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Abstract

While numerous methods have been proposed
as defenses against adversarial examples in
question answering (QA), these techniques are
often model specific, require retraining of the
model, and give only marginal improvements
in performance over vanilla models. In this
work, we present a simple model-agnostic ap-
proach to this problem that can be applied di-
rectly to any QA model without any retraining.
Our method employs an explicit answer can-
didate reranking mechanism that scores candi-
date answers on the basis of their content over-
lap with the question before making the final
prediction. Combined with a strong base QA
model, our method outperforms state-of-the-
art defense techniques, calling into question
how well these techniques are actually doing
and strong these adversarial testbeds are.

1 Introduction

As reading comprehension datasets (Richardson
et al., 2013; Weston et al., 2015; Hermann
et al., 2015a; Rajpurkar et al., 2016; Joshi et al.,
2017) and models (Sukhbaatar et al., 2015; Seo
et al., 2016; Devlin et al., 2019) have advanced,
QA research has increasingly focused on out-of-
distribution generalization (Khashabi et al., 2020;
Talmor and Berant, 2019) and robustness. Jia and
Liang (2017) and Wallace et al. (2019) show that
appending unrelated distractors to contexts can eas-
ily confuse a deep QA model, calling into ques-
tion the effectiveness of these models. Although
these attacks do not necessarily reflect a real-world
threat model, they serve as an additional testbed for
generalization: models that perform better against
such adversaries might be expected to generalize
better in other ways, such as on contrastive exam-
ples (Gardner et al., 2020).

In this paper, we propose a simple method for
adversarial QA that explicitly reranks candidate
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answers predicted by a QA model according to a
notion of content overlap with the question. Specif-
ically, by identifying contexts where more named
entities are shared with the question, we can ex-
tract answers that are more likely to be correct in
adversarial conditions.

The impact of this is two-fold. First, our pro-
posed method is model agnostic in that it can be
applied post-hoc to any QA model that predicts
probabilities of answer spans, without any retrain-
ing. Second but most important, we demonstrate
that even this simple named entity based question-
answer matching technique can be surprisingly
useful. We show that our method outperforms
state-of-the-art but more complex adversarial de-
fenses with both BiDAF (Seo et al., 2016) and
BERT (Devlin et al., 2019) on two standard adver-
sarial QA datasets (Jia and Liang, 2017; Wallace
et al., 2019). The fact that such a straightforward
technique works well calls into question how reli-
able current datasets are for evaluating actual ro-
bustness of QA models.

2 Related Work

Over the years, various methods have been pro-
posed for robustness in adversarial QA, the most
prominent ones being adversarial training (Wang
and Bansal, 2018; Lee et al., 2019; Yang et al.,
2019b), data augmentation (Welbl et al., 2020) and
posterior regularization (Zhou et al., 2019). Among
these, we compare our method only with tech-
niques that train on clean SQuAD (Wu et al., 2019;
Yeh and Chen, 2019) for fairness. Wu et al. (2019)
use a syntax-driven encoder to model the syntactic
match between a question and an answer. Yeh and
Chen (2019) use a prior approach (Hjelm et al.,
2019) to maximize mutual information among con-
texts, questions, and answers to avoid overfitting
to surface cues. In contrast, our technique is more
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Context - ¢

The Broncos took an early lead in
Super Bowl 50 and never trailed.
Newton was limited by Denver's
defense, which sacked him seven
times and forced him into three
turnovers, including a fumble
which they recovered for a
touchdown. Denver linebacker
Von Miller was named Super Bowl|
MVP, recordingsolo tackles,
2% sacks, and two forced fumbles.
Otto Baker had 1 tackle in Champ
Bowl 40.

Question - ¢

NER( 1. )

Denver linebacker Von Miller was named Super Bowl MVP,

NER( 7 )

What was the number of solo tackles

Otto Baker had 1 tackle in Champ Bowl 40 .

GPE (Sks €x) Person Event

recording five solo tackles, 2% sacks, and two forced fumbles.

Cardinal Cardinal Cardinal

NER( 1)
(s1,€1)
Cardinal

Person Event

S~

thatVon Miller had in Super Bowl 50 ? (s1,€1)

Event

Event

Figure 1: Our model agnostic answer reranking system (MAARS). Given each answer option (right column), we
extract named entities and compare them to named entities in the question. The overlap is used as a reranking
feature to choose the final answer. The ground truth answer containing sentence is highlighted in green, the ground
truth answer is boxed and the distractor sentence is highlighted in red.

closely related to retrieval-based methods for open-
domain QA (Chen et al., 2017; Yang et al., 2019a)
and multi-hop QA (Welbl et al., 2018; De Cao et al.,
2019): we show that shallow matching can improve
the reliability of deep models against adversaries
in addition to these more complex settings.

Methods for (re)ranking of candidate pas-
sages/answers have often been explored in the con-
text of information retrieval (Severyn and Mos-
chitti, 2015), content-based QA (Kratzwald et al.,
2019) and open-domain QA (Wang et al., 2018;
Lee et al., 2018). Similar to our approach, these
methods also exploit some measure of coverage of
the query by the candidate answers or their sup-
porting passages to decide the ranks. However, the
main motive behind ranking in such cases is usu-
ally to narrow down the area of interest within the
text to look for the answer. On the contrary, we use
a reranking mechanism that allows our QA model
to ignore distractors in adversarial QA and can
also provide model- and task-agnostic behavior un-
like the commonly used learning-based (re)ranking
mechanisms.

In yet another related line of research, (Chen
et al., 2016; Kaushik and Lipton, 2018) reveal the
simplistic nature and certain important shortcom-
ings of popular QA datasets. Chen et al. (2016)
conclude that the simple nature of the questions
in the CNN/Daily Mail reading comprehension
dataset (Hermann et al., 2015b) allows a QA model
to perform well by extracting single-sentence rela-
tions. Kaushik and Lipton (2018) perform an ex-
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tensive study with multiple well-known QA bench-
marks to show several troubling trends: basic
model ablations, such as making the input question-
or passage-only, can beat the state-of-the-art perfor-
mance, and the answers are often localized in the
last few lines, even in very long passages, thus pos-
sibly allowing models to achieve very strong per-
formance through learning trivial cues. Although
we also question the efficacy of well-known ad-
versarial QA datasets in this work, our core focus
is on exposing certain issues specifically with the
design of the adversarial distractors rather than the
underlying datasets.

3 Approach

Neural QA models are usually trained in a su-
pervised fashion on labeled examples of contexts,
questions, and answers to predict answer spans; we
represent these as (s, ) tuples, where s represents
the sentence and e the candidate span. Prior work
(Lewis and Fan, 2019; Mudrakarta et al., 2018; Yeh
and Chen, 2019; Chen and Durrett, 2019) has noted
that the end-to-end paradigm can overfit superficial
biases in the data causing learning to stop when
simple correlations are sufficient for the model to
answer a question confidently. By explicitly en-
forcing content relevance between the predicted
answer-containing sentence and the question, we
can combat this poor generalization.

Specifically, we explicitly score the candidate
sentences as per the word-level overlap in named
entities common to both the question and a sen-



Model Original AddSent AddOneSent
g Adversarial Mean Adversarial Mean
BERT-S 89.4/82.1 40.9/35.9 68.0/61.7 54.6/48.4 74.1/67.2
BERT-S + QAInfoMax | 87.7/82.1 41.8/37.2 67.5/62.3 55.5/49.7 73.5/67.8
BERT-S + MAARS 80.2/71.1 61.2/53.6 71.8/63.4 71.3/63.5 76.3/67.8

Table 1: AddSent and AddOneSent results with BERT-S. MAARS outperforms the vanilla and baseline models
on adversarial data but its performance drops a bit on the original data due to constrained reranking of answers.

tence. We refer to our method as Model Agnostic
Answer Reranking System (MAARS).

Figure 1 illustrates the workflow of MAARS.
MAARS can be applied to any arbitrary QA model
that predicts answer span probabilities. First, we
use the base QA model to compute the n best
answer spans A = {(s1,€1),...,(sn,ep)} for a
context-question pair (c, q¢) where n is a hyperpa-
rameter. Any answer span not lying in a single
sentence is broken into subspans that lie in separate
sentences and A is updated accordingly.

Next, we extract the set of candidate sentences
L from the context containing these n answer
spans. For the question and each sentence, we
compute a set of named entity chunks using an
open-source AllenNLP (Gardner et al., 2017) NER
model. We then compute the set of words inside
named entity chunks from each candidate sentence
NER(lx) V I, € £ and the question NER(g); note
that NER(:) refers to a set of words and not a set
of named entities. Each candidate sentence [, is
then given a score SC(l;) = NER(l;) N NER(q)
and the answer spans are reranked per the scores
of the sentences containing them. In the case of
ties or if there are multiple spans in the same candi-
date sentence, they are reranked among themselves
according to the original ordering as per the QA
model. Finally, the span with the highest rank after
reranking is chosen as the final answer.

Compared to the base QA model, this approach
only relies on an additional NER model that can be
used without any retraining of the base model. Note
that the architecture doesn’t depend on any specific
tagger, and the other content matching models like
word matching could also be used in the system
here.

4 Experiments

4.1 Evaluation settings

Datasets and baselines. We evaluate MAARS
on two well-known adversarial QA datasets built
on top of SQuAD vl1.1: Adversarial SQuAD (Jia
and Liang, 2017) and Universal Adversarial Trig-
gers (Wallace et al., 2019). For brevity, we don’t
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.. AddSent
Model ‘ Original ‘ Adv. Mean
BiDAF 72.4/62.4 | 21.4/16.0 49.9/42.0
BiDAF + SLN 72.3/62.4 | 22.8/17.2  50.5/42.5
BiDAF + MAARS | 72.3/62.9 | 45.4/38.0  60.4/51.9

Table 2: AddSent results with BiDAF. Here, MAARS
beats the vanilla and baseline models across all metrics.

include the adversarial distraction generation pro-
cess for either of the datasets and point the inter-
ested reader to the original papers for exact details.
For Adversarial SQuAD, we test MAARS with
both BiDAF and BERT and compare against state-
of-the-art baselines on adversary types used in the
original papers. To the best of our knowledge, there
is no pre-existing literature that proposes a defense
technique for Universal Triggers. We also find that
it fails to degrade the performance of our vanilla
BERT model, probably because the attacks were
originally generated for BiDAF. Thus, we only eval-
uate on this dataset in the BiDAF setting, using all
four triggers Who, When, Where and Why.

For BiDAF, we compare MAARS against the
Syntactic Leveraging Network (SLN) by Wu
et al. (2019) on AddSent. SLN encodes predicate-
argument structures from the context and question,
a conceptually similar structure matching approach
as MAARS but trained end-to-end with many more
parameters. For BERT, we benchmark MAARS
against QAInfoMax (Yeh and Chen, 2019) on
AddSent and AddOneSent. In addition to the
standard loss for training QA models, QAInfoMax
adds a loss to maximize the mutual information
between the learned representations of words in
context and their neighborhood, and also between
those of the answer spans and the question.

Implementation details. We use the uncased
base (single) pretrained BERT from Hugging-
Face (Wolf et al., 2019) and finetune it using Adam
with weight decay (Loshchilov and Hutter, 2019)
optimizer and an initial learning rate of 3¢~ on
SQuAD (Rajpurkar et al., 2016) v1.1 for 2 epochs
for both vanilla BERT and BERT + QAInfoMax.
We set the training batch size to 5 and the propor-



Adv. type | BiDAF | BiDAF + MAARS

Who 74.4/67.3 76.3/68.9
When 80.1/75.5 81.8/77.1
Where 63.5/52.8 68.8/56.7
Why 51.9/34.1 51.6/34.1
Table 3: Results on Universal Triggers with

BiDAF (BERT-specific triggers unavailable publicly).
MAARS is better than the vanilla model for most ad-
versaries but with smaller performance gains than Ad-
versarial SQuAD.

tion of linear learning rate warmup for the opti-
mizer to 10%.

Our BiDAF (Seo et al., 2016) model has a hid-
den state of size 100 and takes 100 dimensional
GloVe (Pennington et al., 2014) embeddings as in-
put. For character-level embedding, it uses 100 one-
dimensional convolutional filters, each with a width
of 5. A uniform dropout (Srivastava et al., 2014)
of 0.2 is applied at the CNN layer for character
embedding, all LSTM (Hochreiter and Schmidhu-
ber, 1997) layers and at the layer before the logits.
We train it with AdaDelta (Zeiler, 2012) and an
initial learning rate of 0.5 for 50 epochs. We set
the training batch size to 128. For our Syntactic
Leveraging Network, we follow the exact hyperpa-
rameter settings of (Wu et al., 2019).

Other hyperparameters common to both BERT
and BiDAF include an input sequence length of
400, maximum query length of 64, and 40 predicted
answer spans per context-question pair. For NER
tagging, we use an ELMo-based implementation
from AllenNLP (Gardner et al., 2017) that has been
finetuned on CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003). Finally, we set the value of n
(the number of candidates considered for reranking)
in MAARS to 10 across all our experiments.

4.2 Results

In all our results tables, we report the macro-
averaged F1 and exact match (EM) scores separated
by a slash in each cell. In Tables 1 and 2, Original
and Adversarial (Adv.) refer to a model’s per-
formance on only clean and only adversarial data
respectively. Mean denotes the weighted mean of
the Original and Adversarial scores, weighted by
the respective number of samples in the dataset.
Both AddSent and AddOneSent have 1000 clean
and 787 adversarial instances.

Adversarial SQuAD. Table 1 shows the results
with BERT-single (-S) on AddSent and AddOne-
Sent. MAARS outperforms both the vanilla model
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and QAInfoMax on both Adversarial and Mean
metrics. The performance gains are also substan-
tial, especially on Adversarial where MAARS im-
proves F1 over QAInfoMax by about 20 points on
AddSent and 16 points on AddOneSent. This clearly
shows that our method is much more capable of
avoiding distractors in data and it is a much stronger
defense technique in this setting. For both QAlnfo-
Max and MAARS there is a drop in performance
on clean data, but the drop for MAARS is larger.
This drop naturally arises from the simplicity of
the heuristic: matching words in named entities
with the question sometimes assigns a higher score
to a candidate sentence which has a higher over-
lap in terms of named entities with the question
but doesn’t contain the right answer. One such ex-
ample where MAARS fails to pick the correct top
candidate after reranking is shown in fig. 2a.

Table 2 details the results with BiDAF on
AddSent." Here, we also see significant perfor-
mance gains over the vanilla model and the SLN
baseline. MAARS results in an increase in ad-
versarial F1 by 24 points over vanilla BIDAF and
about 22 points over BiDAF + SLN. Interestingly,
the performance on clean data doesn’t drop as in
the case of BERT. This difference may be a result
of BiDAF using more surface word matching itself,
leading to a closer alignment between its predic-
tions and the reranker’s choices. However, note
that our simple heuristic still performs well even
with a complex model like BERT.

Discussion. Overall, our results on this dataset
look promising for both BERT and BiDAF despite
our method’s inherent simplicity. This raises two
questions. First, how effective is the Adversarial
SQuAD dataset as a testbed for adversarial attacks?
When a simple method can achieve large gains, we
cannot be sure that more complex methods are truly
working as advertised rather than learning such
heuristics. Second, how effective are these current
defenses? They underperform a simple heuristic in
this setting; however, because the full breadth of
possible adversarial settings has not been explored,
it’s hard to get a holistic sense of which methods
are effective. Additional settings are needed to
fully contrast these techniques.

Universal Adversarial Triggers. We create a
dataset that has purely adversarial instances using
the open-source code from Wallace et al. (2019)

'BiDAF + MAARS gives a similar FI/EM trend on Ad-
dOneSent (Adversarial: 46.1/38.5, Mean: 60.8/52.1).



Context: In Europe, the North American theater ... separate
name. The entire international conflict is known as the Seven
Years' War. "Seven Years" ... 1763. These dates do not
correspond with the fighting on mainland North America,
where the fighting between the two colonial powers was
largely concluded in six years, from the Battle of Jumonville
Glen in 1754 to the capture of Montreal in 1760. The bloody
fighting lasted throughout the Five Years War.

Question: How long did the fighting last in Seven Years War?

(a) Wrong top candidate picked

Context: Under the terms of the Scotland Act 1978, ... total
electorate. The 1979 Scottish devolution referendum to
establish a devolved Scottish Assembly failed. Although the
vote ... to, vote. The Scottish Assembly learned about the
news when it was established in 1975.

Question: How did trying to establish a devolved Scottish
Assembly go in 19797

(b) Lack of attention to question type

Context: By the opening of the 2008 General Conference,
total UMC membership was estimated at 11.4 million, with
about |7.9 million in the U.S. and 3.5 million overseas.
Significantly, about ... United States. u.s. total by total total
by opening was membership 15.

Question: By the opening of the 2008 General Conference,
what was the total UMC membership in the US?

(c) Multiple similar spans co-occur

Figure 2: Common failure cases for MAARS. The distractor sentence is highlighted in red, the predicted answer

is underlined and the ground truth answer is boxed.

and present the results in Table 3. In particular, we
append the following distractors for different ad-
versary types. The target answers in the distractors
have been bolded.

e Who: how ]| ] there donald trump ; who who

did

When: ; its time about january 2014 when may
did british

o Where: ; : ° where new york may area where
they
e Why: why how ; known because : to kill ameri-

can people .

Due to unavailability of prior work on trigger-
specific defense and BERT-specific triggers, we re-
port only vanilla BiDAF and BiDAF with MAARS.
F1 drops by a small amount (0.3 points) from
BiDAF to BiDAF with MAARS while the EM
score doesn’t change at all for Why. The scores
improve by around 1-2 points for the other adver-
sary types. However, the gains are much lower
in comparison to Adversarial SQuAD. These re-
sults indicate the promise of simple defenses, but
more exhaustive evaluation of defenses on different
types of attacks is needed to draw a more complete
picture of the methods’ generalization abilities.

4.3 Failure cases

Besides the instances where the primary error
source is picking a wrong top candidate (refer
to Fig. 2a), we notice two other common failure
case types with MAARS. One directly stems from
MAARS’ inability to attend to the question type
during reranking. In Fig. 2b, the question word is
How but MAARS picks Scottish devolution refer-
endum which is not the appropriate type of answer
here. The other type of failure occurs when mul-
tiple similar span types are present in the same
candidate, thus creating ambiguity for the base QA
model. In the example shown in Fig. 2c, the QA
model fails to distinguish between the two spans
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and retrieve specific information about the US. Bet-
ter base QA models may resolve these issues, or a
more powerful reranker could also be used. How-
ever, rerankers learned end-to-end would suffer
from the same issues as BERT and require addi-
tional engineering to avoid overfitting the training
data.

5 Conclusion

In this work, we introduce a simple and model ag-
nostic post-hoc technique for adversarial question
answering (QA) that predicts the final answer af-
ter re-ranking candidate answers from a generic
QA model as per their overlap in relevant content
with the question. Our results show the potential of
our method through large performance gains over
vanilla models and state-of-the-art methods. We
also analyze common failure points in our method.
Finally, we reiterate that our main contribution is
not the heuristic defense itself but rather its abil-
ity to paint a more complete picture of the current
state of affairs in adversarial QA. We seek to il-
lustrate that our current adversaries are not strong
and generic enough to attack a wide variety of QA
methods, and we need a broader evaluation of our
defenses to meaningfully gauge our progress in
adversarial QA research.
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