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Abstract
Word embeddings (e.g., word2vec) have been
applied successfully to eCommerce products
through prod2vec. Inspired by the recent
performance improvements on several NLP
tasks brought by contextualized embeddings,
we propose to transfer BERT-like architectures
to eCommerce: our model – Prod2BERT
– is trained to generate representations of
products through masked session modeling.
Through extensive experiments over multiple
shops, different tasks, and a range of design
choices, we systematically compare the ac-
curacy of Prod2BERT and prod2vec embed-
dings: while Prod2BERT is found to be supe-
rior in several scenarios, we highlight the im-
portance of resources and hyperparameters in
the best performing models. Finally, we pro-
vide guidelines to practitioners for training em-
beddings under a variety of computational and
data constraints.

1 Introduction

Distributional semantics (Landauer and Dumais,
1997) is built on the assumption that the meaning of
a word is given by the contexts in which it appears:
word embeddings obtained from co-occurrence pat-
terns through word2vec (Mikolov et al., 2013),
proved to be both accurate by themselves in repre-
senting lexical meaning, and very useful as compo-
nents of larger Natural Language Processing (NLP)
architectures (Lample et al., 2018). The empirical
success and scalability of word2vec gave rise to
many domain-specific models (Ng, 2017; Grover
and Leskovec, 2016; Yan et al., 2017): in eCom-
merce, prod2vec is trained replacing words in a
sentence with product interactions in a shopping
session (Grbovic et al., 2015), eventually generat-
ing vector representations of the products. The key
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intuition is the same underlying word2vec – you
can tell a lot about a product by the company it
keeps (in shopping sessions). The model enjoyed
immediate success in the field and is now essential
to NLP and Information Retrieval (IR) use cases
in eCommerce (Vasile et al., 2016a; Bianchi et al.,
2020).

As a key improvement over word2vec, the NLP
community has recently introduced contextualized
representations, in which a word like play would
have different embeddings depending on the gen-
eral topic (e.g. a sentence about theater vs soccer),
whereas in word2vec the word play is going to
have only one vector. Transformer-based architec-
tures (Vaswani et al., 2017) in large-scale models
- such as BERT (Devlin et al., 2019) - achieved
SOTA results in many tasks (Nozza et al., 2020;
Rogers et al., 2020). As Transformers are being
applied outside of NLP (Chen et al., 2020), it is
natural to ask whether we are missing a fruitful
analogy with product representations. It is a priori
reasonable to think that a pair of sneakers can have
different representations depending on the shop-
ping context: is the user interested in buying these
shoes because they are running shoes, or because
these shoes are made by her favorite brand?

In this work, we explore the adaptation of BERT-
like architectures to eCommerce: through exten-
sive experimentation on downstream tasks and
empirical benchmarks on typical digital retailers,
we discuss advantages and disadvantages of con-
textualized embeddings when compared to tradi-
tional prod2vec. We summarize our main contribu-
tions as follows:

1. we propose and implement a BERT-based
contextualized product embeddings model
(hence, Prod2BERT), which can be trained
with online shopper behavioral data and pro-
duce product embeddings to be leveraged by



2

downstream tasks;

2. we benchmark Prod2BERT against prod2vec
embeddings, showing the potential accuracy
gain of contextual representations across dif-
ferent shops and data requirements. By testing
on shops that differ for traffic, catalog, and
data distribution, we increase our confidence
that our findings are indeed applicable to a
vast class of typical retailers;

3. we perform extensive experiments by vary-
ing hyperparameters, architectures and fine-
tuning strategies. We report detailed results
from numerous evaluation tasks, and finally
provide recommendations on how to best
trade off accuracy with training cost;

4. we share our code1, to help practitioners repli-
cate our findings on other shops and improve
on our benchmarks.

1.1 Product Embeddings: an Industry
Perspective

The eCommerce industry has been steadily grow-
ing in recent years: according to U.S. Department
of Commerce (2020), 16% of all retail transac-
tions now occur online; worldwide eCommerce is
estimated to turn into a $4.5 trillion industry in
2021 (Statista Research Department, 2020). In-
terest from researchers has been growing at the
same pace (Tsagkias et al., 2020), stimulated by
challenging problems and by the large-scale im-
pact that machine learning systems have in the
space (Pichestapong, 2019). Within the fast adop-
tion of deep learning methods in the field (Ma et al.,
2020; Zhang et al., 2020; Yuan et al., 2020), prod-
uct representations obtained through prod2vec play
a key role in many neural architectures: after train-
ing, a product space can be used directly (Vasile
et al., 2016b), as a part of larger systems for rec-
ommendation (Tagliabue et al., 2020b), or in down-
stream NLP/IR tasks (Tagliabue and Yu, 2020).
Combining the size of the market with the past
success of NLP models in the space, investigating
whether Transformer-based architectures result in
superior product representations is both theoreti-
cally interesting and practically important.

Anticipating some of the themes below, it is
worth mentioning that our study sits at the intersec-
tion of two important trends: on one side, neural

1Code available at https://github.com/vinid/
prodb

models typically show significant improvements
at large scale (Kaplan et al., 2020) – by quantify-
ing expected gains for “reasonable-sized” shops,
our results are relevant also outside a few public
companies (Tagliabue et al., 2021), and allow for a
principled trade-off between accuracy and ethical
considerations (Strubell et al., 2019); on the other
side, the rise of multi-tenant players2 makes sophis-
ticated models potentially available to an unprece-
dented number of shops – in this regard, we design
our methodology to include multiple shops in our
benchmarks, and report how training resources and
accuracy scale across deployments. For these rea-
sons, we believe our findings will be interesting to
a wide range of researchers and practitioners.

2 Related Work

Distributional Models. Word2vec (Mikolov et al.,
2013) enjoyed great success in NLP thanks to its
computational efficiency, unsupervised nature and
accurate semantic content (Levy et al., 2015; Al-
Saqqa and Awajan, 2019; Lample et al., 2018). Re-
cently, models such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) shifted much of
the community attention to Transformer architec-
tures and their performance (Talmor and Berant,
2019; Vilares et al., 2020), while it is increasingly
clear that big datasets (Kaplan et al., 2020) and
substantial computing resources play a role in the
overall accuracy of these architectures; in our ex-
periments, we explicitly address robustness by i)
varying model designs, together with other hyper-
parameters; and ii) test on multiple shops, differing
in traffic, industry and product catalog.

Product Embeddings. Prod2vec is a straightfor-
ward adaptation to eCommerce of word2vec (Gr-
bovic et al., 2015). Product embeddings quickly
became a fundamental component for recommenda-
tion and personalization systems (Caselles-Dupré
et al., 2018; Tagliabue et al., 2020a), as well as
NLP-based predictions (Bianchi et al., 2020). To
the best of our knowledge, this work is the first to
explicitly investigate whether Transformer-based
architectures deliver higher-quality product rep-
resentations compared to non-contextual embed-
dings. Eschauzier (2020) uses Transformers on cart

2As an indication of the market opportunity, in the space
of AI-powered search and recommendations we recently wit-
nessed Algolia (Techcrunch, 2019a) and Lucidworks rais-
ing 100M USD (Techcrunch, 2019c), Coveo raising 227M
CAD (Techcrunch, 2019b), Bloomreach raising 115M USD
(Techcrunch, 2021).

https://github.com/vinid/prodb
https://github.com/vinid/prodb


3

co-occurrence patterns with the specific goal of
basket completion – while similar in the masking
procedure, the breadth of the work and the evalua-
tion methodology is very different: as convincingly
argued by Requena et al. (2020), benchmarking
models on unrealistic datasets make findings less
relevant for practitioners outside of “Big Tech”.
Our work features extensive tests on real-world
datasets, which are indeed representative of a large
portion of the mid-to-long tail of the market; more-
over, we benchmark several fine-tuning strategies
from the latest NLP literature (Section 5.2), shar-
ing – together with our code – important practical
lessons for academia and industry peers. The clos-
est work in the literature as far as architecture goes
is BERT4Rec (Sun et al., 2019), i.e. a model based
on Transformers trained end-to-end for recommen-
dations. The focus of this work is not so much
the gains induced by Transformers in sequence
modelling, but instead is the quality of the rep-
resentations obtained through unsupervised pre-
training – while recommendations are important,
the breadth of prod2vec literature (Bianchi et al.,
2021b,a; Tagliabue and Yu, 2020) shows the need
for a more thorough and general assessment. Our
methodology helps uncover a tighter-than-expected
gap between the models in downstream tasks, and
our industry-specific benchmarks allow us to draw
novel conclusions on optimal model design across
a variety of scenarios, and to give practitioners ac-
tionable insights for deployment.

3 Prod2BERT

3.1 Overview

The Prod2BERT model is taking inspiration from
BERT architecture and aims to learn context-
dependent vector representation of products from
online session logs. By considering a shopping
session as a “sentence” and the products shoppers
interact with as “words”, we can transfer masked
language modeling (MLM) from NLP to eCom-
merce. Framing sessions as sentences is a natural
modelling choice for several reasons: first, it mim-
ics the successful architecture of prod2vec; second,
by exploiting BERT bi-directional nature, each pre-
diction of a masked token/product will make use
of past and future shopping choices: if a shopping
journey is (typically) a progression of intent from
exploration to purchase (Harbich et al., 2017), it
seems natural that sequential modelling may cap-
ture relevant dimensions in the underlying vocabu-

Figure 1: Overall architecture of Prod2BERT pre-
trained on MLM task.

lary/catalog. Once trained, Prod2BERT becomes
capable of predicting masked tokens, as well as
providing context-specific product embeddings for
downstream tasks.

3.2 Model Architecture

As shown in Figure 1, Prod2BERT is based on
a transformed based architecture Vaswani et al.
(2017), emulating the successful BERT model.
Please note that, different from BERT’s original
implementation, a white-space tokenizer is first
used to split an input session into tokens, each one
representing a product ID; tokens are combined
with positional encodings via addition and fed into
a stack of self-attention layers, where each layer
contains a block for multi-head attention, followed
by a simple feed forward network. After obtain-
ing the output from the last self-attention layer, the
vectors corresponding to the masked tokens pass
through a softmax to generate the final predictions.

3.3 Training Objective

Similar to Liu et al. (2019); Sun et al. (2019), we
train Prod2BERT from scratch with the MLM ob-
jective. A random portion of the tokens (i.e., the
product IDs) in the original sequence are chosen
for possible replacements with the MASK token;
and the masked version of the sequence is fed into
the model as input: Figure 2 shows qualitatively
the relevant data transformations, from the original
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Figure 2: Transformation of sequential data, from the
original data generating process – i.e. a shopping ses-
sion –, to telemetry data collected by the SDK, to the
masked sequence fed into Prod2BERT.

shopping session, to the telemetry data, to the final
masking sequence. The target output sequence is
exactly the original sequence without any masking,
thus the training objective is to predict the original
value of the masked tokens, based on the context
provided by their surrounding unmasked tokens.
The model learns to minimize categorical cross-
entropy loss, taking into account only the predicted
masked tokens, i.e. the output of the non-masked
tokens is discarded for back-propagation.

3.4 Hyperparameters and Design Choices
There is growing literature investigating how dif-
ferent hyperparameters and architectural choices
can affect Transformer-based models. For exam-
ple, Lan et al. (2020) observed diminishing returns
when increasing the number of layers after a cer-
tain point; Liu et al. (2019) showed improved per-
formance when modifying masking strategy and
using duplicated data; finally, Kaplan et al. (2020)
reported slightly different findings from previous
studies on factors influencing Transformers perfor-
mance. Hence, it is worth studying the role of hy-
perparameters and model designs for Prod2BERT,
in order to narrow down which settings are the best
given the specific target of our work, i.e. product
representations. Table 1 shows the relevant hy-
perparameter and design variants for Prod2BERT;
following improvement in data generalization re-
ported by Liu et al. (2019), when duplicated = 1
we augmented the original dataset repeating each
session 5 times.3 We set the embedding size to
64 after preliminary optimizations: as other values
offered no improvements, we report results only

3This procedure ensures that each sequence can be masked
in 5 different ways during training.

Parameter Values

# epochs [e] 10, 20, 50, 100
# layers [l] 4, 8
masking probability [m] 0.15, 0.25
duplicated [d] 1, 0

Table 1: Hyperparameters and their ranges.

for one size.

4 Methods

4.1 Prod2vec: a Baseline Model
We benchmark Prod2BERT against the industry
standard prod2vec (Grbovic et al., 2015). More
specifically, we train a CBOW model with neg-
ative sampling over shopping sessions (Mikolov
et al., 2013). Since the role of hyperparame-
ters in prod2vec has been extensively studied be-
fore (Caselles-Dupré et al., 2018), we prepare em-
beddings according to the best practices in Bianchi
et al. (2020) and employ the following config-
uration: window = 15, iterations = 30,
ns exponent = 0.75, dimensions = [48, 100].
While prod2vec is chosen because of our focus
on the quality of the learned representations – and
not just performance on sequential inference per
se – it is worth nothing that kNN (Latifi et al.,
2020) over appropriate spaces is also a surprisingly
hard baseline to beat in many practical recommen-
dation settings. It is worth mentioning that for
both prod2vec and Prod2BERT we are mainly in-
terested in producing a dense space capturing the
latent similarity between SKUs: other important
relationships between products (substitution (Zuo
et al., 2020), hierarchy (Nickel and Kiela, 2017)
etc.) may require different embedding techniques
(or extensions, such as interaction-specific embed-
dings (Zhao et al., 2020)).

4.2 Dataset
We collected search logs and detailed shopping ses-
sions from two partnering shops, Shop A and Shop
B: similarly to the dataset released by Requena et al.
(2020), we employ the standard definition of “ses-
sion” from Google Analytics4, with a total of five
different product actions tracked: detail, add, pur-
chase, remove, click5. Shop A and Shop B are

4https://support.google.com/analytics/
answer/2731565?hl=en

5Please note that, as in many previous embedding stud-
ies (Caselles-Dupré et al., 2018; Bianchi et al., 2020), action

https://support.google.com/analytics/answer/2731565?hl=en
https://support.google.com/analytics/answer/2731565?hl=en
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Shop Sessions Products 50/75 pct

Shop A 1,970,832 38,486 5, 7
Shop B 3,992,794 102,942 5, 7

Table 2: Descriptive statistics for the training dataset.
pct shows 50th and 75th percentiles of the session
length.

mid-sized digital shops, with revenues between 25
and 100 millions USD/year; however, they differ
in many aspects, from traffic, to conversion rate, to
catalog structure: Shop A is in the sport apparel
category, whereas Shop B is in home improvement.
Sessions for training are sampled with undisclosed
probability from the period of March-December
2019; testing sessions are a completely disjoint
dataset from January 2020. After pre-processing6,
descriptive statistics for the training set for Shop A
and Shop B are detailed in Table 2. For fairness of
comparison, the exact same datasets are used for
both Prod2BERT and prod2vec.

Testing on fine-grained, recent data from multi-
ple shops is important to support the internal valid-
ity (i.e. “is this improvement due to the model or
some underlying data quirks?”) and the external
validity (i.e. “can this method be applied robustly
across deployments, e.g. Tagliabue et al. (2020b)”?)
of our findings.

5 Experiments

5.1 Experiment #1: Next Event Prediction

Next Event Prediction (NEP) is our first evaluation
task, since it is a standard way to evaluate the qual-
ity of product representations (Letham et al., 2013;
Caselles-Dupré et al., 2018): briefly, NEP consists
in predicting the next action the shopper is going to
perform given her past actions. Hence, in the case
of Prod2BERT, we mask the last item of every ses-
sion and fit the sequence as input to a pre-trained
Prod2BERT model7. Provided with the model’s
output sequence, we take the top K most likely
values for the masked token, and perform compar-
ison with the true interaction. As for prod2vec,
we perform the NEP task by following indus-
try best practices (Bianchi et al., 2020): given a

type is not considered when preparing session for training.
6We only keep sessions that have between 3 and 20 prod-

uct interactions, to eliminate unreasonably short sessions and
ensure computation efficiency.

7Note that this is similar to the word prediction task for
cloze sentences in the NLP literature (Petroni et al., 2019).

trained prod2vec, we take all the before-last items
in a session to construct a session vector by aver-
age pooling, and use kNN to predict the last item8.
Following industry standards, nDCG@K (Mitra
and Craswell, 2018) with K = 10 is the chosen
metric9, and all tests ran on 10, 000 testing cases
(test set is randomly sampled first, and then shared
across Prod2BERT and prod2vec to guarantee a
fair comparison).

5.1.1 Results

Model Config Shop A Shop B

Prod2BERT e = 10, l = 4,
m = 0.25, d = 0

0.433 0.259

Prod2BERT e = 5, l = 4,
m = 0.25, d = 1

0.458 0.282

Prod2BERT e = 10, l = 8,
m = 0.25, d = 0

0.027 0.260

Prod2BERT e = 100, l = 4,
m = 0.25, d = 0

0.427 0.255

Prod2BERT e = 10, l = 4,
m = 0.15, d = 0

0.416 0.242

prod2vec dimension = 48 0.326 0.214

prod2vec dimension = 100 0.326 0.218

Table 3: nDCG@10 on NEP task for both shops with
Prod2BERT and prod2vec (bold are best scores for
Prod2BERT; underline are best scores for prod2vec).

Table 3 reports results on the NEP task by high-
lighting some key configurations that led to com-
petitive performances. Prod2BERT is significantly
superior to prod2vec, scoring up to 40% higher
than the best prod2vec configurations. Since shop-
ping sessions are significantly shorter than sentence
lengths in Devlin et al. (2019), we found that chang-
ing masking probability from 0.15 (value from
standard BERT) to 0.25 consistently improved per-
formance by making the training more effective.
As for the number of layers, similar to Lan et al.
(2020), we found that adding layers helps only up
until a point: with l = 8, training Prod2BERT with
more layers resulted in a catastrophic drop in model
performance for the smaller Shop A; however, the

8Previous work using LSTM in NEP (Tagliabue et al.,
2020b) showed some improvements over kNN; however,
the differences cannot explain the gap we have found be-
tween prod2vec and Prod2BERT. Hence, kNN is chosen here
for consistency with the relevant literature.

9We also tracked HR@10, but given insights were similar,
we omitted it for brevity in what follows.
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Model Time A-B Cost A-B

prod2vec 4-20 0.006-0.033$
Prod2BERT 240-1200 48.96-244.8$

Table 4: Time (minutes) and cost (USD) for training
one model instance, per shop: prod2vec is trained on
a c4.large instance, Prod2BERT is trained (10 epochs)
on a Tesla V100 16GB GPU from p3.8xlarge instance.

same model trained on the bigger Shop B obtained
a small boost. Finally, duplicating training data
has been shown to bring consistent improvements:
while keeping all other hyperparameters constant,
using duplicated data results in an up to 9% in-
crease in nDCG@10, not to mention that after only
5 training epochs the model outperforms other con-
figurations trained for 10 epochs or more.

While encouraging, the performance gap be-
tween Prod2BERT and prod2vec is consistent with
Transformers performance on sequential tasks (Sun
et al., 2019). However, as argued in Section 1.1,
product representations are used as input to many
downstream systems, making it essential to evalu-
ate how the learned embeddings generalize outside
of the pure sequential setting. Our second experi-
ment is therefore designed to test how well contex-
tual representations transfer to other eCommerce
tasks, helping us to assess the accuracy/cost trade-
off when difference in training resources between
the two models is significant: as reported by Ta-
ble 4, the difference (in USD) between prod2vec
and Prod2BERT is several order of magnitudes.10

5.2 Experiment #2: Intent Prediction

A crucial element in the success of Transformer-
based language model is the possibility of adapt-
ing the representation learned through pre-training
to new tasks: for example, the original Devlin
et al. (2019) fine-tuned the pre-trained model
on 11 downstream NLP tasks. However, the
practical significance of these results is still un-
clear: on one hand, Li et al. (2020); Reimers and
Gurevych (2019) observed that sometimes BERT
contextual embeddings can underperform a sim-
ple GloVe (Pennington et al., 2014) model; on the

10Costs are from official AWS pricing, with 0.10
USD/h for the c4.large (https://aws.amazon.com/
it/ec2/pricing/on-demand/), and 12,24 USD/h for
the p3.8xlarge (https://aws.amazon.com/it/ec2/
instance-types/p3/). While obviously cost optimiza-
tions are possible, the “naive” pricing is a good proxy to
appreciate the difference between the two methods.

other, Mosbach et al. (2020) highlights catastrophic
forgetting, vanishing gradients and data variance
as important factors in practical failures. Hence,
given the range of downstream applications and
the active debate on transferability in NLP, we in-
vestigate how Prod2BERT representations perform
when used in the intent prediction task.

Intent prediction is the task of guessing whether
a shopping session will eventually end in the user
adding items to the cart (signaling purchasing in-
tention). Since small increases in conversion can
be translated into massive revenue boosting, this
task is both a crucial problem in the industry and
an active area of research (Toth et al., 2017; Re-
quena et al., 2020). To implement the intent pre-
diction task, we randomly sample from our dataset
20, 000 sessions ending with an add-to-cart actions
and 20, 000 sessions without add-to-cart, and split
the resulting dataset for training, validation and
test. Hence, given the list of previous products that
a user has interacted with, the goal of the intent
model is to predict whether an add-to-cart event
will happen or not. We experimented with several
adaptation techniques inspired by the most recent
NLP literature (Peters et al., 2019; Li et al., 2020):

1. Feature extraction (static): we extract the con-
textual representations from a target hidden
layer of pre-trained Prod2BERT, and through
average pooling, feed them as input to a multi-
layer perceptron (MLP) classifier to generate
the binary prediction. In addition to alternat-
ing between the first hidden layer (enc 0) to
the last hidden layer (enc 3), we also tried
concatenation (concat), i.e. combining em-
beddings of all hidden layers via concatena-
tion before average pooling.

2. Feature extraction (learned): we implement
a linear weighted combination of all hidden
layers (wal), with learnable parameters, as
input features to the MLP model (Peters et al.,
2019).

3. Fine-tuning: we take the pre-trained model up
until the last hidden layer and add the MLP
classifier on top for intent prediction (fine-
tune). During training, both Prod2BERT and
task-specific parameters are trainable.

As for our baseline, i.e. prod2vec, we implement
the intent prediction task by encoding each product
within a session with its prod2vec embeddings, and

https://aws.amazon.com/it/ec2/pricing/on-demand/
https://aws.amazon.com/it/ec2/pricing/on-demand/
https://aws.amazon.com/it/ec2/instance-types/p3/
https://aws.amazon.com/it/ec2/instance-types/p3/
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Model Method Shop Accuracy

Prod2BERT enc 0 Shop B 0.567
Prod2BERT enc 3 Shop B 0.547
Prod2BERT concat Shop B 0.553
Prod2BERT wal Shop B 0.543
Prod2BERT fine-tune Shop B 0.560

prod2vec - Shop B 0.558

Prod2BERT enc 0 Shop A 0.593
prod2vec - Shop A 0.602

Table 5: Accuracy scores in the intent prediction task
(best scores for each shop in bold).

feeding them to a LSTM network (so that it can
learn sequential information) followed by a binary
classifier to obtain the final prediction.

5.2.1 Results

From our experiments, Table 5 highlights the
most interesting results obtained from adapting
to the new task the best-performing Prod2BERT
and prod2vec models from NEP. As a first consid-
eration, the shallowest layer of Prod2BERT for fea-
ture extraction outperforms all other layers, and
even beats concatenation and weighted average
strategies11. Second, the quality of contextual rep-
resentations of Prod2BERT is highly dependent on
the amount of data used in the pre-training phase.
Comparing Table 3 with Table 5, even though the
model delivers strong results in the NEP task on
Shop A, its performance on the intent prediction
task is weak, as it remains inferior to prod2vec
across all settings. In other words, the limited
amount of traffic from Shop A is not enough to
let Prod2BERT form high-quality product repre-
sentations; however, the model can still effectively
perform well on the NEP task, especially since
the nature of NEP is closely aligned with the pre-
training task. Third, fine-tuning instability is en-
countered and has a severe impact on model perfor-
mance. Since the amount of data available for in-
tent prediction is not nearly as important as the data
utilized for pre-training Prod2BERT, overfitting
proved to be a challenging aspect throughout our
fine-tuning experiments. Fourth, by comparing the
results of our best method against the model learnt
with prod2vec embeddings, we observed prod2vec

11This is consistent with Peters et al. (2019), which states
that inner layers of a pre-trained BERT encode more transfer-
able features.

embeddings can only provide limited values for in-
tent estimation and the LSTM-based model stops to
improve very quickly; in contrast, the features pro-
vided by Prod2BERT embeddings seem to encode
more valuable information, allowing the model to
be trained for longer epochs and eventually reach-
ing a higher accuracy score. As a more general
consideration – reinforced by a qualitative visual
assessment of clusters in the resulting vector space
–, the performance gap is very small, especially con-
sidering that long training and extensive optimiza-
tions are needed to take advantage of the contextual
embeddings.

6 Conclusion and Future Work

Inspired by the success of Transformer-based
models in NLP, this work explores contextualized
product representations as trained through a
BERT-inspired neural network, Prod2BERT.
By thoroughly benchmarking Prod2BERT
against prod2vec in a multi-shop setting, we
were able to uncover important insights on the
relationship between hyperparameters, adaptation
strategies and eCommerce performances on one
side, and we could quantify for the first time quality
gains across different deployment scenarios, on
the other. If we were to sum up our findings for
interested practitioners, these are our highlights:

1. Generally speaking, our experimental set-
ting proved that pre-training Prod2BERT with
Mask Language Modeling can be applied suc-
cessfully to sequential prediction problems
in eCommerce. These results provide inde-
pendent confirmation for the findings in Sun
et al. (2019), where BERT was used for
in-session recommendations over academic
datasets. However, the tighter gap on down-
stream tasks suggests that Transformers’ abil-
ity to model long-range dependencies may
be more important than pure representational
quality in the NEP task, as also confirmed by
human inspection of the product spaces (see
Appendix A for comparative t-SNE plots).

2. Our investigation on adapting pre-trained con-
textual embeddings for downstream tasks fea-
tured several strategies in feature extraction
and fine-tuning. Our analysis showed that
feature-based adaptation leads to the peak per-
formance, as compared to its fine-tuning coun-
terpart.
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3. Dataset size does indeed matter: as evi-
dent from the performance difference in Ta-
ble 5, Prod2BERT shows bigger gains with
the largest amount of training data avail-
able. Considering the amount of resources
needed to train and optimize Prod2BERT
(Section 5.1.1), the gains of contextualized
embedding may not be worth the investment
for shops outside the top 5k in the Alexa
ranking12; on the other hand, our results
demonstrate that with careful optimization,
shops with a large user base and significant
resources may achieve superior results with
Prod2BERT.

While our findings are encouraging, there are
still many interesting questions to tackle when
pushing Prod2BERT further. In particular, our re-
sults require a more detailed discussion with re-
spect to the success of BERT for textual represen-
tations, with a focus on the differences between
words and products: for example, an important as-
pect of BERT is the tokenizer, that splits words into
subwords; this component is absent in our setting
because there exists no straightforward concept of
“sub-product” – while far from conclusive, it should
be noted that our preliminary experiments using cat-
egories as “morphemes” that attach to product iden-
tifiers did not produce significant improvements.
We leave the answer to these questions – as well
as the possibility of adapting Prod2BERT to even
more tasks – to the next iteration of this project.

As a parting note, we would like to emphasize
that Prod2BERT has been so far the largest and
(economically) more significant experiment run
by Coveo: while we do believe that the methodol-
ogy and findings here presented have significant
practical value for the community, we also recog-
nize that, for example, not all possible ablation stud-
ies were performed in the present work. As Bianchi
and Hovy (2021) describe, replicating and compar-
ing some models is rapidly becoming prohibitive in
term of costs for both companies and universities.
Even if the debate on the social impact of large-
scale models often feels very complex (Thompson
et al., 2020; Bender et al., 2021) – and, sometimes,
removed from our day-to-day duties – Prod2BERT
gave us a glimpse of what unequal access to re-
sources may mean in more meaningful contexts.
While we (as in “humanity we”) try to find a solu-
tion, we (as in “authors we”) may find temporary

12See https://www.alexa.com/topsites.

solace knowing that good ol’ prod2vec is still pretty
competitive.

7 Ethical Considerations

User data has been collected by Coveo in the pro-
cess of providing business services: data is col-
lected and processed in an anonymized fashion, in
compliance with existing legislation. In particular,
the target dataset uses only anonymous uuids to
label events and, as such, it does not contain any
information that can be linked to physical entities.
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Matthieu Harbich, Gaël Bernard, P. Berkes,
B. Garbinato, and P. Andritsos. 2017. Discov-
ering customer journey maps using a mixture of
markov models. In SIMPDA.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
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A Visualization of Session Embeddings

Figures 3 to 6 represent browsing sessions pro-
jected in two-dimensions with t-SNE (van der
Maaten and Hinton, 2008): for each browsing ses-
sion, we retrieve the corresponding type (e.g. shoes,
pants, etc.) of each product in the session, and use
majority voting to assign the most frequent prod-
uct type to the session. Hence, the dots are color-
coded by product type and each dot represents a

Figure 3: T-SNE plot of browsing session vector space
from Shop A and built with the first hidden layer of
pre-trained Prod2BERT.

Figure 4: T-SNE plot of browsing session vector space
from Shop A and built with prod2vec embeddings.
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Figure 5: T-SNE plot of browsing session vector space
from Shop B and built with the first hidden layer of
pre-trained Prod2BERT.

Figure 6: T-SNE plot of browsing session vector space
from Shop B and built with prod2vec embeddings.

unique session from our logs. It is easy to notice
that, first, both contextual and non-contextual em-
beddings built with a smaller amount of data, i.e.
Figures 3 and 4 from Shop A, have a less clear
separation between clusters; moreover, the quality
of Prod2BERT seems even lower than prod2vec, as
there exists a larger central area where all types are
heavily overlapping. Second, comparing Figure 5
with Figure 6, both Prod2BERT and prod2vec im-
prove, which confirms Prod2BERT, given enough
pre-training data, is able to deliver better separa-
tions in terms of product types and more meaning-
ful representations.


