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Abstract

Sentiment tasks such as hate speech detection
and sentiment analysis, especially when per-
formed on languages other than English, are
often low-resource. In this study, we exploit
the emotional information encoded in emojis
to enhance the performance on a variety of
sentiment tasks. This is done using a trans-
fer learning approach, where the parameters
learned by an emoji-based source task are
transferred to a sentiment target task. We anal-
yse the efficacy of the transfer under three con-
ditions, i.e. i) the emoji content and #4) label
distribution of the target task as well as ii4) the
difference between monolingually and multi-
lingually learned source tasks. We find i.a. that
the transfer is most beneficial if the target task
is balanced with high emoji content. Monolin-
gually learned source tasks have the benefit of
taking into account the culturally specific use
of emojis and gain up to F1 40.280 over the
baseline.

1 Introduction

Many natural language processing (NLP) tasks suf-
fer from a lack of available data. This is especially
true for sentiment tasks, such as hate speech (HS)
detection, which depend on the availability of man-
ually annotated data. When moving to languages
other than English, many sentiment tasks quickly
become very low-resourced.

On the other hand, noisy social media content is
available in abundance and many sentiment tasks
are based on user comments on such platforms.
Emojis can be a valuable source for the distant
supervision of sentiment tasks, as they correlate
with the underlying emotion of a comment. In this
study, we aim to exploit the emotional information
encoded in emojis to improve the performance on
various sentiment tasks using a transfer learning
approach from an emoji-based source task (ST)
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to a sentiment target task (TT). Previous work
has focused on the transfer from predicting single
emojis (Felbo et al., 2017) or strictly pre-defined
emoji-clusters (Deriu et al., 2016). However, pre-
defined emoji clusters do not take into account the
culturally diverse usage of emojis (Park et al., 2012;
Kaneko et al., 2019). We therefore introduce data-
driven supervised and unsupervised emoji clusters
and compare these with single emoji prediction
tasks. Specifically, we analyze the efficacy of
the transfer from a single emoji or (un)supervised
emoji cluster prediction ST to a sentiment TT un-
der three conditions, i.e. i) low vs. high amount of
emoji content present in TT, ii) balanced vs. unbal-
anced label distribution in TT and iii) monolin-
gually or multilingually learned ST. The first two
conditions are based on typical qualities of senti-
ment corpora, which tend to be unbalanced in their
label distribution with varying degrees of emoji
content depending on the source of the data. The
third condition is relevant for languages for which
a TT is low-resource and which might benefit from
a multilingually learned ST.

In Section 2 we give an outline of related work,
followed by the introduction of our method (Sec-
tion 3). The experimental setup in Section 4
details the data and models used as well as the
(un)supervised clusters generated. In Section 5 we
describe our results and conclude in Section 6.

2 Related Work

Emojis have been used as a type of distant super-
vision using pre-defined emotion classes based on
psychological models (Suttles and Ide, 2013), bi-
nary (positive/negative) classes (Deriu et al., 2016)
or a set of single emojis (Felbo et al., 2017). How-
ever, such pre-defined emoji classes often do not ac-
count for the culturally diverse use of emojis (Park
et al., 2012; Kaneko et al., 2019). In contrast, our
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work does not pre-define the emotion classes found
in emojis and instead learns these classes, or clus-
ters, from the data itself. While our and the above
approaches focus on exploiting emojis as additional
labelled data, e.g. in a transfer setting, emoji em-
beddings (Eisner et al., 2016) have been used as
additional features in downstream tasks such as
sarcasm detection (Subramanian et al., 2019).
Transfer learning has recently been driven by
transformer-based (Vaswani et al., 2017) language
models (LM) such as BERT (Devlin et al., 2019)
or XLM-R (Conneau et al., 2020). When learning
a source task on these models, the representations
in the encoder change to become informative to
the task at hand. In a parameter transfer setting,
a new but related target task then profits from the
learned representations in the encoder. Transfer
learning has been applied to sentiment analysis
(SA) using parameter transfer methods such as pre-
trained sentiment embeddings (Dong and de Melo,
2018) or machine translation-based context vectors
(McCann et al., 2017). Our approach forms part of
the parameter transfer approach, as we use encoder
representations learned using emoji-based source
tasks and transfer these to sentiment target tasks.
Hate speech classification and sentiment anal-
ysis have in recent years been the object of many
shared tasks (Rosenthal et al., 2017; Wiegand,
2018; Basile et al., 2019; Mandl et al., 2019; Ogrod-
niczuk and Lukasz Kobylifiski, 2019). Classifica-
tion models for these tasks often rely on feature
engineering and statistical methods such as naive-
bayes (Saleem et al., 2016), logistic regression over
subwords (Waseem and Hovy, 2016) or neural ap-
proaches including convolutional neural networks
(Park and Fung, 2017) or, as in our case, the repre-
sentations of large LMs (Yang et al., 2019).

3 Method: Emoji-Prediction

For our parameter transfer, we rely on a single
transformer-based LM which is shared among dif-
ferent tasks. A sequence x € X is featurized by
reading it into the encoder of the LM and retrieving
its last hidden state. A linear layer is then used
as a predictive function f : X — Y to predict
labels y € Y. A task T = {Y, f(x)} is then a set
of labels Y and the predictive function f over the
instances in X.

We follow a transfer learning approach, where
source task Tg is an emoji-based classification task,
i.e. given a sequence, predict the emoji (class) that

it originally contained. Target task 77 is a down-
stream task such as SA or HS (Section 4.1). Each
task has its own set of instances X, labels Y and
predictive function f, while the feature-generating
LM stays the same. The error of predictor f is
back-propagated to the LM, which allows us to
transfer learned parameters from 7g to 7.

3.1 Source Tasks (ST)

We focus on 5 different emoji-based STs, that can
be divided into two types, emoji prediction (EP)
and emoji cluster prediction. To sample emojis for
EP or create clusters, we rely on a large collection
of user generated comments. EP is a multi-class
prediction task over the 64 most common emo-
jis identified in the collection of comments. Con-
cretely, given a tweet with all emojis removed, the
classifier has to predict which of the 64 emojis was
originally contained within it.

The emoji cluster prediction tasks can be su-
pervised (PMI-{Target,Swear}) or unsupervised
(KMeans-{2,3}). In this case the task is simplified:
Given a tweet with all emojis removed, predict the
cluster to which the emoji originally contained in
the tweet belonged.

Unsupervised Clusters In order to account for
the cultural differences in the use of emojis, we
learn emoji clusters directly from the user gen-
erated data. We generate 50-dimensional vector
representations over the tokens in the collection of
user comments using the continuous bag of words
(Mikolov et al., 2013) approach. We then perform
k-means clustering with 6 target clusters on the
representations of emojis that occurred > 1000
times. These clusters are manually merged into 2
(positivelnegative) and 3 (positive/negative/neutral)
clusters to create the binary KMeans-2 and ternary
KMeans-3 emoji cluster prediction STs respec-
tively. Below a comment to be classified as pos-
itive according to the KMeans-{2,3} tasks, as it
originally contained an emoji that belonged to the
positive cluster:

So beautiful and great advice — positive

Supervised Clusters As an alternative to the
completely unsupervised clusters, we exploit the
mutual information between emojis and swear
words as a type of distant supervision for HS tasks.
We calculate the pointwise mutual information
(PMI) between comments in our collection of user
content (not) containing slurs and the emojis that
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appear. An emoji is in the slur cluster if its PMI is
larger to comments containing swearwords, other-
wise it is in the neutral cluster. PMI-Swear is then
a binary classification task based on the resulting
slur/neutral emoji clusters.

While the unsupervised emoji cluster predic-
tion STs and PMI-Swear are source-oriented, i.e.
learned on user generated content, we also explore
target-oriented clusters that rely on the shared infor-
mation between emojis and the labels in each of the
TTs. Concretely, we calculate the PMI between the
label of an instance in the respective TT training
data and the emojis it contains. The emoji is placed
into the cluster of the label to which its PMI value
is largest. PMI-Target is the ST based on these
target-oriented emoji clusters.

3.2 Target Tasks (TT)

Once the classifier has been fully trained on the ST,
and thus has adapted the underlying LMs represen-
tations to fit the ST at hand, we discard it and train a
new classifier on top of the enriched LM to predict
the TT. We evaluate this transfer from the various
STs on two main categories of TTs, namely Hate
Speech Detection and Sentiment Analysis. Given a
user generated comment, Hate Speech Detection
is the task of classifying the comment as either hate
or none. Note, however, that concrete label names
(e.g. offense, hate, harmful) may differ across spe-
cific HS tasks.

While HS in our case is a binary classification
task, Sentiment Analysis is a ternary classifica-
tion task which takes as input a user generated
comment and classifies it as either positive, neu-
tral or negative. In the following an example from
the Sentiment Analysis in Twitter (Rosenthal et al.,
2017) task:

Finally starting the 5th season of Dexter.
See ya later, weekend! —positive

Both HS and SA are sentiment-based tasks, e.g.
hate towards a group of people or positive senti-
ment towards a product etc. We therefore take these
two types of tasks to have the potential to benefit
from the emotion information encoded in emojis.
In the following sections we explore the conditions
under which the transfer from an emoji-based ST
to a sentiment-based TT is beneficial for the TT.

4 Experimental Setup

We describe the data used for the STs and TTs
respectively (Section 4.1), followed by the specifi-
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Corpus # Tweets # Emojis
Train Test

Target Tasks (TT)

HS-DE 1158/2439 970/2061 853 (7.2%)
SA-DE 1346/900/3676 83/49/197 166 (2%)
HS-ES 1857/2643 660/940 957 (14.5%)
SA-EN 18481/7551/21542 2375/3972/5937 1211 (1.9%)
SA-AR 653/1022/1336 1514/2222/2364 2126 (22.5%)
HS-PL 812/8726 134/866 1733 (13.7%)
Source Tasks (ST)

TW-DE 16M - 3M (10%)
TW-EN 323M - 82M (17%)
TW-ES 320M - 43M (9%)
TW-PL ™ - IM (12%)
TW-AR 183M - 56M (20%)

Table 1: Number of train, test (for TT) and collected
(for ST) tweets as well as number of (non-unique)
emojis contained in each corpus. Percentage of train-
ing tweets containing emojis in brackets. TTs with
label distribution for HS (hate/none) and SA (posi-
tive/negative/neutral) tasks.

cations of the encoding LM (Section 4.2) and the
emoji cluster creation (Section 4.3).

4.1 Data

Source Tasks We use a collection! of tweets
that has been collected from the Twitter stream
between 2011 and 2019 as our corpus needed to
sample emojis and create emoji clusters for the
STs. We perform language identification using
the polyglot? library over the tweets to create a
corpus for German, English, Spanish, Polish and
Arabic (TW-{DE.EN,ES,PL,AR}) respectively.

To automatically identify swear words for PMI-
Swear, we use a German and a multilingual
swear word collection, namely WoltLab® and
Hatebase®. In total, we collected 785 slurs for
German, and 1531, 140, 306, 79 for English, Span-
ish, Polish and Arabic respectively.

Target Tasks We work with 6 target tasks in to-
tal, 3 HS and 3 SA tasks, taking into account their
emoji content, class (im)balance and language.
For German, we use GermEval 2018 (Wiegand,
2018) Task 1 (offenselother) (HS-DE) and SB10k
(Cieliebak et al., 2017) (positive/negative/neutral)
(SA-DE). For English, we use Sentiment Anal-
ysis in Twitter (Rosenthal et al., 2017) (posi-
tivelnegativelneutral) (SA-EN). Sentiment Anal-

'www.archive.org/details/twitterstream
Zwww . github.com/aboSamoor/polyglot
Swww.woltlab.com/attachment/

3615-schimpfwortliste—-txt/
“www.hatebase.org/
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ysis in Twitter is also used for Arabic (SA-AR).
For Spanish we use HatEval (Basile et al., 2019)
(hate/none) (HS-ES) and for Polish, we use PolEval
(Ogrodniczuk and Lukasz Kobyliniski, 2019) Task
6 (harmful/none) (HS-PL). For all of the above, we
use the original train/test splits. While the HA tasks
have different label names, we normalize these to
be hate/none across all tasks. For all SA, the labels
to be predicted are positive/negative/neutral.

In Table 1, we report the label distribution,
hate/none for HS and positive/negative/neutral for
SA, across all TT training and test sets, as well
as ST Twitter corpora sizes. For both ST and TT
corpora, we also report the percentage as well as
total number of tweets containing emojis.

Preprocessing All data sets undergo the
same preprocessing. Tweets are tokenized
using the NLTK (Bird and Loper, 2004)
TweetTokenizer and user mentions, retweets
and punctuation are removed. Repeated characters
are shortened. We use token frequencies to
determine the standard orthography of a word (e.g.

coooool — cool instead of col).

4.2 Model Specifications

For the monolingual (German) experiments,
we use the German BERT®> (BERT-DE)
and for multilingual experiments we use
Bert-Base-Multilingual-Cased (BERT-
M) as the LM to encode the tweets. We base
our code® on the simpletransformers’
sequence classification implementations of the
above models. Each classification task is trained
for a maximum of 10 epochs using early stopping
over the validation accuracy with § = 0.01 and
patience 3. Training was performed on a single
Titan-X GPU, which took between 1 and 6 hours
depending on the data size. We evaluate the
resulting classifiers using the Macro F1 measure.

4.3 Clusters

We describe the creation of the emoji clusters used
for the emoji cluster STs.

Unsupervised The unsupervised clusters (Sec-
tion 3) were trained on TW-DE and the concate-
nation of TW-{DE,EN,ES,PL,AR} for the mono-

Swww . deepset.ai/german-bert
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Figure 1: Happy (left) and unhappy (right) emoji clus-
ters obtained by KMeans on TW-DE.

and multilingual experiments respectively. In both
cases, this yielded clusters that can be manually
categorized as happy, love, fun, nature, unhappy,
other (Figure 1). For KMeans-3, {happy, fun, love}
were merged to positive, {other, nature} to neutral
and {unhappy} was used as the negative class. For
KMeans-2, the neutral class is ignored.

Supervised The PMI-Target clusters are trained
on the respective TT training data. The slur lists
are used to identify the slurs in the twitter cor-
pora. PMI-Swear is then trained on TW-DE and the
concatenation of TW-{DE,EN,ES,PL,AR} for the
mono- and multilingual experiments respectively.

5 Results

We train each model over 10 seeded runs and report
the averaged Macro F1 with standard error (Figure
2). For each TT, we train a baseline, which is
the same pre-trained BERT-{DE,M} model that
is now fine-tuned directly on the TT classification
task at hand, without prior training on the ST. We
compare these baselines with those models that
have undergone a transfer from ST to TT. We use
the term equivalent to signify that two models lie
within each others error bounds.

5.1 Condition 1: Emoji Content

We evaluate the effect that STs have on TTs with
different amounts of emoji content. We focus on
the TTs with the lowest and highest amount of
emoji content, namely SA-EN (1.9% emoji con-
tent) and SA-AR (22.5%). This is the multilingual
case. For the monolingual case, we evaluate the
effect on SA-DE (2%) and HS-DE (7.2%). All of
these TTs are unbalanced, i.e. the minority class
makes up 15.2-32.2% of the training data.

The monolingual, low emoji content SA-DE
task does not profit from the transfer. Rather, the
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Figure 2: Macro F1 of the HS and SA target tasks transferred from monolingual (left) and multilingual (right) STs.

training on most STs leads to a slight drop in F1-
Macro compared to the baseline (F1 0.600). On
the other hand, high emoji content HS-DE greatly
benefits from the transfer, with PMI-Swear (F1
0.730) being especially beneficial for the perfor-
mance on the TT, yielding a gain of F1 +0.280 over
the baseline. This shows that the shared informa-
tion in emojis and slurs is relevant to the HS task
at hand. Also beneficial are EP (F1 0.705), and the
unsupervised KMeans-3 (F1 0.690) and KMeans-2
(F1 0.629) cluster prediction tasks. Only the su-
pervised PMI-Target (F1 0.405) does no seem to
be beneficial for the performance on the TT, lead-
ing to a drop in performance, which is due to the
unbalanced nature of the TT (Section 5.2).

The multilingual case shows a slightly mixed
trend. Low emoji content SA-EN does not benefit
from the transfer, but unlike in the monolingual
setting, it is not harmed by it either. All STs lead to
a TT performance that is equivalent to the baseline
(F1 0.578). High emoji content SA-AR only barely
profits from the transfer, with EP (F1 0.509) leading
to a small gain of F1 (+0.034) over the baseline (F1
0.475), while all other STs lead to an equivalent
performance to the baseline. The overall trend is
similar to the monolingual case but the positive and
negative effects are dimmed down, which may be
due to the multilingual aspect (Section 5.3).

The general trend shows that a decent amount
of emoji content in the TT training data is crucial
for the transfer to be beneficial.

5.2 Condition 2: Label Distribution

To analyze the effect that the STs have on differ-
ently (un)balanced TTs, we focus on HS-PL (the
minority class makes up 8.5% of training data)
and HS-ES (41.3%), as they are the two most

(un)balanced TTs, while being comparable in terms
of emoji content (13.7% and 14.5% respectively).

For unbalanced HS-PL, EP (F1 0.617) and un-
supervised KMeans-2 (F1 0.522) lead to an im-
provement of F1 4-0.134 and F1 +0.039 over the
baseline, respectively. All other STs are equivalent
to the baseline. Balanced HS-ES benefits from all
TTs, with EP (F1 0.708) leading to a gain of F1
40.261 over the baseline (F1 0.447), followed by
PMI-Swear (F1 0.690) and PMI-Target (F1 0.643).
The unsupervised clusters are beneficial but less
effective, with F1 0.602 and F1 0.475 for KMeans-
3 and KMeans-2 respectively, which likely stems
from the multilingual aspect (Section 5.3).

PMI-Target performs poorly on unbalanced HS-
PL (and HS-DE etc.) due to its use of mutual in-
formation between emojis and the TT labels. This
leads to it reproducing the class imbalance, making
it less effective on unbalanced TTs.

The difference in impact of PMI-Swear on HS-
PL (none) and HS-ES (and HS-DE) (gain) can be
explained by the composition of the ST dataset.
TW-PL is the smallest corpus in the multilingual
collection of user comments, and this sparsity is
further driven by the morphological complexity of
Polish, such that the 306 slurs from the Polish slur
list only resulted in 65k Polish training samples
in PMI-Swear, as opposed to 1.8M and 3M for
German and Spanish respectively.

Overall, if the label distribution in TT is bal-
anced, the TT easily benefits from the transfer. Oth-
erwise other conditions such as the multilinguality
or emoji content become more relevant.

5.3 Condition 3: Multilinguality

We analyze the effectiveness of the transfer in a
monolingual and multilingual setting. For this, we
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focus on the effect that the monolingually and mul-
tilingually learned STs have on HS-DE and SA-DE.
Both TTs are unbalanced, while HS-DE has a high
emoji content and SA-DE has a low emoji content.

The different effects of the emoji-content in
HS-DE and SA-DE has been discussed in Section
5.1, showing that in the monolingual setting, high
emoji content HS-DE benefits from the transfer,
while low emoji content SA-DE does not. In the
multilingual case, we see a similar, but dimmed,
trend. SA-DE does not benefit from the transfer,
with all TTs leading to an equivalent performance
as the baseline (F1 0.566), except KMeans-2 (F1
0.439) which is below the baseline. The STs have
a similar performance on HS-DE, being equivalent
or below the baseline (F1 0.663). Only PMI-Swear
(F1 0.678) is beneficial for the TT performance.

The effect of ST-oriented clusters KMeans-{2,3}
was beneficial in the monolingual case (HS-DE),
but this benefit is lost in the multilingual set-
ting. This underlines our original idea that ST-
oriented unsupervised emoji clusters learned on
large amounts of user generated text have the ad-
vantage of accounting for cultural differences in
the usage of emojis. When learned multilingually,
this advantage is lost. An example of the culturally
diverse use of emojis is ®, which is rather infre-
quent in Europe and might be used to point towards
the importance of recycling. In TW-AR, this emoji
is among the top 5 most frequent emojis, and is
used to motivate other users to share their content.

The overall trend thus shows that monolin-
gually learned STs are more beneficial than multi-
lingual STs. However, if the training data of a TT
is balanced, this effect is less pronounced.

5.4 Comparison to Benchmark Results

To put the results into a broader perspective, we
compare to state-of-the-art (SOTA) models for each
of the shared-tasks/datasets that our TTs are based
on (Table 2). For two of the Hate Speech bench-
marks, the performance of our transfer approach
is close to the SOTA, namely with a difference of
F1 —0.038 (HS-DE) and F1 —0.03 (HS-ES). For
HS-PL, we were able to achieve a gain of +0.031
over the SOTA. Across all three Sentiment Analy-
sis benchmarks, our models are below the SOTA.
This indicates that SA, in general, is a more diffi-
cult task to our transfer approach than HS, possibly
due to its ternary, rather than binary, classification
objective. This is another factor causing the trans-
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TT Method F1 SOTA
HS-DE PMI-Swear (monolingual) 0.730 0.768
HS-ES EP 0.708 0.730
HS-PL EP 0.617 0.586
SA-DE Baseline (monolingual) 0.600 0.651
SA-AR EP 0.509 0.610
SA-EN KMeans-3 0.611 0.677

Table 2: Macro F1 comparison of top-scoring trans-
fer method (F1) with SOTA results on the different
TT test sets. Best scores in bold. See (Montani and
Schiiller, 2018) (HS-DE), (Basile et al., 2019) (HS-ES),
(Ogrodniczuk and Lukasz Kobyliniski, 2019) (HS-PL),
(Cieliebak et al., 2017) (SA-DE) and (Rosenthal et al.,
2017) (HS-{AR,EN}) for SOTA method descriptions.

fer to be overall more beneficial for HS rather than
SA, next to the unbalanced (SA-{EN,AR}) and
low-emoji content (SA-DE) nature of the SA tasks.

6 Summary

We have evaluated and identified conditions under
which the transfer from an emoji-based ST is ben-
eficial for a sentiment TT. In the experiments in
Section 5 we observed three major trends, namely
i) TTs with high amounts of emoji content benefit
more from the transfer, i7) PMI-Target tends to be
detrimental to unbalanced TTs and ¢ii) monolin-
gually learned STs tend to perform better than their
multilingual counterparts, due to their improved
representation of culturally unique emoji usages.
The latter underlines the importance of taking into
account cultural differences when exploiting the
information encoded in emojis.

From these results, we can draw conclusions
about the conditions under which a given emoji-
based ST is beneficial. Due to the shared infor-
mation between emojis and slurs, PMI-Swear is
beneficial to HS tasks when the data that can be
generated from the swear word list is decently large.
PMI-Target is beneficial when the TT is balanced,
otherwise it replicates the already existing class
imbalance. Unsupervised KMeans-{2,3} should
be learned monolingually to be beneficial and EP
is a safe choice for TTs with high emoji content.
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