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Abstract

“Transcription bottlenecks”, created by a
shortage of effective human transcribers are
one of the main challenges to endangered lan-
guage (EL) documentation. Automatic speech
recognition (ASR) has been suggested as a
tool to overcome such bottlenecks. Following
this suggestion, we investigated the effective-
ness for EL documentation of end-to-end ASR,
which unlike Hidden Markov Model ASR sys-
tems, eschews linguistic resources but is in-
stead more dependent on large-data settings.
We open source a Yoloxdéchitl Mixtec EL cor-
pus. First, we review our method in build-
ing an end-to-end ASR system in a way that
would be reproducible by the ASR community.
We then propose a novice transcription correc-
tion task and demonstrate how ASR systems
and novice transcribers can work together to
improve EL documentation. We believe this
combinatory methodology would mitigate the
transcription bottleneck and transcriber short-
age that hinders EL documentation.

1 Introduction

Grenoble et al. (2011) warned that half of the
world’s 7,000 languages would disappear by the
end of the 21st century. Consequently, a con-
cern with endangered language documentation has
emerged from the convergence of interests of two
major groups: (1) native speakers who wish to
document their language and cultural knowledge
for future generations; (2) linguists who wish to
document endangered languages to explore lin-
guistic structures that may soon disappear. En-
dangered language (EL) documentation aims to
mitigate these concerns by developing and archiv-
ing corpora, lexicons, and grammars (Lehmann,
1999). There are two major challenges:

(a) Transcription Bottleneck: The creation of
EL resources through documentation is extremely

challenging, primarily because the traditional
method to preserve primary data is not simply with
audio recordings but also through time-coded tran-
scriptions. In a best-case scenario, texts are pre-
sented in interlinear format with aligned parses and
glosses along with a free translation (Anastasopou-
los and Chiang, 2017). But interlinear transcrip-
tions are difficult to produce in meaningful quanti-
ties: (1) ELs often lack a standardized orthography
(@if written at all); (2) invariably, few speakers can
accurately transcribe recordings. Even a highly
skilled native speaker or linguist will require a min-
imum of 30 to 50 hours to simply transcribe one
hour of recording (Michaud et al., 2014; Zahrer
et al., 2020). Additional time is needed for parse,
gloss, and translation. This creates what has been
called a “transcription bottleneck™, a situation in
which the expert transcribers cannot keep up with
the amount of recorded material for documentation.

(b) Transcriber Shortage: It is generally under-
stood that any viable solution to the transcription
bottleneck must involve native speaker transcribers.
Yet usually few, if any, native speakers have the
skills (or time) to transcribe their language. Train-
ing new transcribers is one solution, but it is time-
consuming, especially with languages that present
complicated phonology and morphology. The situ-
ation is distinct for major languages, for which
transcription can be crowd-sourced to speakers
with little need for specialized training (Das and
Hasegawa-Johnson, 2016). In Yolox4chitl Mixtec
(YM; Glottocode=yolo1241, ISO 639-3=xty), the
focus of this study, training is time-consuming: af-
ter one-year part-time transcription training, a pro-
ficient native speaker, Esteban Guadalupe Sierra,
still has problems with certain phones, particularly
tones and glottal stops. Documentation requires
accurate transcriptions, a goal yet beyond even the
capability of an enthusiastic speaker with many
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months of training.

As noted, ASR has been proposed to mitigate
the Transcription Bottleneck and create increas-
ingly extensive EL corpora. Previous studies first
investigated HMM-based ASR for EL documenta-
tion (Cavar et al., 2016; Mitra et al., 2016; Adams
et al., 2018; Jimerson et al., 2018; Jimerson and
Prud’hommeaux, 2018; Michaud et al., 2018; Cruz
and Waring, 2019; Thai et al., 2020; Zahrer et al.,
2020; Gupta and Boulianne, 2020a). Along with
HMM-based ASR, natural language processing and
semi-supervised learning have been suggested as a
way to produce morphological and syntactic anal-
yses. As HMM-based systems have become more
precise, they have been increasingly promoted as a
mechanism to bypass the transcription bottleneck.
However, ASR’s context for ELs is quite distinct
from that of major languages. Endangered lan-
guages seldom have sufficient extant language lexi-
cons to train an HMM system and invariably suffer
from a dearth of skilled transcribers to create these
necessary resources (Gupta and Boulianne, 2020b).

As we have confirmed with this present study,
end-to-end ASR systems have shown comparable
or better results over conventional HMM-based
methods (Graves and Jaitly, 2014; Chiu et al., 2018;
Pham et al., 2019; Karita et al., 2019a). As end-
to-end systems directly predict textual units from
acoustic information, they save much effort on
lexicon construction. Nevertheless, end-to-end
ASR systems still suffer from the limitation of
training data. Attempts with resource-scarce lan-
guages have relatively high character (CER) or
word (WER) error rates (Thai et al., 2020; Mat-
suura et al., 2020; Hjortnaes et al., 2020). It has
nevertheless become possible to utilize ASR with
ELs to reduce significantly, but not eliminate, the
need for human input and annotation to create ac-
ceptable (“archival quality”) transcriptions.

This Work: This work represents end-to-end
ASR efforts on Yoloxéchitl Mixtec (YM), an en-
dangered language from western Mexico. The
YMC' corpus comprises two sub-corpora. The
first (“YMC-EXP”, expert transcribed, corpus) in-
cludes 100 hours of transcribed speech that have
been carefully checked for accuracy. We built a
recipe of the ESPNet (Watanabe et al., 2018) that
shows the whole process of constructing an end-

!Specifically, we used material from the community of
Yoloxéchitl (YMC), one of four in which YM is spoken.

to-end ASR system using the YMC-EXP corpus.?
The second corpus, (“YMC-NT”, native trainee,
corpus) includes 8+ hours of additional recordings
not included in the YMC-EXP corpus. This second
corpus contains novice transcriptions with subse-
quent expert corrections that has allowed us to eval-
uate the skill level of the novice. Both the YMC-
EXP and YMC-NT corpora are publicly available
at OpenSLR under a CC BY-SA-NC 3.0 License.’
The contributions of our research are:

e A new Yoloxéchitl Mixtec corpus to support
ASR efforts in EL. documentation.

e A reproducible workflow to build an end-to-
end ASR system for EL. documentation.

e A comparative study between HMM-based
ASR and end-to-end ASR, demonstrating the
feasibility of the latter. To test the frame-
work’s generalizability, we also experiment
with another EL: Highland Puebla Nahuat
(Glottocode=high1278; ISO 639-3=azz).

e An in-depth analysis of errors in novice tran-
scription and ASR. Considering the discrepan-
cies in error types, we propose Novice Tran-
scription Correction (NTC) as a task for the
EL documentation community. A rule-based
method and a voting-based method are pro-
posed.* In clean speech, the best system re-
duces relative word error rate in the novice
transcription by 38.9% .

2 Corpus Description

In this section, we first introduce the linguistic
specifics for YM and YMC. Then we discuss the
recording settings. Since YM is a spoken language
without a standardized textual format, we next ex-
plain the transcription style designed for this lan-
guage. Finally, we offer the corpus partition and
some statistics regarding corpora size.

2.1 Linguistic Specifics for Yoloxochitl
Mixtec

Yoloxéchitl Mixtec is an endangered, relatively
low-resource Mixtecan language. It is mainly spo-
ken in the municipality of San Luis Acatldn, state

https://github.com/espnet/espnet/
tree/master/egs/yoloxochitl_mixtec/asrl

Shttp://www.openslr.org/89/

*A system combination method, Recognizer Output Voting
Error Reduction (Fiscus, 1997))
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of Guerrero, Mexico. It is one of some 50 lan-
guages in the Mixtec language family, which is part
of a larger unit, Otomanguean, that Suérez (1983)
considers “a ‘hyper-family’ or ‘stock’.” Mixtec lan-
guages (spoken in Oaxaca, Guerrero, and Puebla)
are highly varied, resulting from approximately
2,000 years of diversification.

YM is spoken in four communities: Yoloxdchitl,
Cuanacaxtitlan, Arroyo Cumiapa, and Buena Vista.
Mutual intelligibility among the four YM com-
munities is high despite significant differences
in phonology, morphology, and syntax. All vil-
lages have a simple segmental inventory but sig-
nificant though still undocumented variation in
tonal phonology. YMC (refering only to the Mix-
tec of the community of Yoloxdchitl [16.81602,
-98.68597]) manifests 28 distinct tonal patterns on
1,451 identified bimoraic lexical stems. The tonal
patterns carry a significant functional load in re-
gards to the lexicon and inflection. For example,
24 distinct tonal patterns on the bimoraic segmen-
tal sequence [nama] yield 30 words (including six
homophones). This ample tonal inventory presents
challenges to both a native speaker learning to write
and an ASR system learning to recognize. Notably,
it also introduces difficulties in constructing a lan-
guage lexicon for training HMM-based systems.

2.2 Recording Settings

There are two corpora used in this study. The
first (YMC-EXP) was used for ASR training. The
second (YMC-NT) was used to train the novice
speaker (e.g., set up a curriculum for him to learn
how to transcribe) and for Novice Transcription
Correction. The YMC-EXP corpus comprises ex-
pert transcriptions used as the gold-standard refer-
ence for ASR development. The YMC-NT corpus
has paired novice-expert transcription as it was
used to train and evaluate the novice writer.

The corpus used for ASR development com-
prises mostly conversational speech in two-channel
recordings (split for training). Each conversation
is with two speakers and each of the two speak-
ers was fitted with a separate head-worn mic (usu-
ally a Shure SM10a). Over two dozen speakers
(mostly male) contributed to the corpus. The topics
and their distribution were varied (plants, animals,
hunting/fishing, food preparation, ritual speech).
The YMC-NT corpus comprises single-channel
field recordings made with a Zoom H4n at the mo-
ment plants were collected during ethnobotanical

research. Speakers were interviewed one after an-
other; there is no overlap. However, the recordings
often registered background sounds (crickets, birds)
that we expected would negatively impact ASR ac-
curacy more than seems to have occurred. The
topic was always a discussion of plant knowledge
(a theme of only 9% of the YMC-EXP corpus).
Expectedly, there were many out-of-vocabulary
(OOV) words (e.g., plant names not elsewhere
recorded) in this YMC-NT corpus.’

2.3 Corpus Transcription

(a) Transcription Level: The YMC-EXP corpus
presently has two levels of transcription: (1) a prac-
tical orthography that represents underlying forms;
(2) surface forms. The underlying form marks pre-
fixes (separated from the stem by a hyphen), en-
clitics (separated by an = sign), and tone elision
(with the elided tones in parentheses). All these
“breaks” and phonological processes disappear in
the surface form. For example, the underlying
be3e3=an* (house=3sgFem; "her house’) surfaces
as be’3@*. And be’3e(®)=2 ("my house’) surfaces as
be/3e?. Another example is the completive prefix
nil-, which is separated from the stem as in ni'-
zid i) =2 (completive-eat-1sgS; ’I ate’). The sur-
face form would be written n¢'zi%xi2. Again, pro-
cesses such as nasalization, vowel harmony, palatal-
ization, and labialization are not represented in the
practical (underlying) orthography but are gener-
ated in the surface forms. The only phonological
process encoded in the underlying orthography is
tone elision, for which parentheses are used.

The practical, underlying orthography men-
tioned above was chosen as the default system for
ASR training for three reasons: (1) it is easier than
a surface representation for native speakers to write;
(2) it represents morphological boundaries and thus
serves to teach native speakers the morphology of
their language; and (3) for a researcher interested
in generating concordances for a corpus-based lex-
icographic project it is much easier to discover the
root for ‘house’ in be’>e3=an* and be’3e(®)=2 than
in the surface forms be’3a* and be’3e?.

(b) “Code-Switching” in YMC: Endangered,
colonialized Indigenous languages often manifest
extensive lexical input from a dominant West-
ern language, and speakers often talk with “code-
switching” (for lack of a better term). Yoloxd6chitl

3 After separating enclitics and prefixes as separate tokens,
the OOV rate in YMC-NT is 4.84%.
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Corpus Subset UttNum Dur (h)
Train 52763 92.46
EXP Validation 2470 4.01
Test 1577 2.52
Train 35144 58.60
EXP(-CS) Validation 1301 2.16
Test 2603 4.35
Clean-Dev 2523 3.45
NT Clean-Test 2346 3.31
Noise-Test 1335 1.60

Table 1: YMC Corpus Partition for EXP (corpus with
expert transcription), EXP(-CS) (subset of EXP with-
out “code-switching”), NT (corpus with paired novice
and expert transcription)

Mixtec is no exception. Amith considered how to
write such forms best and decided that Spanish-
origin words would be written in Spanish and with-
out tone when their phonology and meaning are
close to that of Spanish. So Spanish docena ap-
pears over a dozen times in the corpus and is writ-
ten fucena; it always has the meaning of ‘dozen’.
All month and day names are also written without
tones. Note, however, that Spanish camposanto
(‘cemetery’) is also found in the corpus and pro-
nounced as pa®san*tu?. The decision was made to
write this with tone markings as it is significantly
different in pronunciation from the Spanish origin
word. In effect, words like pa®san*tu? are consid-
ered loans into YM and are treated orthographically
as Mixtec. Words such as tucena are considered
“code-switching” and written without tones.

(¢) Transcription Process: The initial time-
aligned transcriptions were made in Transcriber
(Barras et al., 1998). However, given that Tran-
scriber cannot handle multiple tiers (e.g., transcrip-
tion and translation, or underlying and surface or-
thographies), the Transcriber transcriptions were
then imported into ELAN (Wittenburg et al., 2006)
for further processing (e.g., correction, surface-
form generation, translation).

2.4 Corpus Size and Partition

Though endangered, YMC does not suffer from the
same level of resource limitations that affect most
ASR work with ELs (Cavar et al., 2016; Jimerson
et al., 2018; Thai et al., 2020). The YMC-EXP
corpus, developed for over ten years, provided 100
hours for the ASR training, validation, and test
corpora. There are 505 recordings from 34 speakers

in the YMC-EXP corpus, and the transcription for
the YMC-EXP were all carefully proofed by an
expert native-speaker linguist. As shown in Table
1, we offer a train-valid-test split where there is no
overlap in content between the sets. The partition
considers the balance between speakers and relative
size for each part.

As introduced in Section 2.2, the YMC-NT cor-
pus has both expert and novice transcription. It in-
cludes only three speakers for a total of 8.36 hours.
In the recordings of two consultants, the environ-
ment is relatively clean and free of background
noise. The speech of the other individual, however,
is frequently affected by background noise. This
seems coincidental as all three were recorded to-
gether, one after the other in random order. But
given this situation, we split the corpus into three
sets: clean-dev (speaker EGS), clean-test (speaker
CTB), and noise-test (speaker FEF; see Table 1).

The “code-switching” discussed in 2.3 (b) intro-
duces different phonological representations and
makes it difficult to train an HMM-based model
using language lexicons. Therefore, previous work
(Mitra et al., 2016) using the HMM-based system
for YMC did not consider phrases with “code-
switching”. To compare our model with their re-
sults, we have used the same experimental corpus
in our evaluation. Their corpus (YMC-EXP(-CS)),
shown in Table 1, is a subset of the YMC-EXP; the
YMC-EXP(-CS) corpus does not contain “code-
switching” phrases, i.e., phrases with words that
were tagged as Spanish origin and transcribed with-
out tone.

3 ASR Experiments

3.1 End-to-End ASR

As ESPNet (Watanabe et al., 2018) is widely used
in open-source end-to-end ASR research, our end-
to-end ASR systems are all constructed using ESP-
Net. For the encoder, we employed the conformer
structure (Gulati et al., 2020), while for the decoder
we used the transformer structure to condition the
full context, following the work of Karita et al.
(2019b). The conformer architecture is a state-
of-the-art innovation developed from the previous
transformer-based encoding methods (Karita et al.,
2019a; Guo et al., 2020). A comparison between
the conformer and transformer encoders shows the
value of applying state-of-the-art end-to-end ASR
to ELs.
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3.2 Experiments and Results

As discussed above, our end-to-end model applied
an encoder-decoder architecture with a conformer
encoder and a transformer decoder. The archi-
tecture of the model follows Gulati et al. (2020)
while its configuration follows the aishell con-
former recipe from ESPNet.® The experiment is
reproducible using ESPNet.

As the end-to-end system models are based on
word pieces, we adopted CER and WER as eval-
uation metrics. They help demonstrate the sys-
tem performances at different levels of graininess.
But because the HMM-based systems were decod-
ing with a word-based lexicon, for comparison to
HMM we only use the WER metric. To thoroughly
examine the model, we conducted several compar-
ative experiments, as discussed in continuation.

(a) Comparison with HMM-based Methods:
We first compared our end-to-end method with
the Deep Neural Network-Hidden Markov Model
(DNN-HMM) methods proposed in Mitra el al.
(2016). In this work, Gammatone Filterbanks
(GFB), articulation, and pitch are configured for the
DNN-HMM model. This baseline is a DNN-HMM
model using Mel Filterbanks (MFB). In recent un-
published work, Kwon and Kathol develop a lat-
est state-of-the-art CNN-HMM-based ASR model’
for YMC based on the lattice-free Maximum Mu-
tual Information (LF-MMI) approach, also known
as “chain model” (Povey et al., 2016). The ex-
perimental data of the above HMM-based models
is YMC-EXP(-CS) discussed in Section 2.4. For
the comparison, our end-to-end model adopted the
same partition to ensure fair comparability with
their results.

Table 2 shows the comparison between DNN-
HMM systems and our end-to-end system on YMC-
EXP(-CS). It indicates that even without an exter-
nal language lexicon the end-to-end system signifi-
cantly outperforms both the DNN-HMM baseline
models and the CNN-HMM-based state-of-the-art
model.

In Section 2.3 (b), we note that “code-switching”
is invariably present in EL speech (e.g., YMC).
Thus, ASR models built on ’code-switching-free
corpora (like YMC-EXP[-CS]) are not practical for
real-world usage. However, a language lexicon is
available only for the YMC-EXP(-CS) corpus so

8See Appendix for details about the model configuration.
See Appendix for details about the model configuration.

Model Feature WER

DNN-HMM MFB 36.9

DNN-HMM ~ OFB*Articu. 4
+Pitch

CNN-HMM

(Chain) MFCC 19.1

E2E-Conformer MFB + Pitch 154

Table 2:  Comparison between HMM-based Mod-
els and the End-to-End Conformer (E2E-Conformer)
Model on YMC-EXP(-CS) that is a subset of the YMC-
EXP without “code-switching”.

CER WER
Model dev/test  dev/test
E2E-RNN 9.2/9.3 19.1/19.2
E2E-Transformer 7.8/7.9 16.3/16.7
E2E-Conformer 7.7/7.7 16.0/16.1

Table 3: End-to-End ASR Results on YMC-EXP (cor-
pus with “code-switching”)

we cannot conduct HMM-based experiments with
either YMC-EXP or YMC-NT corpora.

(b) Comparison with Different End-to-End
ASR Architectures: We also conducted exper-
iments comparing models with different encoders
and decoders on the YMC-EXP corpus. For a Re-
current Neural Network-based (E2E-RNN) model,
we followed the best hyper-parameter configura-
tion, as discussed in Zeyer et al. (2018). For a
Transformer-based (E2E-Transformer) model, the
same configuration from Karita et al. (2019b) was
adopted. Both models shared the same data prepa-
ration process as the E2ZE-Conformer model.

Table 3 compares different end-to-end ASR
architectures on the YMC-EXP corpus.® The
E2E-Conformer obtained the best results, obtain-
ing significant WER improvement as compared
to the E2E-RNN and the E2E-Transformer mod-
els. The E2E-Conformer’s WER on YMC-EXP(-
CS) is slightly lower than that obtained for the
whole YMC-EXP corpus, despite a significantly
smaller training set in the YMC-EXP(-CS) corpus.
Since the subset excludes Spanish words, “code-
switching”” may well be a problem to consider in
ASR for endangered languages such as YM.

8The train set in YMC-EXP is significantly larger than
that in YMC-EXP(-CS), the YMC-EXP corpus from which
all lines containing a Spanish-origin word have been removed.
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. L. CER WER
Transcription Level devitest  dev/test
Surface 8.0/7.6 16.6/16.3
Underlying 7.7/7.7  16.0/16.1

Table 4: E2E-Conformer Results for Two Transcrip-
tion Levels (Underlying represents morphological divi-
sions and underlying phonemes before the application
of phonological rules; Surface is reflective of spoken
forms and lacks morphological parsing)

Corpus CER WER
devi/test dev/test
10h 19.4/19.5 39.1/39.2
20h 12.6/12.7 26.2/26.2
50h 8.6/8.7 18.0/18.0
Whole (92h)  7.7/7.7 16.0/16.1

Table 5: E2E-Conformer Results on Different Corpus
Size

(c) Comparison with Different Transcription
Levels: In addition to comparing model archi-
tectures, we compared the impact of transcription
levels on the ASR model. E2E-Conformer models
with the same configurations were trained using
both the surface and the underlying transcription
forms, which are discussed in Section 2.3. We
also trained separate RNN language models for fu-
sion and unigram language models to extract word
pieces for different transcription levels.

Table 4 shows the E2E-Conformer results for
both underlying and surface transcription levels.
As introduced in Section 2.3, the surface form re-
duces several linguistic and phonological processes
compared to the underlying practical form. The re-
sults indicate that the end-to-end system is able to
automatically infer those morphological and phono-
logical processes and maintain a consistent low
error rate.

(d) Comparison with Different Corpus Sizes:
As introduced in Section 1, most ELs are consid-
ered low-resource for ASR purposes. To measure
the impact of resource availability on ASR accu-
racy we trained the E2E-Conformer model on 10,
20, and 50 hours subsets of YMC-EXP. The results
demonstrate the model performances over different
sizes of resources.

Table 5 shows the E2E-Conformer performances
on different amounts of training data. It demon-
strates how the model consumes data. As corpus
size is incrementally increased, WER decreases

CER WER
Model dev/test  dev/test
E2E-RNN 10.3/9.9 26.8/25.4
E2E-Transformer 9.1/9.1 23.7/21.7

E2E-Conformer 9.9/8.6 23.5/21.7

Table 6: E2E-Conformer Results on another EL: High-
land Puebla Nahuatl

Corpus CER WER
dev/test dev/test
10h 18.3/17.5 44.7/43.3
20h 14.2/12.9 34.8/33.3
50h 11.0/10.2 27.0/24.9
Whole (120h)  9.9/8.6  23.5/21.7

Table 7: E2E-Conformer Results on another EL: High-
land Puebla Nahuatl (Different Corpus Size)

significantly. It is apparent that the model still has
the capacity to improve performance with more
data. The result also indicates that our system can
get reasonable performances from 50 hours of data.
This would be an important guideline when we
collect a new EL database.

(e) The Framework Generalizability: To test
the end-to-end ASR systems’ generalization ability,
we conducted the same end-to-end training and test
procedures on another endangered language: High-
land Puebla Nahuatl (high1278; azz). This corpus
is also open access under the same CC license.” It
comprises 954 recordings that total 185 hours 22
minutes, including 120 hours transcribed data in
ELAN and 65 hours still only in Transcriber and
not used in ASR training.'?

Table 6 shows the performance of three different
end-to-end ASR architectures on Highland Puebla
Nahuatl. For this language the E2E-Conformer
again offers better performances over the other
models. Table 7 shows the E2E-Conformer per-
formances on different amounts of training data
for Highland Puebla Nahuatl. We can observe that
50-hour is a reasonable size for an EL, which is
similar to the experiments in Table 5. These exper-
iments indicate the general ability to consistently
apply end-to-end ASR systems across ELs.

*http://openslr.org/92
!0The recordings are almost all with two channels and two
speakers in natural conversation.
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Error Types Novice ASR
Enclitics (=) 96 243
Prefixes (-) 141 62
Glottal Stop (°) 341 209
Parenthesis 1607 302
Tone 4144 3241
Stem-Nasal (n) 0 6
Others 4263 10175
Total 10592 14232

Table 8: Character Error-type Distribution of Novice
and ASR (by number of errors)

4 Novice Transcription Correction

Finally, this paper presents novice transcription
correction (NTC) as a task for EL documentation.
That is, in this experiment we explore not only the
possibility of using ASR to enhance the accuracy
of a YM novice transcription but to combine both
novice transcription and ASR to achieve accurate
results that surpass that of either component. Be-
low we first analyze patterns manifested in novice
transcriptions. Next, we introduce two baselines
that fuse ASR hypotheses and novice transcription
for the NTC task.

4.1 Novice Transcription Error

As mentioned in Section 1, transcriber shortages
have been a severe challenge for EL. documenta-
tion. Before 2019, only the native speaker linguist,
Rey Castillo Garcia, could accurately transcribe the
segments and tones of YMC. To mitigate the YMC
transcriber shortage, in 2019 Castillo began to train
another speaker, Esteban Guadalupe Sierra. First,
a computer course was designed to incrementally
teach Guadalupe segmental and tonal phonology.
In the next stage, he was given YMC-NT corpus
recordings to transcribe. Compared to the paired
expert transcription, the novice achieved a CER of
6.0% on clean-dev, defined in Table 1. However,
it is not feasible to spend many months training
speakers with no literacy skills to acquire the tran-
scription proficiency achieved by Guadalupe in our
project. Moreover, even with a 6.0% CER, there
are still enough errors so as to require significant
annotation/correction by the expert, Castillo. The
state-of-the-art ASR system (e.g., E2E-Conformer)
shown in Table 3 gets an 8.2% CER on the clean-
dev set, more errors than the novice CER. So for
YMC, ASR is still not a good enough substitute for
a proficient novice.

Novice Transcriptions
& ASR Hypotheses

Word
Alignment
Word
Rules \[::>
Syllable
Alignment |«
Syllable
Rules \[:>
Character
Alignment
Character
Rules J
Hybrid Transcription

Figure 1: Novice-ASR Fusion Process

As Amith and Castillo worked with the novice,
they saw a repetition of types of errors that they
worked to correct by giving the novice exercises
focused on these transcription shortcomings. The
end-to-end ASR, however, has demonstrated a dif-
ferent pattern of errors. For example, it developed a
fair understanding of the rules for suppleting tones,
marked by parentheses around the suppleted tones.
Rather than over-specify the NTC correction algo-
rithm, we first analyzed the error-type distribution
using the Clean-dev from the YMC-NT corpus, as
shown in Table 8.

4.2 Novice-ASR Fusion

Rapid comparison of the types of errors for each
transcription (novice and ASR) demonstrated con-
sistent patterns and has led us to hypothesize that
a fusion system might automatically correct many
of these errors. Two baseline methods are exam-
ined for the fusion: a voting-based system (Fiscus,
1997) and a rule-based system.

The voting-based system follows the definition
in (Fiscus, 1997) that combines hypotheses from
different ASR models with novice transcription.

The framework of rule-based fusion is shown in
Figure 1. The rules are defined in different linguis-
tic units: words, syllables, and characters. They as-
sume a hierarchical alignment between the novice
transcription and ASR hypotheses. The rules are
applied to the transcription from word to syllable
to character level. The rules are developed based
on continual evaluation of the novice’s progress.
Thus they will be different but discoverable when
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Model Clean-Dev Clean-Test Noise-Test Overall
CER WER CER WER CER WER CER WER

A. Novice 6.0 21.5 6.4 226 84 266 6.8 23.1
B. E2E-Transformer 9.8 23.1 8.8 212 243 470 129 28.1
C. E2E-Conformer 8.2 19.6 8.2 19.1 23.6 44.1 120 253
D. E2E-Conformer(50h) 105 250 99 237 257 50.1 140 305
E. Fusionl (A+C) 6.3 206 6.9 22.0 13.1 386 82 25.4
F. Fusionl (A+D) 7.0 229 75 24.5 140 415 8.9 28.0
G. Fusion2 (A+C) 5.1 176 5.5 187 9.6 303 6.3 21.1
H. Fusion2 (A+D) 55 194 59 20.4 10.1 326 6.8 23.0
I. ROVER (A+B+C) 4.7 14.6 4.6 13.8 124 32.6 6.5 18.5
J. ROVER-Fusion2 (A+B+C+E) 4.5 16.1 4.7 16.7 9.0 283 5.7 19.3

Table 9: NTC Results on YMC-NT (the results are evaluated using the expert transcription in YMC-NT). Model
D is trained with a 50-hour subset of the YMC-EXP as shown in Table 5.

applied to a new language. However, the general
principle should be applicable to other ELs: Novice
trainees will learn certain transcription tasks easier
than others. Below we explain the rules for YMC.
Word Rules: If a word from the novice transcrip-
tion is Spanish (i.e., no tones and no linguistic
indications [-, =, ’] that mark it as Mixtec), keep
the novice transcription. If the novice has extra
words, not in the ASR hypothesis, keep those extra
words.

Syllable Rules: If a novice syllable is tone initial,
use the corresponding ASR syllable. If the novice
and the ASR have identical segments but different
tones, use the ASR tones. When an ASR syllable
has CVV or CV’V, and its corresponding novice
syllable has CV,!! use the ASR syllable (CVV or
CV’V). If the tone from either transcription system
follows a consonant (except a stem-final n), use the
other system’s transcription.

Character Rules: If the ASR has a hyphen, equal
sign, parentheses, glottal stop which is absent from
the novice transcription, then always trust the ASR
and maintain the aforementioned symbols in the
final transcription.

We apply the edit distance (Wagner and Fischer,
1974) to find the alignment between the ASR model
hypothesis {C1, ..., Cy, } and the Novice transcrip-
tion {C1, ...,C/.}. The Ly, Lp, Lg are introduced
in the dynamic function as the insertion, deletion,
and substitution loss, respectively. In the naive set-
ting, Ly, Lp are both set to 1. The Lg is set to 1
if C; is different from C7 and 0 otherwise. This

"TA CV syllable can occur in a monomoraic word. But
novice will often write a CV word when it should be CVV
or CV’V. Stem-final syllables can be CV, CVV or CV’V. But
novice tends to write CV in these cases.

setting is computation-efficient. However, it does
not consider how the contents mismatch between
the C; and C;. Therefore, we adopt a hierarchical
dynamic alignment. In this method, the character
alignment follows the native setting. While the
Ls(C;, C7) for syllable alignment is defined as the
normalized character-level edit distance between
C; and C’j’- as follows:

DIC;,CY]

(@)= "iar

(1)
where the |C;] is the lengths of the syllable. Simi-
larly, the Lg(C;, C}) for word alignment is defined
based on syllable alignment.

5 NTC Experiments

5.1 Experimental Settings

The novice transcription, the E2E-Transformer
model, and the E2E-Conformer model were consid-
ered as baselines for the NTC task. To evaluate the
system for reduced training data, we also show our
results of E2E-Conformer trained with a 50-hour
subset. For the end-to-end models, we adopted the
trained model from Section 3 with the same decod-
ing set-ups. To test the effectiveness of the hierar-
chical dynamic alignment, we tested the data with
two fusion systems, namely Fusion1 and Fusion2.
The Fusionl system used the naive settings of edit
distance, while the Fusion2 system adopted the hi-
erarchical dynamic alignment. Both fusion systems
adopt rules defined in Section 4.2. Two configura-
tions for voting-based methods were tested. The
first “ROVER” combined three hypotheses (i.e.,
the E2E-Transformer, the E2E-Conformer, and the
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Novice). In contrast, the “ROVER-Fusion2” com-
bined the Fusion2 system with the above three.

5.2 Results

As shown in Table 9, voting-based methods and
rule-based methods all significantly reduce the
novice errors for clean speech.'”> However, for
the noise-test, the novice transcription is the most
robust method. For overall results, the ROVER sys-
tem (model I) has a lower WER, while the ROVER-
Fusion2 system (model J) reaches a lower CER.
Model J significantly reduces specific errors, in-
cluding tone errors (25%), enclitic errors (50%),
and parentheses errors (87.5%). In addition, mod-
els D, F, and H indicate that the system could still
reduce clean-environment novice errors using ASR
models trained with a 50-hour subset of the YMC-
EXP corpus.

As we discussed in Section 4, novice and ASR
transcriptions manifest distinct patterns of error
and thus can be used to complement each other.
Table 9 shows that our proposed rule-based and
voting-based fusion methods can potentially elim-
inate the errors that come from the novice tran-
scriber, and it can mitigate the transcriber shortage
problems based on these fusion methods. However,
we should note that a noisy recording condition
would negatively affect a fusion approach as ASR
does poorly under such conditions (>23% CER),
and for practical purposes, the novice transcription
alone (<8.5%) is much more accurate. In such
conditions we should rely on the novice transcriber
alone.

6 Conclusion and Future Work

This work presents an open-source endangered lan-
guage corpus in Yoloxdchitl Mixtec and a compar-
ative and reproducible study on various approaches
to end-to-end ASR. We demonstrate that end-to-
end approaches are feasible and present compara-
ble results over conventional HMM approaches,
which require resources such as language lexicons
not necessary with end-to-end ASR. Additionally,
we propose novice transcription correction as a po-
tential task for ASR in EL documentation. We
examine two methods to approach this task. The
first is a rule-based approach that uses hierarchical
dynamic alignment and linguistic rules to perform

I2Note that the rules are developed based on YM specifics,
so the result cannot be applied to other languages directly.
Readers should view it as a case study.

novice-ASR hybridization. The second is a voting-
based method that combines hypotheses from the
novice and end-to-end ASR systems. Empirical
studies on the YMC-NT corpus indicate that both
methods significantly reduce the CER/WER of the
novice transcription for clean speech.

The above discussion suggests that a useful ap-
proach to EL. documentation using both human
and computational (ASR) resources might focus on
training each system (human and ASR) for partic-
ular transcription tasks. If we know from the start
that ASR will be used to correct novice transcrip-
tions in areas of difficulty, we could train an ASR
system to maximize accuracy in those areas that
challenge novice learning.
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A Appendices

Experimental Settings for End-to-End ASR:
All the end-to-end ASR systems adopted the hy-
brid CTC/Attention architecture integrated with
an RNN language model. The best model was
selected on the basis of performance on the de-
velopment set. The input acoustic features were
83-dimensional log-Mel filterbanks features with
pitch features (Ghahremani et al., 2014). The win-
dow length and the frameshift were set to 25ms and
10ms. SpecAugmentation are adopted for data aug-
mentation (Park et al., 2019). The prediction targets
were the 150-word pieces trained using unigram
language modeling (Kudo and Richardson, 2018)
(both for surface and underlying form). All the end-
to-end models are fused with RNN language mod-
els.’> The CTC ratio for Hybrid CTC/Attention
was set to 0.3. The decoding beam size was 20.
Training and Testing are based on Pytorch.
E2E-Conformer Configuration: The E2E-
Conformer used 12 encoder blocks and 6 decoder
blocks. All the blocks adopted a 2048 dimen-
sion feed-forward layer and four-head multi-head-
attention with 256 dimensions. Kernel size in the
Conformer block was set to 15. For training, the
batch size was set to 32. Adam optimizer with
1.0 learning rate and Noam scheduler with 25000
warmup-steps were used in training. We trained for
a max epoch of 50. The parameter size is 43M.
E2E-RNN Configuration: The E2E-RNN used
3 encoder blocks and 2 decoder blocks. All the
blocks adopt 1024 hidden units. Location-based
attention adopted 1024-dim attention. Adadelta
was chosen as the optimizer, and we trained for a
max epoch of 15. The parameter size is 108M.
E2E-Transformer Configuration: The E2E-
Transformer used 12 encoder blocks and 6 decoder
blocks. All the blocks adopted a 2048 dimen-
sion feed-forward layer and four-head multi-head-
attention with 256 dimensions. Adam optimizer
with 1.0 learning rate and Noam scheduler with
25000 warmup-steps were used in training. We
trained for a max epoch of 100. The parameter size
is 27M.

Experimental Settings for HMM-based ASR:
The acoustic feature input for this model is 40 di-
mensional Mel Frequency Cepstral Coefficients
(MFCC). The lexicon for HMM-based models is

BOur experiments show that the RNN language model
reduces WER by about 1%.
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phone-based. The transcriptions are mapped to
surface representations and then to phones (a to-
tal of 197 phones, as each tone for a given vowel,
is a different phone). There are 22,465 total en-
tries in the lexicon. The chain model is trained
with a sequence-level objective function and op-
erates with an output frame rate of 30 ms, three
times longer than the previous standard. The longer
frame rate increases decoding speed, which in turn
makes it possible to operate with a significantly
deeper DNN architecture for acoustic modeling.
The best results were achieved with a neural net-
work based on the ResNet architecture (Szegedy
et al., 2017). This consists of an initial layer for
Linear Discriminative Analysis (LDA) transforma-
tion and subsequent alternating 160-dimensional
bottleneck layers, adding up to 45 layers in total.
The DNN acoustic model is then compiled with a
4-gram language model into a weighted finite-state
transducer for word sequence decoding.
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