

L0(θ, φ, r1:N ) =

E
g∼qφ(g|r1:N )

[
E

t∼qφ(t|r1:N ,[β(ri)]Ni=1,g)

(
N∑
i=1

E
zi∼qφ(zi|ri,t)[

Li∑
l=1

∑
w∈V (r−i)

−pθ(w|zi, β(ri), r−i, r
1:l−1
i )

])]
,

where V (r−i) is the vocabulary of all words in r−i.
The final loss function is computed as

L = LV AE + α ∗ L0, (4)

where α is the trade-off hyperparameter. L is mini-
mized w.r.t. both the inference network’s parameter
φ and the generative network’s parameter θ.

3.5 Summary Generation
At test time, we can generate a summary per

class for a new group of reviews r1:N . This is
equivalent to generating a new review that reflects
common information from the reviews r1:N . To do
so, the latent variables are fixed to their respective
means. The steps to generate a summary r∗ for a
class j from a group of reviews r1:N are as follows:
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1. Fix g at the mean of its posterior qφ(g|r1:N ).
2. Fix tj at the mean of its posterior
qφ(tj |r1:N , [β(ri)]

N
i=1, g).

3. Fix z∗j at the mean of its prior pφ(z∗j |tj).
4. Assign ẑ∗ = z∗j , and compute the decoder’s

probability for r∗: pθ(r∗|ẑ∗, r1:N ).

4 Experimental Results
4.1 Experimental setup

Our experiment is conducted on a subset of the
public dataset of Amazon product reviews (He and
McAuley, 2016). In this dataset, each review is
written for a particular product, and accompanied
by a rating value between 1 and 5. We apply our
model to generate summaries for a group of av-
erage and low-rating reviews (1 to 3-star rating
reviews) belonging to a product according to the
classes of issues behind the poor ratings. Follow-
ing (Bražinskas et al., 2020b), we use reviews from
four product categories: Clothing Shoes and Jew-
elry, Electronics, Health and PersonalCare, and
Home and Kitchen. We obtain reviews with 1 to 3-
star ratings, and group them by products with each
group having no less than 8 reviews. The dataset
consists of 773,797 reviews for 54,706 products.
From this, we sampled 1000 products for test, and
split the remaining products into training/validation
sets with a 9 : 1 ratio. See Appendix A.3 for more
details in data pre-processing, and Appendix A.4
for hyperparameter settings and implementation
details of our model.

We created an independent classifier β(.) that
classifies reviews into 6 classes of possible is-
sues: POOR QUALITY OR DEFECTIVE, SIZ-
ING/FIT/STYLE ISSUE, BAD/MISLEADING
PRODUCT DESCRIPTION, COMPATIBILITY
ISSUE, WRONG ITEM RECEIVED, and OTH-
ERS. Definition for each class is given in Ap-
pendix A.2. The classifier produces a class prob-
ability for each issue class per review. Using the
class probability output of this classifier β(.) as in-
put, we train our Class-CopyCat model to generate
class-specific summaries for these 6 issue classes
from product reviews. At test time, we compute
an aggregated probability for each issue class per
product by averaging the classifier probability out-
puts across all reviews for that product, and only
generate summaries for classes whose aggregated
class probabilities for the product is greater than
a threshold of 0.1. This threshold is adjustable.
This is meant to filter out those issues that are not
supported by the reviews, assuming that there are

much more pronounced issues that we want to sum-
marize. Reading class-specific summaries for top
issue classes enable users to quickly understand dif-
ferent predominant issues for a product. We note
that our model can be applied for any set of topical
classes and classifiers. The choice to use the 6 prod-
uct issue classes is arbitrary, and we could easily
choose some other classification (e.g. sentiment,
rating, author).

For evaluation, we sampled 100 products and 8
reviews per product from the test set. We obtained
gold summaries for these products from 2 external
workers. We asked each worker to write a set of
gold summaries per product, one for each issue
class of the product, provided that the aggregated
class probability for the product is greater than 0.1.

Table 2 shows an example of average and low-
rating reviews for a product, the gold summaries,
and summaries produced by different models. Ad-
ditional examples are given in Appendix A.1.

4.2 Baseline Models
We prepare 7 baseline models for class-specific

summarization.
Abstractive baselines
CopyCat with Class-embedding. We combine

CopyCat model for multi-document review summa-
rization (Bražinskas et al., 2020b) with the class-
embedding mechanism proposed in (Narayan et al.,
2018) for class-specific summarization. Particu-
larly, the class probability vector β(ri) for a review
ri is appended to each word embedding of that
review at both encoder and decoder during train-
ing. When generating a class-specific summary,
the class probability vector at decoder becomes a
one-hot encoding of that class.

Collection of CopyCat models. We train one
CopyCat model for each issue class. Each class-
specific Copycat model is trained only on reviews
that are classified into that class (the top class).
Class-specific summaries are generated by the cor-
responding class-specific model.

Collection of MeanSum models. MeanSum is
another state-of-the-art multi-review summariza-
tion method (Chu and Liu, 2019). This baseline is
similar to the second baseline above.

Extractive baselines
Highest probability. The review with highest

class probability is used as class-specific summary.
Clustroid. The clustroid review among the set

of reviews belonging to a class is used as the class-
specific summary. It is the review with the highest
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Top issue classes POOR QUALITY OR DEFECTIVE COMPATIBILITY ISSUE
Gold summary
for each issue

The mount does not hold weight when closed. It
doesn’t work properly. It bends down.

The mount is not suitable for big TV screens. It does
not fit a 42" TV. It should be for 32" or less.

Our class-specific
summaries

I am very disappointed in this product. It is hard to get
it to hold the weight of the TV, and it will not work.

I bought this for my 42 inch TV. It does not fit the TV.
It is too small.

Collection of
CopyCat models’
summaries

I bought this to use with my Samsung TV. It did not
work at all. I tried to adjust the TV but it didn’t work.
I would not recommend this product to anyone. Very
disappointed.

The title of this says it would fit a 49 inch TV, but my
TV will not fit. The mount didn’t work either. Would
not recommend this product for the specific model of
TV.

Collection of
MeanSum mod-
els’ summaries

Bought this for my Samsung TV and it did not fit
my LG TV. I would not recommend this product to
anyone. Don’t waste your time and money on this
piece of junk. Do not buy!

The end of this mount doesn’t work with my Samsung
TV. The mount is too wide and there is no space for my
TV, which defeats the purpose of being able to mount it
in my TV!

Review 1 I would not use this mount for any big tvs . I had a hard time trying to make this work and junked it in the end.
Review 2 JUNK!!! I have a 65 " Toshiba 91 # bigger than stated but weight is weight. Sags, will not hold weight when

closed. Also very hard the hook the tv mount to the wall mount. I am afraid to even pull it out to full length. I
am taking it down tomorrow.

Review 3 don ’t work well with heavy lcd tvs. installation was easy, find two stud screw it in. mount my samsung 52 "
lcd and just points down, tilt all the way up and as soon as i let go off my hand it just tilt down just cant have
the tv parallel to the wall. you get what you pay for.

Review 4 This mount will not hold a 50 LCD TV. As soon as we placed the tv on the mount it sagged and bent a little.
When we tried to angle it it tilted a lot. If you have a 40 or under TV you will be fine.

Review 5 size of the bracket is too small trying to mount a 55 inch - please reconsider buying this product this product
only safe with 15 - 32 inch only not recommended for 55inch tv.

Review 6 I bought this item for a 42 " TV. It does not fit the TV ! Partially my own fault for not doing a bit more research
but it is way to small to holder an older 42 " TV. I used it on a smaller 32 " TV which saved me some trouble
but it is a bit of overkill for a smaller TV.

Review 7 12 inches too narrow for my 37 inch LG TV. This mount should only be used on a 32 inch or less.
Review 8 The product hung on the wall crooked. Cheap. Don ’t buy. Had to return. Waste of time. I guess you get what

you pay for.

Table 2: Examples of reviews, gold summaries, and summaries generated by various models. Generic or redundant
information not related to the class is marked in Blue; hallucinating or incorrect information is marked in Red.

ROUGE-L score w.r.t. other reviews in the set.
Lead. We construct the class-specific summary

by concatenating leading sentences from reviews
belonging to that class. "Lead" baseline has been
shown to be a strong baseline for both single- and
multi-document summarization (See et al., 2017;
Bražinskas et al., 2020b; Chu and Liu, 2019).

Random. A random review belonging to a class
is used as the class-specific summary.

See Appendix A.5 for training procedure of our
model and those of the abstractive baselines.

4.3 Automatic Evaluation
We measure semantic overlap between generated

and gold summaries using ROUGE scores (Lin,
2004). A higher ROUGE score associates with
more semantic overlap between pairs of texts. The
class-specific gold summaries are used as reference.
Table 3 reports ROUGE scores based on F1 on the
100 test products.

Class-Copycat outperforms all the baselines.
The summaries of extractive baselines ("Highest
probability" , "Clustroid", "Lead" and "Random")
are extracted from the subset of reviews that be-
long to the class of interest only, and therefore, con-
tain a good amount of class-specific information.
This results in relatively higher ROUGE scores for
these baselines compared to abstractive ones, ex-

cept for Class-CopyCat. The low ROUGE scores
for "CopyCat with Class-embedding" indicate that
class-embedding mechanism does not sufficiently
extract class-specific information from reviews.
Similarly, limiting the training set to only reviews
belonging to the class of interest as in "Collection
of CopyCat models" and "Collection of MeanSum
models" does not allow the models to sufficiently
focus on class-related information and omit generic
and irrelevant information from reviews, as shown
in Table 2 and in Appendix A.1. This results in
low ROUGE scores for these two methods, and is
confirmed with human evaluation (Sec. 4.4).

Model R1 R2 RL
Class-CopyCat (ours) 0.308 0.102 0.238
CopyCat w Class-embed 0.186 0.037 0.133
Collection of CopyCat(s) 0.190 0.038 0.141
Collection of MeanSum(s) 0.182 0.034 0.138
Highest probability 0.254 0.092 0.207
Clustroid 0.242 0.085 0.204
Lead 0.258 0.098 0.210
Random 0.213 0.061 0.171

Table 3: ROUGE scores on the 100 test products.

4.4 Human evaluation
We performed human evaluation on 50 products

from the test set. Two annotators are asked to rate
each summary on a scale of 1 (very poor) to 5 (very
good) based on 6 criteria as follows:
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Informativeness Conciseness & Content Opinion Fluency Overall
Model non-redundancy support consensus

Collection of CopyCat models 2.87 2.69 2.91 3.09 3.83 2.80
Collection of MeanSum models 2.80 2.55 2.63 2.70 3.80 2.54

Class-CopyCat 3.60 4.30 3.98 3.72 4.57 3.84

Table 4: Average scores of human evaluation for six criteria. Score ranges from 1 (very poor) to 5 (very good).

• Informativeness: how well summary covers
dominant and repeated issues in the class.

• Content support: how well the content of sum-
maries is supported by input reviews

• Conciseness and non-redundancy: The sum-
mary should be concise and not contain unre-
lated information or unnecessary repetition.

• Opinion consensus: the summary should re-
flect common opinions expressed in reviews.

• Fluency: summary sentences should be gram-
matically correct, and easy to understand.

• Overall: based on annotators’ judgment.

Class-CopyCat outperforms both reference mod-
els by a large margin across all criteria (Table 4).
The biggest gain of Class-CopyCat over the two
baselines is in conciseness and non-redundancy
(4.30 vs 2.55 and 2.69). Examples in Table 2
and Appendix A.1 show qualitatively that our sum-
maries are more concise compared to baselines.
The latter contains more generic and irrelevant in-
formation (highlighted in blue in the examples).

Class-CopyCat also outperforms the two base-
lines in terms of content support. Both baselines
produce much information not present in original
reviews; such information is highlighted in red in
Table 2 and Appendix A.1. Our model performs
well in this criteria due to the loyalty term intro-
duced in Sec. 3.4. Moreover, since our model often
generates more concise and non-redundant sum-
maries from salient class-related information, it has
less chance of introducing incorrect information.

As our model focuses on and includes more
class-related information, it also does better in in-
formativeness (3.60 vs 2.80 and 2.87). Because
class-related key information is often salient and
consistent, this also results in better opinion con-
sensus.

4.5 Model Variant Ablation Studies
Here, we compare Class-CopyCat with its vari-

ants. The result is shown in Table 5. In "without
class-correlation gate" variant, we omit the class-
correlation gate in Fig. 3, and use word context
states directly (in place of class-based representa-
tion in Fig. 2) to compute the posterior of the class
latent code t. In "class-embedding" variant, instead

of using class-correlation gate, we append the class
probability vector β(ri) to each word context state
of the review ri to generate class-based word repre-
sentations as in (Narayan et al., 2018). In "without
loyalty term" variant, the loyalty term (Sec. 3.4) is
not added to loss function. Finally, in "without g"
variant, we remove the group latent code g, as we
question whether g is still needed, in the presence
of the class code t per class per group.

The result in Table 5 shows that each model
component indeed contributes to final performance.
Without class-correlation gate, performance drops
most significantly. Using class-embedding instead
improves ROUGE scores compared to not using
any class-based representation, but its performance
is still far from using class-correlation gate in
the final Class-CopyCat. Without loyalty term,
the model generates more ‘hallucinating’ words
(eg. product names, models), resulting in lower
ROUGE scores. Finally, "without g", ROUGE
scores reduce slightly. This is because the class
latent code t is designed to focus more on key-
words for each class and without conditioning on
g, it cannot represent differences among various
products (eg. pants vs shirt).

Model R1 R2 RL
Class-CopyCat 0.312 0.107 0.216
Without class-correlation gate 0.272 0.092 0.209
Class-embedding 0.287 0.098 0.212
Without loyalty term 0.282 0.096 0.216
Without g 0.304 0.103 0.208
Random 0.213 0.061 0.171

Table 5: Ablation results: ROUGE scores for different
model variants using the gold summary dataset.

5 Conclusion
We have proposed a model for generating class-
specific summaries from a collection of reviews.
Our evaluation results show that our model out-
performs many abstractive and extractive base-
lines, including state-of-the-art models, in term
of ROUGE scores that measure the semantic over-
lap between generated and gold summaries. We
also show through human evaluation that gener-
ated summaries of our model are highly relevant to
the classes of interest, fluent, and representative of
common opinion.
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A Appendices

A.1 Additional examples of reviews and
summaries

Table 6 and Table 7 show additional examples
of reviews for a product, the gold summaries, and
the class-specific summaries produced by differ-
ent models. Additionally, we also show the class-
agnostic summaries produced by 3 opinion summa-
rization models: CopyCat, MeanSum, and Lexrank
(Erkan and Radev, 2004). Lexrank is an unsuper-
vised extractive algorithm which selects sentences
based on graph centrality. Sentences represent
nodes in a graph whose edge weights denote tf-
idf similarity.

Top issue classes POOR QUALITY OR DEFECTIVE MISLEADING PRODUCT DESCRIPTION
Gold summary for
each issue

The stand and the screen angle are not ad-
justable. The monitor is too bright and the
picture looks washed out.

The product did not have HDMI hook as it
says on the description.

Our class-specific
summaries

I was very disappointed in this monitor. It is
not worth the price. The picture is very bright
and the stand is not adjustable.

Bad description of the product. It didn’t have
a HDMI hookup.

Collection of CopyCat
models’ summaries

I bought this monitor for my husband for
Christmas. It was a Christmas gift for Christ-
mas and it was already broken. I would not
recommend this monitor to anyone. Very dis-
appointed in the quality of it.

It’s not compatible with my monitor, even
though it is advertised as a Samsung 46 inch
memory. Very disappointed! Don’t waste
your time and money on this item. Don’t buy
this.

Collection of Mean-
Sum models’ sum-
maries

The monitor is not bright enough to adjust
the monitor. I had to send it back because it
was a waste of my time and money. Don’t
waste your money on this one. Do not buy!

What a waste of money, but when I received
it in the mail it looked much better. You can’t
see through the screen. It’s not worth the
trouble of returning it and returning.

CopyCat’s summary It’s a nice monitor, but I had to return it for a refund. Also, the monitor doesn’t work with
the monitor. I would not recommend this product to anyone. Save your money

MeanSum’s summary It’s a nice looking monitor, but it is not what I expected. I have tried everything to get it to
work, but the screen resolution is terrible. I would not recommend this product.

Lexrank’s summary
(Erkan and Radev,
2004)

It is the worst monitor i have ever purchased, the stand is not adjustable and their is something
wrong with the base. I was unable to adjust the viewing angle and therefore returned the
monitor.

Review 1 Like someone who reviewed this before me... this monitor is too bright. It looks like there is
a bright white haze on everything and i do not like it. I just received this monitor and i will
be returning it as soon as possible. Very disappointed.

Review 2 Disappointment. The monitor does not allow you to adjust the screen angle without weaken-
ing the stability of the monitor. I sent it back. Amazon did refund full purchase price with no
hassle.

Review 3 Had to return this one. the plugin in the back didn ’t work. Pain to get it and it not work,
especially since it was a gift.

Review 4 Picture is dusty looking! the stand is not adjustable. Not worth the low price. You don ’t
even get what you pay for!

Review 5 The color is terrible, the contrast does not adjust, unless you look it from one very specific
unrealistic angle the picture is washed out

Review 6 Would be nice to have known it didn ’t have hdmi hookup before is wasted money. Worst
description of a product features

Review 7 It is the worst monitor i have ever purchased, the stand is not adjustable and their is something
wrong with the base.

Review 8 I was unable to adjust the viewing angle and therefore returned the monitor. There was
nothing in the instructions about this.

Table 6: Example reviews for a product, the corresponding gold summaries written by human, and the summaries
generated by different models. For class-specific summaries, generic or redundant information not related to the
class is marked in Blue; hallucinating or incorrect information is marked in Red.
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Top issue classes SIZING/FIT/STYLE ISSUE POOR QUALITY OR DEFECTIVE
Gold summary for
each issue

The size is not true. The pants are too small
and super skinny.

The material is shoddy, the stitch quality is
terrible. They are not Levi’s.

Our class-specific
summaries

These pants are too small for me. They are
too tight.

These pants are not what I expected. Their
quality is very poor. The material is very
cheap and the stitch quality is really poor.

Collection of CopyCat
models’ summaries

These are not true to size, I ordered a large
and they are still too tight. I will not be buy-
ing these again. I’m a size 6 and these pants
are not flattering at all.

These are not the same quality Levi’s pants
I have ever seen. They are made out of thin
material and tear apart easily. I would not
recommend these to anyone, especially for
the price.

Collection of Mean-
Sum models’ sum-
maries

It’s a shame because the pants are too small
for me. I normally wear a medium, but these
pants were way too big for me and I could
barely zip them up. Very disappointed.

The stitching on the pants are so stiff that
they are uncomfortable. I would not recom-
mend these pants to anyone. I had to return
them because they were a waste of my money.
Don’t buy them.

CopyCat’s summary These are not the relaxed fit for me. I ordered a 34, and they were way too big for my legs. I
would not recommend these pants to anyone else in the future.

MeanSum’s summary These are not true to size. I ordered a large and they were too tight around the waist. I will
have to return them. They are not worth the hassle of returning them. I am returning them.

Lexrank’s summary
(Erkan and Radev,
2004)

These pants are not real Levi’s. Super skinny jeans , more like chick pants guys shouldn’t be
wearing these, more like a joke cant believe i bought these pants

Review 1 I bought "Levi ’s Men’s 513 Slim Straight Jean, Mr Blue, 28Wx32L". Size is good fit. But
this item is too small. Same brand, same size is not same.

Review 2 The jeans missing a loop what the ass ah hold loop in the back poor really poor need to
inspect the items before

Review 3 It is too big it is not the correct size I have another Levi s size 40 and its perfect.
Review 4 Super skinny jeans, more like chick pants guys shouldn’t be wearing these, more like a joke

cant believe i bought these pants
Review 5 I ordered up two sizes after reading that these run tight, but before putting them on I realized

they aren’t even real. The material is shoddy, the stitch quality is terrible, and the color
doesn’t resemble the photo online at all! Beware of these pants and hope that you don’t get
ripped off like I have.

Review 6 you need legs like broomsticks for these guys to fit. Could barely slip them over my calves
without splitting the seams, if you have muscular legs, these are not for you...

Review 7 These pants aren’t what I expected. The quality is really low and I’m pretty sure these pants
won’t last very long. It ’s simply cheap material. The fit is good though.

Review 8 These pants are not real Levi’s. I was comparing the 511’s I just bought in store to these ones
and they are barely anything alike. The material is not the same. The only place it says Levi
is on the button and the back patch. The stitching isn ’t the same either.

Table 7: Example reviews for a product, the corresponding gold summaries written by human, and the summaries
generated by different models. For class-specific summaries, generic or redundant information not related to the
class is marked in Blue; hallucinating or incorrect information is marked in Red.
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A.2 Definition of issue classes

Issue class Class definition
POOR QUALITY
OR DEFECTIVE

Product is defective and
does not perform its func-
tion, or contains a flaw
that results in objectively
poor performance and
utilization of the product.

COMPATIBILITY
ISSUE

Product is incompatible
with another product that
it is meant to be used
with/for.

SIZING/FIT/STYLE
ISSUE

Product is either too
small/big to fit the cus-
tomer’s use case, without
mentioning size incom-
patibility with another
product.

BAD/MISLEADING
PRODUCT DE-
SCRIPTION

Product description con-
tains misleading or insuf-
ficient information.

WRONG ITEM RE-
CEIVED

Product shipped is differ-
ent than the one the cus-
tomer ordered.

OTHERS Product issues that do
not belong to any of the
above classes.

Table 8: Definition of the issue classes.

A.3 Data Pre-Processing
We select only the reviews of which the star rat-

ing is between 1 to 3, and the length is between 20
to 70 words. These reviews are grouped by prod-
ucts, and only the products that have no less than 8
reviews satisfying the above conditions are selected.
In addition, popular products with the number of
reviews above the 90th percentile are removed, so
that the dataset is not dominated by a small portion
of products. During both training and test time,
each group of reviews is formed from 8 reviews
which are sampled without replacement from the
set of reviews belonging to a same product.

A.4 Hyperparamters and Implementation
Details

We use similar hyperparameter settings to those
used in (Bražinskas et al., 2020b). The word em-
beddings are shared by both the encoder and de-
coder; their dimension is set to 200. The vocabu-
lary size is 80000. Both the GRUs at encoder and

decoder have the hidden state dimension of 600.
The dimension of all the latent variables (g, t and
z) is set to 600. Both the FFNNs that are used
to compute the importance coefficients toward the
posteriors of g and t in Eq. (2) and (3) have a 300-
dimensional hidden layer. The decoder’s attention
network has a 200-dimensional hidden layer with
a tanh non-linearity. The network for computing
copy gate in the pointer-generator network also has
a 100-dimensional hidden layer with the same non-
linearity. The trade-off hyperparameter α in Eq. (4)
is set to 2.

A.5 Initialization and Training
The CopyCat model (Sec. 4.6) and its variants

(CopyCat with Class-embedding and the collec-
tion of class-specific CopyCat models, described
in Sec. 4.2), which are used as baselines in our
evaluation, are initialized with the CopyCat refer-
ence model provided by the authors of CopyCat
(Bražinskas et al., 2020b). This reference model
was previously trained on a larger dataset (183,103
products and 4,566,519 reviews) consisting of all
the reviews with star rating from 1 to 5, unlike our
training set which contains only the reviews with
star rating from 1 to 3. We find that initializing
the above baseline models (the CopyCat model and
its variants) with this reference model gives a bet-
ter performance for these baselines compared to
training from scratch with our training set. For
our Class-CopyCat model, the word embedding
module and the two GRUs are also initialized with
the corresponding components of the reference
CopyCat model. Other 2D weights are initialized
with Xavier uniform initialization (Glorot and Ben-
gio, 2010), and 1D weights are initialized with the
scaled normal noise with 0.1 standard deviation.

After initialization, we train each of the Class-
CopyCat model, the CopyCat model, the CopyCat
with Class-embedding and the collection of class-
specific CopyCat models for 5 epoches on our train-
ing set of average and poor rating reviews (Sec. 4.1)
using Adam optimizer (Kingma and Ba, 2014) with
a learning rate of 0.0001. For decoding a summary
at test time, length-normalized beam search of size
5 is used. Cycling annealing (Fu et al., 2019) is
applied for all the KL terms to mitigate the problem
of “posterior collapse” (Bowman et al., 2016).

The MeanSum model and its variants are also
pre-trained on the larger dataset of reviews with 1 to
5-star rating before being fine-tuned on our smaller
training set of average and poor rating reviews.


