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Abstract

The problem of estimating the probability dis-
tribution of labels has been widely studied
as a label distribution learning (LDL) prob-
lem, whose applications include age estima-
tion, emotion analysis, and semantic segmen-
tation. We propose a tree-Wasserstein dis-
tance regularized LDL algorithm, focusing on
hierarchical text classification tasks. We pro-
pose predicting the entire label hierarchy using
neural networks, where the similarity between
predicted and true labels is measured using
the tree-Wasserstein distance. Through experi-
ments using synthetic and real-world datasets,
we demonstrate that the proposed method suc-
cessfully considers the structure of labels dur-
ing training, and it compares favorably with
the Sinkhorn algorithm in terms of computa-
tion time and memory usage.

1 Introduction

Label distribution learning (LDL), which is a gen-
eralized framework for performing single/multi-
label classification and estimating the probability
distribution over labels, is an important machine-
learning problem (Geng, 2016). Its applications
include age estimation (Geng et al., 2013), emo-
tion estimation (Zhou et al., 2016), head-pose es-
timation (Geng and Xia, 2014), and semantic seg-
mentation (Gao et al., 2017). In particular, multi-
label classification is an important problem in many
NLP areas, and has several applications including
multi-label text classification (Banerjee et al., 2019;
Chalkidis et al., 2019).

Typically, Kullback-Leibler (KL) divergence is
used to measure the similarity between two distri-
butions. However, the KL divergence can tend to
infinity if the supports of the two distributions do
not overlap, resulting in model failure.

To solve this support problem, Wasserstein dis-
tance is used instead of KL divergence (Arjovsky

et al., 2017). Wasserstein distance is defined as
the cost of optimally transporting one probability
distribution to match another (Villani, 2009; Peyré
and Cuturi, 2018). Because it can compare two
probability measures while considering the ground
metric, it is more powerful than measurements that
do not consider geometrical information.

An LDL framework with Wasserstein distance
has been recently proposed (Frogner et al., 2015;
Zhao and Zhou, 2018). This framework employs
the Sinkhorn algorithm (Cuturi, 2013) to calculate
the Wasserstein distance, which requires quadratic
computational-time. Thus, when we consider ex-
tremely large label-sets, for example, 105, the
computation cost can be significant. However,
the Wasserstein distance on a tree (hereinafter
called tree-Wasserstein distance) can be written in
a closed-form and calculated in linear computation
time (Evans and Matsen, 2012; Le et al., 2019).

In this paper, we propose a tree-regularized LDL
algorithm with a tree-Wasserstein distance. The
key advantage of the tree-Wasserstein distance is
that it considers the hierarchical label informa-
tion explicitly, whereas the Sinkhorn-based algo-
rithm needs a cost matrix using tree-structured data.
Moreover, the tree-Wasserstein distance has an an-
alytic form that can be computed in linear time us-
ing significantly less memory. We experimentally
demonstrate that the proposed algorithm compares
favorably with the Sinkhorn-based LDL algorithm
(Frogner et al., 2015; Zhao and Zhou, 2018) with
considerably lower memory consumption and com-
putational costs. We demonstrate that the calcu-
lation is more efficient than that of the existing
Wasserstein loss.

Contribution: Our contributions are summarized
as follows. (1) We propose training a model by
minimizing the tree-Wasserstein distance for hier-
archical labels, and (2) we experimentally show
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Figure 1: Illustration of a tree-structured la-
bel with the root “animal”. Γ(”mammal”) =
{“mammal”, “dog”, “cat”}, ve2 = “reptile” .

that the proposed method is computationally more
efficient than the existing methods with Sinkhorn-
based methods.

2 Problem Setting

We observe n input and output samples
{(x1,y1), · · · , (xn,yn)} from (X ,Y), where
X ⊂ Rd. We consider the problem of learning a
map from a feature space X into P , which is a set
of distributions over a finite set Y .

For example, multi-class classification is in-
cluded in this problem, y, which represents the
`-th class, and it is expressed as the following one-
hot vector:

y = (0, . . . , 0, 1︸︷︷︸
`

, 0, . . . 0)> ∈ RL,

where L denotes the total number of classes, and
y>1L = 1. Additionally, 1L ∈ RL denotes a
vector whose elements are all 1.

When multi-label classification is considered, P
denotes binary vectors that indicate existing labels.
For example, if the sample x belongs to classes `
and `′, y is given as

y = (0, . . . , 0, 1︸︷︷︸
`

, 0, . . . 0, 1︸︷︷︸
`′

, 0, . . . , 0)> ∈ RL,

where y>1L = 2. Accordingly, we can transform
y into a probability vector as py = y/y>1L. No-
tably, we assume that Y is discrete and has a tree
structure similar to hierarchical labels.

We aim to estimate the conditional probability
vector py for x by considering the structure infor-
mation of Y from {(x1,py1), · · · , (xn,pyn)}.

3 Proposed Method

In this study, we assume Y has a tree-structure. Ac-
cordingly, we propose LDL with tree-Wasserstein
distance.

3.1 Wasserstein distance on tree metrics

Let T be a tree with non-negative weighted edges
and NT be the set of nodes of T . A shortest path
metric dT : NT ×NT → R associated with T is
called the tree metric. Let v and v′ be the nodes in
T . Accordingly, dT (v, v′) is equal to the sum of
the edge weights along the shortest path between v
and v′. Next, we know thatMT = (NT , dT ) is a
metric space and can be naturally derived from T .

It is assumed that T is rooted at r. For each node
v, the set of nodes in the sub-tree of T rooted at
v is defined as Γ(v) = {u ∈ NT | v ∈ R(u)}
where R(v) denotes the set of nodes in a unique
path from a node v to the root r in T . For each
edge e, ve denotes a deeper level node. Figure 1
illustrates a tree-structured label.

Given two probability measures µ, ν supported
onMT , the 1-Wasserstein distance between µ and
ν is expressed as follows (Evans and Matsen, 2012;
Le et al., 2019):

W1
dT

(µ, ν) =
∑
e∈T

we|µ(Γ(ve))− ν(Γ(ve))|, (1)

where we denotes the weight of edge e. The key
advantage of the tree-Wasserstein distance is that
it can be computed with the linear time complex-
ity, whereas the time complexity for the Sinkhorn
algorithm is quadratic (Cuturi, 2013).

3.2 LDL with tree-Wasserstein distance

We define the tree-Wasserstein regularizer as fol-
lows.

Definition 1 (tree-Wasserstein regularizer). Let
hθ : X → P be a model with learnable parame-
ters θ. Let TY = (V,E,WE) be a tree associated
with Y , where V denotes the set of nodes, E is
the set of edges, and WE(e) is the length of edge
e ∈ E. Given input x ∈ X and the ground-truth
distribution of y py ∈ P , then the tree-Wasserstein
regularization term T W(x,py) is defined as fol-
lows:

T W(x,py)

=
∑
e∈T

WE(e)|(hθ(x))(Γ(ve))−py(Γ(ve))|,

where hθ denotes the prediction model.

Using the tree-Wasserstein regularizer, we pro-



3

Table 1: The results for the Synthetic dataset. The label distributions are given on a random tree with 1000 nodes.

Loss Wasserstein ↓ KL ↓ Cheby↓ Clark ↓ Canbe ↓ Cos ↑ IntSec ↑

KL 9.701± (.050) 0.431± (.001) 0.209± (.001) 1.777± (.011) 14.512± (.060) 0.877± (.000) 0.754± (.001)
KL+ 1

2W
1 10.831± (.044) 0.452± (.001) 0.230± (.001) 1.666± (.009) 13.834± (.064) 0.868± (.000) 0.739± (.001)

KL+W1 11.631± (.048) 0.475± (.001) 0.244± (.001) 1.618± (.008) 13.474± (.063) 0.859± (.000) 0.727± (.001)
KL+ 1

2T W 7.257± (.110) 0.595± (.007) 0.193± (.001) 2.098± (.040) 19.636± (.171) 0.833± (.002) 0.729± (.003)
KL+ T W 7.158± (.117) 0.631± (.007) 0.195± (.001) 2.143± (.030) 19.923± (.441) 0.825± (.003) 0.721± (.004)

Table 2: The results for BlurbGenreCollectionEN.

Loss Pseudo-Recall Top5 AUC

KL 0.679± (.008) 1.013± (.015) 0.971± (.001)
KL+ 1

2
W1 0.675± (.008) 1.009± (.013) 0.970± (.002)

KL+W1 0.678± (.004) 1.008± (.018) 0.970± (.001)
KL+ 1

2
T W 0.678± (.010) 0.993± (.013) 0.971± (.002)

KL+ T W 0.678± (.009) 0.991± (.017) 0.970± (.001)

pose the following LDL:

θ̂ = argmin
θ

n∑
i=1

λT W(hθ(xi),pyi)

+KL(hθ(xi),pyi), (2)

where

KL(hθ(xi),pyi) =
L∑
`=1

p
(`)
yi log

p
(`)
yi

hθ(xi)(`)
, (3)

is the multi-class Kullback-Leibler loss function,
and λ ≥ 0 is its regularization parameter.

Notably, T W(hθ(xi),pyi) is calculated in
O(L) time, where L denotes the number of labels.
Unlike the Sinkhorn-Knopp algorithm, we need
not compute and hold a distance matrix. For tree-
structured labels, including hierarchical labels, the
tree structure can be used directly as a tree met-
ric. If we have prior knowledge about labels (e.g.,
similarity), we can set edge-weights using the prior
knowledge.

4 Related Work

4.1 Label distribution learning

LDL (Geng, 2016) is the task of estimating the
distribution of labels from each input. While age
estimation (Geng et al., 2013), head-pose estima-
tion (Geng and Xia, 2014), and semantic segmenta-
tion (Gao et al., 2017) are well known LDL tasks,
in this study, we consider the task of estimating a
distribution on a hierarchical structure. The key
difference between LDL and a generative model
is that the “true” distribution on labels is given in
LDL.

4.2 Wasserstein distance
Given two probability vectors a, b ∈ Rn≥0 and a
distance matrixD ∈ Rn×n≥0 , the 1-Wasserstein dis-
tanceW1(a, b) between a and b is defined as:

W1(a, b) = min
P∈Π
〈D,P 〉, (4)

where Π denotes the set of transport plans such
that Π = {P ∈ Rn×n≥0 | P1n = a,P>1n = b}.

Because Wasserstein distance can incorporates
the ground metric in the comparison of the prob-
ability distributions, it has been widely used in
applications, including domain adaptation (Courty
et al., 2017), generative models (Arjovsky et al.,
2017), and natural language processing (Kusner
et al., 2015). A loss function that uses the Wasser-
stein distance can improve predictions based on
a structure of labels (Frogner et al., 2015; Zhao
and Zhou, 2018). Additionally, an entropic opti-
mal transport loss can provide a robustness against
noise labels by finding the coupling of the data
samples and propagating their labels according to
the coupling weight (Damodaran et al., 2020).

Frogner et al. (2015) proposed learning us-
ing a Wasserstein loss to consider the geomet-
ric information in predicting a probability dis-
tribution. Because computing a sub-gradient of
the exact Wasserstein loss is expensive, they esti-
mated the sub-gradient by introducing an entropic-
regularization term and using the Sinkhorn-Knopp
algorithm. Although they also suggested extending
the Wasserstein loss to unnormalized measures, we
do not consider this case. Zhao and Zhou (2018)
showed that Wasserstein loss influenced LDL in
terms of simultaneously learning label correlations
and distribution. We proposed learning using an
exact Wasserstein distance with efficient computa-
tions when the ground metric is represented by a
tree.

Le et al. (2019) suggested the tree-sliced Wasser-
stein distance, where the Wasserstein distance is ap-
proximated on a continuous space by averaging the
Wasserstein distances on tree metrics constructed
by dividing that space. An unbalanced variant of
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the tree-Wasserstein distance has been recently pro-
posed (Sato et al., 2020).

5 Experiments

We applied our proposed method to LDL on trees
based on a synthetic dataset and to multi-label text
classification of a hierarchical structure based on
a real dataset. We implemented all the methods
using Pytorch (Paszke et al., 2019). Our models
were optimized using a gradient method with the
Adam (Kingma and Ba, 2015) optimizer.

Baselines: We compared our proposed method
to the Wasserstein-loss-based LDL framework
(Frogner et al., 2015; Zhao and Zhou, 2018) and a
multi-class KL loss mentioned in (3). Notably, in
the original paper (Zhao and Zhou, 2018), they did
not include KL loss and used only Wasserstein loss,
but (Frogner et al., 2015) used a linear combination
of KL divergence and Wasserstein distance as the
loss. To ensure fair comparison, we also report the
combination of Wasserstein loss and multi-class
KL loss as a strong baseline. Therefore, we set the
combination parameter λ = {0, 1

2 , 1} defined in Eq
2 and the weight of all edges to 1. The Wasserstein
loss was computed using the Sinkhorn-Knopp algo-
rithm in the log domain(Schmitzer, 2019; Peyré
and Cuturi, 2018) on GPUs. For the proposed
method, we computed the tree-Wasserstein loss on
the CPU and then passed it to the GPU to compute
the gradient. Then, we set the number of iterations
of the Sinkhorn-Knopp algorithm to 10 and the
regularization parameter to 50, respectively.

5.1 Synthetic data
We generated a synthetic dataset that comprises
pairs of a real vector and a target probability distri-
bution on the nodes of a randomly generated tree.
This dataset was created as follows: First, we de-
fined a parametric distribution on a graph. Given
a graph, G = (V,E), the shortest path metric, dG,
and the probability distribution, Fvuσ, over V pa-
rameterized by v, u ∈ V, σ > 0 is defined as:

Fvuσ(s) =
1

C
(exp

dG(v, s)

σ2
+ exp

dG(u, s)

σ2
)

C =
∑
s∈V

(exp
dG(v, s)

σ2
+ exp

dG(u, s)

σ2
).

Algorithm 1 shows the algorithm used to generate
the dataset used in the experiments. In this exper-
iment, we prepared datasets with the distribution
on a random tree with 1000 nodes using NetworkX

(Hagberg et al., 2008). The size of each of the train-
ing and testing datasets is 1000. We set the number
of epochs to 500 and the batch size to 10, and we
fixed the learning rate at .001. We reported the av-
erage scores of the experiments using 10 different
random seeds.

Predictive model: We adopted the following
model for class `:

hθ(x)(`) =
exp(w>` x+ b`)∑
j

exp(w>j x+ bj)
,

where wi, bi are learnable parameters.

Evaluation Metric: To evaluate predictions from
various perspectives, we used the metric listed in
Table 3. Notably we adopted the exact Wasserstein
distance, called Wasserstein, between the predic-
tion and ground-truth label distributions to assess
the extent to which the ground metric was consid-
ered in the prediction. In these experiments, we
used the Python Optimal Transport (POT) library
(Flamary and Courty, 2017) to calculate the exact
Wasserstein distance, and the weights of all the
edges were set to 1. The other evaluation metrics
are the same as those used in (Geng, 2016).

The scores of the experiment with synthetic data
are presented in Table 1. The proposed linear com-
binations of KL and T W outperformed the others
in terms of Wasserstein and Chebyshev metric, but
they performed poorly in terms of the other metrics.

5.2 BlurbGenreCollectionEN
In this study, we used the BlurbGenreCollectio-
nEN1(Cortes and Vapnik, 1995; Lewis et al., 2004)
dataset for performing experiments with real data.
It comprises advertising descriptions of books from
the Penguin Random House webpage. Each in-
stance has one or multiple labels that are hierarchi-
cally structured. Because the hierarchical structure
of these data is a forest and not a tree, we added
a root node to the hierarchical tree. Of the total
91, 892 data samples 64%, 16% and 20% were
used in the train, validation, and test sets, respec-
tively. We set the number of epochs to 100 and the
batch size to 100, and we fixed the learning rate to
.001. We reported the average scores and standard
deviations of the experiments using 10 different
random seeds.

1https://www.inf.uni-hamburg.
de/en/inst/ab/lt/resources/data/
blurb-genre-collection.html

https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html
https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html
https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/blurb-genre-collection.html
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Canberra
∑L

`=1

|hθ(x)(`)−p
(`)
y |

hθ(x)
(`)+p

(`)
y

Chebyshev maxi |hθ(x)(`) − p(`)
y |

Clark
√∑L

`=1

(hθ(x)
(`)−p(`)y )2

(hθ(x)
(`)+p

(`)
y )2

Cosine
∑L

`=1 hθ(x)
(`)p

(`)
y√∑L

`=1
(hθ(x)

(`))2
√∑L

`=1
(p

(`)
y )2

Intersection
∑L

`=1 min(hθ(x)
(`),p(`)

y )

Kullback-Leibler
∑L

`=1 p
(`)
y ln

p
(`)
y

hθ(x)
(`)

Table 3: Evaluation metrics for LDL. hθ(x) is the pre-
dicted distribution of x, and py is the ground truth dis-
tribution of a label y.

Predictive model: We adopted a long-short-term-
memory (LSTM) (Hochreiter and Schmidhuber,
1997) model with a hidden state size of 200. Be-
cause LSTM can efficiently learn long-term depen-
dencies of time-series data, it has often been used
in the natural-language processing domain (Yin
et al., 2017; Kuncoro et al., 2018). Additionally,
we used fastText (Bojanowski et al., 2017; Joulin
et al., 2017) for word embeddings. A fully con-
nected layer exists before the output layer, and the
output function is a softmax function.

Evaluation metric: We evaluated prediction ac-
curacy using three metrics, namely pseudo-recall,
top-k cost, and receiver operating characteristic
area under the curve (ROC-AUC). Pseudo-recall
is defined as |P∪L||L| , where L denotes the set of
ground-truth labels, and P is a set that comprises
L = |L| labels in descending order of the probabil-
ity score.

Top-k cost is defined as:

1

K

K∑
k=1

min
`∈L

d(`pk , `),

where `pk denotes the label with the k-th highest
probability score. This metric measures how close
the predicted top-k labels are to the ground-truth
labels. We calculate ROC-AUC using the output
distribution of each model as a score vector, which
is assigned 1 on the ground truth labels or 0 on
the other labels. Table 2 presents the comparison
results. Both regularization terms (W1 and T W)
did not have a significant impact on the results.

5.3 Computational-efficiency comparison
In the computational efficiency experiment, distri-
butions with 102, 103, 104, and 105 supports were
prepared. Subsequently, the computation time and
memory required to calculate the loss of pairs of

Algorithm 1: Generating a synthetic
dataset

1 Generate a random tree : G = (V,E),
where V = {s1, ..., sl}

2 W1 ← (n×m)-dim random matrix
3 W2 ← (m× (l + 1))-dim random matrix
4 for i = 1 to N do
5 xi ← n-dimensional random vector
6 xi ← 1

1+exp(−W1xi)

7 xi ← 1
1+exp(−W2xi)

8 σ ← 10xi
(l+1)

9 j ← argmax1≤j≤lx
(j)
i ; v ← sj

10 k ← argmin1≤k≤lx
(k)
i ; u← sk

11 pG(s)← Fvuσ(s),∀s ∈ V
12 return {(xi, pG(V ))}Ni=1

Table 4: Comparison of computational efficiency.

L Loss Time(s) Memory

102
T W 0.0024 1.58 MB

W1 with GPU 0.0062 3.32 MB
W1 with CPU 0.0528 2.98 MB

103
T W 0.0126 2.44 MB

W1 with GPU 0.0071 16.94 MB
W1 with CPU 0.1279 7.08 MB

104
T W 0.1204 9.82 MB

W1 with GPU 0.5277 766.88 MB
W1 with CPU 25.7985 1148.22 MB

105
T W 1.6454 66.00 MB

W1 with GPU - (37.25 GB)
W1 with CPU - (40.00 GB)

random probability distributions on the supports
were measured. To avoid calculating a shortest-
path distance matrix, we used the matrix (11>− I),
where I denotes an identity matrix, as the distance
matrix while computing the Wasserstein loss. Addi-
tionally, we used a random tree, with edge weights
of 1, as a tree metric while computing the tree-
Wasserstein loss. We report the average scores of
three measurements.

Table 4 presents the time and memory required
to calculate the losses for various numbers of nodes.
T W outperforms the other Wasserstein losses in
terms of computation time and is significantly su-
perior in terms of memory consumption. Although
W1 that uses a GPU is faster than the others with
103 supports, it cannot calculate the loss with 105

supports because the required memory cannot be
allocated.
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6 Conclusions

This study proposed the use of a tree-Wasserstein
reguralizer for learning. The experimental results
indicate that our proposed method can successfully
predict the distributions of structured labels and
that it outperforms existing Wasserstein loss cal-
culation methods in terms of both computational
speed and memory consumption.
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