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Abstract

Author stylized rewriting is the task of rewrit-
ing an input text in a particular author’s style.
Recent works in this area have leveraged
Transformer-based language models in a de-
noising autoencoder setup to generate author
stylized text without relying on a parallel cor-
pus of data. However, these approaches are
limited by the lack of explicit control of target
attributes and being entirely data-driven. In
this paper, we propose a Director-Generator
framework to rewrite content in the target au-
thor’s style, specifically focusing on certain
target attributes. We show that our proposed
framework works well even with a limited-
sized target author corpus. Our experiments
on corpora consisting of relatively small-sized
text authored by three distinct authors show
significant improvements upon existing works
to rewrite input texts in target author’s style.
Our quantitative and qualitative analyses fur-
ther show that our model has better meaning re-
tention and results in more fluent generations.

1 Introduction

With recent advances in language modeling tech-
niques that have resulted in powerful language mod-
els (Radford et al., 2019; Devlin et al., 2018; Brown
et al., 2020) along with an increased interest in styl-
ized text generation (Hu et al., 2017; Shen et al.,
2017; Subramanian et al., 2018; Fu et al., 2018;
Niu and Bansal, 2018), large language models have
been successfully tuned to achieve text stylization
(Lample et al., 2018; Ziegler et al., 2019; Syed
et al., 2020; Singh et al., 2020). Apart from trans-
ferring an input text to the target style, which has
received recent interest from the community, un-
derstanding and measuring style have been persis-
tently explored over the last few decades (Kessler
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et al., 1997; Garera and Yarowsky, 2009; Liu, 2012;
Verma and Srinivasan, 2019). Lying at the intersec-
tion of style transfer enabled by advanced language
models and a deep understanding of style as a nu-
anced combination of several linguistic concepts,
problems like stylized generation or stylized rewrit-
ing have gained further traction. A large body of
work in style transfer focuses on binary aspects
such as positive-negative sentiment (Li et al., 2018;
Ziegler et al., 2019), formal-informal (Jain et al.,
2019), and sometimes a mixture of these attributes
(Subramanian et al., 2018). To fuel this interest
in such binary stylization, some datasets compris-
ing of text from the extreme ends of these spec-
trums have also emerged (e.g., positive-negative
sentiments (Mathews et al., 2016), formal-informal
(Rao and Tetreault, 2018)). As pointed by Syed
et al. (2020), author stylized rewriting does not di-
rectly fit under any of these variants as the writing
style of an author is an amalgamation of several
such attributes and needs to be modeled in a fine-
grained manner.

Apart from the distinction along style dimen-
sions, prior works can also be categorized as super-
vised (using parallel corpus (Jhamtani et al., 2017))
and unsupervised (Li et al., 2018; Syed et al., 2020;
Niu and Bansal, 2018). In supervised frameworks,
parallel data is used to tune sequence-to-sequence
models for stylized rewriting. However, annotating
such parallel corpus is a tedious effort and there-
fore, there is an increased interest in unsupervised
style transfer; i.e., when there is no direct supervi-
sion or parallel data available for training the mod-
els. In this work, we focus on such an unsupervised
setting.

Existing approaches on unsupervised author styl-
ized rewriting rely on implicitly learning the target
stylistic attributes from data and do not allow finer
control on generation (Syed et al., 2020). While
this is a good starting point for author-stylized
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rewriting, it is desirable to further improve the
rewriting model on certain aspects without com-
promising on other attributes that the model has
already optimized. An example would be to re-
tain the stylistic strengths while improving content
retention, or vice versa. To this end, we propose
Directing a Generator framework (DRAG). Our
quantitive and qualitative experiments show the
viability of the proposed approach. Experiments
further indicate that the framework’s setup allows it
to operate efficiently in scarce data setting and im-
proves the performance over the baseline models.
Our contributions can be summarized as - (1) We
introduce a director-generator approach to rewrite
an input text in a target author’s style. (2) We pro-
pose linguistic alignment scores – both at the local
and global level and extend these to design thresh-
olds for the generator and director. (3) We present
experimental results on texts written by three au-
thors from the Gutenberg corpus with very distinct
writing styles, and show that our approach outper-
forms prior works across content retention and style
alignment metrics. (4) We further identify and dis-
cuss shortcomings of our proposed approach, and
present error analysis to aid future research in au-
thor stylized rewriting.

2 Related Work

With the rise of Transformer-based (Vaswani et al.,
2017) language models, generative pretraining
(Devlin et al., 2018; Radford et al., 2019; Brown
et al., 2020) has advanced the field of NLP signifi-
cantly. Fine-tuning such large language models on
specific task has become very prevalent (Sun et al.,
2019; Lee et al., 2020; Lample and Conneau, 2019;
Raffel et al., 2019; Liu et al., 2019). Pretraining
infuses the generic language knowledge into the
language model helping it understand the specific
tasks with relatively much less supervision. In fact,
recent approaches (Radford et al., 2019; Brown
et al., 2020) show that often, even such small su-
pervisions are not required and a simple instruction
can be used to solve specific tasks by utilizing the
capabilities of such large language models trained
on very large datasets.

Pretraining of such models usually involves op-
timizing them on Masked Language Modelling
(MLM) (Devlin et al., 2018), Causal Language
Modelling (CLM) (Radford et al., 2019) or other
similar (Clark et al., 2020) objectives.While CLM
is the task of auto-regressively predicting the next

word given the previous words or context, MLM
is the task of recovering masked tokens from a
given input. While these approaches mostly train
only an encoder or a decoder framework, Lample
and Conneau (2019) explored initializing encoder-
decoder frameworks using the pre-trained encoders
for cross-lingual translation. Such a technique with
appropriate modification has been shown to be suc-
cessful in incorporating stylistic aspects of the lan-
guage as well (Conneau and Lample, 2019; Syed
et al., 2020). All these works utilize the task of
minimizing the denoising auto-encoder loss for in-
ducing style in the language models in a reconstruc-
tion framework. For our explorations, we leverage
these works to initialize our DRAG framework.

There is an increased interest in stylistic gen-
eration or text rewriting. Most of the approaches
define dimensions like formality-informality (Shen
et al., 2017; Ficler and Goldberg, 2017; Jain et al.,
2019; Sun et al., 2019) and achieve the alignment
along these dimensions. While some of these ap-
proaches rely on parallel corpus (Ficler and Gold-
berg, 2017; Jhamtani et al., 2017), many of the
approaches focus on unsupervised framework (Li
et al., 2018; Shen et al., 2017; Jain et al., 2019),
where the model preserves the input content in the
output while biasing the generations towards the
target style. While some approaches utilize simple
editing to achieve the style along particular dimen-
sions (Li et al., 2018), others focus on achieving
this through discriminators (Fu et al., 2018) or scor-
ers (Jain et al., 2019). As mentioned before, since
author style is an amalgamation of several such at-
tributes, it requires much more than a discriminator
or singular dimension tuning to achieve stylization.

Due to the difficulty associated with author style
understanding and fine-grained nature of that style
even if understood them, the problem of author
stylized rewriting has not been explored a lot.
While Jhamtani et al. (2017) try to solve this prob-
lem for a specific author (i.e. Shakespeare), their
approach is contingent on the availability of a par-
allel corpus. Since preparing parallel corpus is a
tedious and intractable process, especially while
dealing with multiple authors and multiple com-
binations of input and output styles, it is essential
to focus on unsupervised solutions. Most recently,
Syed et al. (2020) leverage the capabilities of the
large language models to solve this problem in an
unsupervised manner.
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3 Author Style

There has been significant work on understanding
binary stylization along dimensions like formal-
informal, positive-negative sentiment (Rao and
Tetreault, 2018; Kessler et al., 1997; Pavlick and
Tetreault, 2016; Collins-Thompson and Callan,
2005; Hovy, 1990; Inkpen and Hirst, 2006;
Kantrowitz, 2003), however, there is limited work
on understanding an author’s writing style (Mc-
Carthy et al., 2006; Forgeard, 2008; Verma and
Srinivasan, 2019). While style can be a mixture of
several factors including, but not limited to, lexical
preferences, syntactic/sentential choices, discourse
structure, narrative style, tone, we follow Syed et al.
(2020) and consider an author’s style at three levels:

Surface style is estimated using the frequencies
of different surface elements such as the number
of commas, semicolons, colons, question marks,
exclamation marks, and hyphens per paragraph,
from a given author’s text. We, thus, quantify the
surface-style elements into a 6-dimensional vector.

Lexical style of an author is reflected in the au-
thor’s choice of words. To describe the same con-
cept, different authors may use different words. For
instance, Rudyard Kipling, known for his classics
in children’s literature, tended to use more concrete
words (e.g., gongs, rockets, torch) while Abraham
Lincoln, being a political writer, used more abstract
words (e.g., freedom, patriotism). We enumerate
lexical style categories as subjective, objective, lit-
erary, colloquial, abstract and concrete (Brooke
and Hirst, 2013). We use lexicons for each of these
categories (Brooke and Hirst, 2013), and define lex-
ical style alignment of each word in the vocabulary
to a given style category as the average and normal-
ized point-wise mutual information (PMI) between
that word and the seed words in the lexicon for
that style category. The lexical style alignment for
each word is thus a 6-dimensional vector. We use
the EmoBank corpus (Buechel and Hahn, 2017)
to compute the co-occurrence statistics for PMI
computations. The inclination of a word towards
a style category is positive if its normalized PMI
score is positive with respect to the given category.
The inclination of an author towards a style cate-
gory is then estimated by the fraction of words in
their text that have a positive inclination towards
the category.

Syntactic style of an author is indicated by the
nature of sentences used and we estimate the distri-
bution of different types of sentences in an author’s

text. Sentence types may range from complex, as
seen in philosophical writings, to simple, as ob-
served in children’s storybooks. We use five cate-
gories of sentence styles: (i) simple, (ii) compound,
(iii) complex, (iv) complex-compound sentences,
and (v) others (Feng et al., 2012; Verma and Srini-
vasan, 2019; Syed et al., 2020). Sentences are cate-
gorized into one of these types using the algorithm
proposed by Feng et al. (2012). The resulting 5-
dimensional probability distribution vector is used
as the estimation of syntactic style. These vec-
tors are estimated at corpus-level, unlike those for
lexical and surface style which are computed at
paragraph-level.

4 DRAG: Directing a Generator for
Stylized Rewriting

Our proposed framework, DRAG, that aims to
rewrite a given piece of text with a specific target
author’s style consists of three main stages:
(1) Pretraining a language model to infuse general
linguistic knowledge into the model
(2) Adapting the pre-trained language model to-
wards the target author’s writing style by further
pretraining it on text written by this author (Syed
et al., 2020), and
(3) Using a director-generator framework (as dis-
cussed later) to fine-tune such biased language
model to improve its style transfer capabilities even
further while fixing content preservation issues. It
is worth noting that we do not rely on the availabil-
ity of parallel data for any of our experiments.

4.1 Pretraining Language Model

In order to infuse general linguistic knowledge
into a language model, we leverage Tranformer-
based pretrained language models (Devlin et al.,
2018; Radford et al., 2019; Brown et al., 2020)
due to their recent success in text processing tasks
(Vaswani et al., 2017; Devlin et al., 2018; Brown
et al., 2020). Similar to Conneau and Lample
(2019), we first train a Transformer-based encoder
on the Masked Language Modelling (MLM) task
with 15% of the tokens masked (Devlin et al., 2018)
on a generic text corpus. We initialize an encoder-
decoder framework, as shown in Figure 1, with this
language model.

4.2 Adapting LM for Rewriting

To adapt the pretrained LM for author stylized
rewriting, Syed et al. (2020) initialize an encoder-
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Figure 1: Language Model Pretraining using Masked
Language Modelling followed by encoder-decoder ini-
tialization using pretrained models. This process still
leaves the encoder-decoder attention parameters unitial-
ized which can be initiliazed using the Denoising Auto
Encoder training as depicted in the figure.

decoder framework with the pretrained LM, as
shown in Figure 1. This is followed by optimizing
it on denoising auto-encoder (DAE) loss (Lample
et al., 2018; Lample and Conneau, 2019) only over
target author’s corpus. Syed et al. (2020) use the
DAE loss to infuse an author’s linguistic style into
the reconstruction model; we refer to this frame-
work as STYLELM. The fine-tuning using the DAE
loss on a target author’s corpus encourages recov-
ering actual paragraphs from their noisy version
(Lample and Conneau, 2019). For a paragraph g in
corpus G and its noisy version C(g) (C(.) being
the noise function), DAE loss is given by,

DAE(θe, θed, θd) = −
1

|G| ∗
∑
g∼G

logP (g/C(g); θe, θed, θd)

(1)

where P is the probability of reconstruction for a
given encoder parameters θe, decoder parameters
θd, and encoder-decoder attention parameters θed.
Please note that θed does not refer to any additional
layer but the parameters which are present in trans-
formers and are responsible for encoder-decoder
attention. In our setup, C(.) function introduces
two noises: (a) random dropping of words with
10% probability, and (b) word masking by replac-
ing it with [MASK] token with 10% probability.

Given a noisy input, the encoder fills the
[MASK] tokens with suitable replacements (based
on the knowledge from its MLM pretraining), thus
creating a pseudo generic input for the decoder, the
target sequence for which is aligned to the target
author’s style. However, we identify and verify
experimentally two issues with this approach:

(1) It requires a large target author corpora to
achieve meaningful content preservation capability.
This is evident by its very low content preservation
scores (as discussed in Section 5.2) when trained
on authors with relatively smaller corpora. Even

with large corpora, the model still suffers from ex-
posure bias to texts written only by the target author
leading to spurious outputs for unseen inputs.

(2) The masking results in a significant empha-
sis on lexical style aspects, with a lesser focus on
the surface and syntactic preferences. Since the
model is completely data-driven, there is no way to
explicitly add emphasis on additional style aspects.

One of the primary reasons behind (1) is the
lack of explicit initialization of encoder-decoder
attention parameters in STYLELM resulting in a
random initialization. The model, therefore, needs
a large corpus of author data to stabilize these
parameters. To fix this, we propose to train the
entire encoder-decoder language model using the
DAE loss over the same generic corpus used for
pre-training. The resulting model will be in the
generic language space (English, in our case), and
henceforth referred to as VANILLALM. We, fur-
ther, finetune VANILLALM in the author corpus on
the DAE loss to arrive at an improved version of
STYLELM which we call ISTYLELM. This offers
better encoder-decoder attention initialization, and
also removes the exposure bias of STYLELM, thus
resulting in a more resilient and stable model with
improved content preservation abilities (as demon-
strated in Section 5.2).

However, at this point, we note that ISTYLELM
still fails to address (2), and its content preservation
ability is also sub-optimal as the target author’s
style aspects which are infused at the later stage
of training override some of the general linguistic
knowledge. To further improve on ISTYLELM, we
introduce a Director-Generator component to our
training framework in the next section.

4.3 Director-Generator Finetuning

For the Director-Generator finetuning, we find in-
spiration in the standard RL strategies (Rennie
et al., 2017; Ranzato et al., 2015) where the nearby
space is explored and certain actions are rewarded
higher than others, consequently getting encour-
aged in the future. We, however, find direct re-
warding unstable for our problem. Hence, we
generate potential directives during exploration
and accept or reject them on the basis of thresh-
olds. A directive, in our context, is as an output
paragraph generated from an input by a director
model which is fixed and has been initialized using
ISTYLELM. Specifically, we create two copies of
the ISTYLELM as the Director and the Generator.
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Figure 2: Both the director as well as generator, intiliazed using ISTYLELM, work together to improve the final
outputs. While director remains in the space of author style generating and exploring potential directives , generator
keeps changing its threshold as it gets improved on its content & style capabilities. The directives above the average
threshold for same example are accepted while rest of them are rejected.

As the names indicate, for each input, the direc-
tor proposes n potential directives or paragraphs,
while the generator generates n thresholding out-
puts (paragraphs) as shown in Figure 2. We gener-
ate the potential directives using nucleus sampling
(Holtzman et al., 2019) with a softmax temperature
of 1.2, while the thresholding outputs are generated
using a softmax temperature of 0.8 (the same value
is used at inference time as well). We score the di-
rector and generator outputs on various content and
style attributes. For content preservation, we use
the BLEU score between input and output as the
content score. For lexical style, the mean squared
error is calculated between the 6-dimensional lex-
ical alignment vector of the directives/generator
outputs (calculated as the averaged sum of align-
ments of words in the proposal) and average lexical
alignments of paragraphs for the target author cor-
pus. Similarly, the mean squared error for surface
style is also calculated. The scores L and S for
lexical and surface styles, respectively, are then cal-
culated as reciprocal of means squared errors (with
ε added in the denominator to avoid zero-division).
For syntactical choices, since we wish to achieve
the probability distribution of different types of sen-
tences at the corpus-level, we calculate the score
for syntactic style as, SX =

sum(Pp◦Pt)
sum(Pp)

where
Pp denotes the frequency distribution of different
types of sentences in a directive/generator’s output,
Pt the probability distribution of different types of
sentences in target author corpus, and ◦ denotes the
Hadamard product. All three scores are summed to

calculate the style score for the directives (and the
generator outputs).

The ISTYLELM model already captures certain
stylistic aspects of the target author. We want our
model to leverage this understanding and improve
on aspects where ISTYLELM does not perform
well. To capture this, we compute the content and
style scores of all the potential directives and gener-
ator outputs and retain only those directives which
have both the content and style scores better than
the average of the generators’ outputs’ scores. The
accepted directives become real directives for the
generator and are used to train it using the teacher-
forcing cross-entropy loss. Note again that the
director remains frozen with ISTYLELM during
the entire training process. In the case of multiple
potential directives being better than the generators’
outputs’ average, the cross-entropy loss for each di-
rective is weighted by its marginal difference from
the generator’s average score on the style dimen-
sion; i.e., if the style score for a directive is Ds and
average outputs’ style score from the generator is
Gs, its weight during the cross-entropy training is
Ds −Gs. This objective is similar to the one used
in SCST (Rennie et al., 2017) but only accepted
directives are encouraged and nothing is explicitly
discouraged.

In order to stabilize the Director-Generator fine-
tuning framework, we use (a) fixed director, and
(b) moving generator. Contrary to the natural ex-
pectation of exploring better directives with the
training of the director, the fixed or frozen director
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prevents catastrophic degradation in case the train-
ing biases the model towards specific choices that
further train the model. It is a known phenomenon
in RL frameworks that the model quickly learns to
bias towards specific choices that are more reward-
ing. Specifically, we observe that training the direc-
tor as well leads to overfitting to the limited stylistic
choices, thus resulting in the exploration of sub-
optimal potential directives that seldom cross the
required thresholds, especially the content preserva-
tion ones. With a moving (i.e. trained at each step)
generator, its outputs scores account for the current
state of the model against a fixed stable director,
and hence only those directives get accepted which
are better than the current capabilities (thresholds)
of the generator. With a fixed generator, directives
that would have been worse than current capabili-
ties of the model but better than the capabilities of
the fixed generator would also get accepted, thus
training the model in the opposite direction. The
Director-Generator finetuned ISTYLELM yields
our proposed DRAG framework. At the inference
time, we drop the director and use the Generator as
our final rewriting model.

5 Experiments

We use a transformer encoder1 with 512 hidden
units, 16 heads, a dropout rate of 0.1, and learned
positional embeddings during our MLM training.
The model is trained using Adam Optimizer with
a learning rate of 10−4. The batch size used is 32
with a stream of 256 tokens, and the whole setup is
trained until the validation performance (perplexity
scores) shows no further improvement. The Trans-
formers used in encoder-decoder setup also have
the same parameters, and are initialized using the
above encoder before training on further objectives.
During DAE loss training, we use the same hyper-
parameters used in (Conneau and Lample, 2019;
Syed et al., 2020), and set pdrop and pblank to 0.1.
During director-generator training, we use n as 8
and ε as 0.05. The learning rate used in this case is
10−5. In all the models, we use Byte Pair Encoding
(Sennrich et al., 2015) with 80k codes learnt over
the entire generic corpus.

5.1 Dataset

We use the 2,857 books written by 142 authors in
the Gutenberg corpus (Lahiri, 2014), as used in
(Syed et al., 2020), along with the Wikipedia ar-

1As proposed by Parisotto et al. and shown in Fig. 1

ticles, to form a corpus of about 4.6M passages.
We refer to this corpus as generic during all our
experiments, since it infuses only generic linguis-
tic knowledge into the models. While MLM and
VANILLALM are trained on the generic corpus, we
select three authors with the most distinct writing
styles, namely Albert Einstein, Michael Faraday,
and John Stuart Mill, as measured by comparing
their lexical alignments with the average lexical
alignment of the Gutenberg corpus, as the target au-
thors for author-specific style rewriting. Note that
the choice of the authors is made purely on statisti-
cal basis with these three authors having maximum
lexical style difference on their style vectors as
described earlier when compared with the lexical
style of entire generic corpus. For evaluation, we
use the Opinosis corpus (Ganesan et al., 2010) as
well as mixed author Gutenberg subset (with five
passages from all the authors except the target au-
thor), which we refer to as Generic (Test).

5.2 Quantitative Evaluation

Table 1 shows the results averaged over the three
selected authors. The experiments are conducted
on Opinosis and Generic (Test) datasets, using the
following four models.

• VANILLALM is initialized using MLM-
trained encoders and decoders and fine-tuned
on the generic corpus using DAE loss.

• STYLELM, proposed by Syed et al. (2020),2

is also initialized using MLM-trained en-
coders and decoders, but fine-tuned only on
the target author corpus (instead of the generic
corpus).

• ISTYLELM, an improved and stronger base-
line compared to STYLELM, is initialized
with VANILLALM and then fine-tuned on the
target author corpus.

• DRAG is our proposed model. We use
ISTYLELM to initialize both director and gen-
erator as described above, and then fine-tune
them using inputs from generic corpus.

While the Generic(Test) corpus is predominantly
literary due to the nature of the source, Opinosis
covers everyday language. As shown in Table 1,
STYLELM improves on the style alignment scores,

2Note that the STYLELM code is not publicly available.
Results shown in the table are using our own implementation.
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Dataset Model
Content Preservation (↑) Author Style (↓)

ROUGE-1 ROUGE-2 ROUGE-L BLEU Lexical(RMSE) Surface(RMSE) Syntactic(JSD)

Opinosis

Vanilla LM 75.23 56.12 74.28 59.46 0.232 2.74 0.132
StyleLM (Syed et al., 2020) 32.61 14.51 31.69 14.82 0.174 2.56 0.121

iStyleLM 49.28 29.16 49.86 28.16 0.178 2.61 0.122
DRAG 57.23 36.12 56.98 37.53 0.179 2.48 0.109

Generic

Vanilla LM 72.34 54.65 71.93 56.46 0.218 2.48 0.120
StyleLM (Syed et al., 2020) 30.31 11.58 29.77 12.91 0.163 2.29 0.114

iStyleLM 45.12 26.08 44.36 24.16 0.171 2.33 0.121
DRAG 52.39 30.66 51.98 33.28 0.174 2.21 0.097

Table 1: ↑ indicates higher scores are better while ↓ indicates the opposite. Apart from lexical alignment where
StyleLM performs marginally better, DRAG outperforms prior approaches. Vanilla LM performs best at content
preservation but lacks any stylization

Input Albert Einstein Michael Faraday John Stuart Mill
The accuracy at this point is very
good

The experimental definitions developed
is very clearly

The point is very wonderful The physical for this , is very
very pretty .

The estimated time to arrival
does not seem to calculate the
travelling time accurately

The estimated time relative to the lead-
ing existence does not seem likely to
calculate the travelling time exactly

The discovery of ascertaining
time ; indeed , do not not show
accuracy to the time to angles

The total time is to infer that
arrival is not verified but often
clearly a , accurately .

Table 2: Qualitative Outputs For Three different authors for same inputs

Input StyleLM (Syed et al., 2020) DRAG (Ours)
but after that it is very easy and quite
accurate to use.

But for all that it is very After question about
this and quite measured with consideration.

But after all it is very accurate and quite
illustrious to the use of events.

Leather seats are very comfortable. come on very very should we have any re-
placed.

This moving hypothetical seats are very
comfortable.

I am not real fond of the electric seat
and I find it is not as comfortable as my
F150 pickup on trips

I am not real and use of the electric position
and I find that it is not as well may’s for the
very hardly small have we led train

I am not real fond of the electric seat , and I
find it is not as comfortable as my physical
relative on railway investigations. .

Table 3: Comparison between STYLELM and DRAG for Albert Einstein

but at a great cost of content preservation when
the target author corpus is small. This is possi-
bly due to the random initialization of encoder-
decoder attention parameters in the DAE training
over target corpus, as reflected in the superior per-
formance of ISTYLELM. We also note that while
the approach proposed in STYLELM (Syed et al.,
2020) improves lexical scores significantly, it fails
to bring the same level of improvement in surface
and syntactic alignments, perhaps due to the due to
rare chances of less frequent punctuation symbols
getting masked during DAE training, even more so
when the target author corpus is not large enough
to cover all possible masks. Similar reasoning ex-
plains the syntactic alignment issues, The DRAG
approach, however, improves on both surface and
syntactic alignment along with content preserva-
tion scores even though it comes at the marginal
cost of lexical alignment. Please note that the pur-
pose of Vanilla LM is to provide an estimation of
upper limit on the content preservation scores and
is not to be treated as a baseline due to the simple

objective of its task (just copying the input tokens).

5.3 Qualitative Comparisons

We also qualitatively show some comparisons for
different authors and different models. In Table 2,
we show the outputs of DRAG for same input and
different target authors. Evidently, our model pro-
duces changes both at the lexical as well as surface
levels. The word ‘good’ in the first input is replaced
by words like ‘clearly’, ‘wonderful’, and ‘pretty’,
depending on the author. Some words do not re-
place any word but still get added to change the
syntactical structure of the sentences. For example,
appearance of the word ‘relative’ starts comparison
to the ‘leading existence’ making it a bit complex.
Sometimes, surface level changes like appearance
of ‘;’ also change the complexity of sentences.

We also show the comparison between
STYLELM and our proposed DRAG outputs for
same inputs when the target author is Albert Ein-
stein as shown in Table 3. Evidently, while
both models try to achieve the stylistic alignment,



870

STYLELM ends up distorting the input sentence
too much resulting in poor content preservation
properties. Words like ‘measured’, ‘hypotheti-
cal’, and ‘physical’ relative reflect the objective
approach used in Albert Einstein’s writings.

6 Discussions and Limitations

While the language generation advancements are
happening at a very high pace, the notion of style
and the ability of models to rewrite same content
in different styles is still far from being solved.
One of the most important observation as made
by Lample et al. (2018) is that it is very difficult
to separate content from style. In fact, previous
approaches which worked on the principle of dis-
entangling style from content were not found to
disentangle the style so much after all (Lample
et al., 2018). The notion of style is still very far
from being defined and concretized. While some
psycholinguistic concepts can be defined to some
extent (formality, sentiment, etc.), defining it at the
level of author’s style is very difficult due to mani-
festation of style at different levels as enumerated
by Verma and Srinivasan (2019). Despite, such
enumeration at various levels, it is far from exhaus-
tive and therefore our approach still requires more
granular understanding of style to closely emulate
target author’s style.

Our evaluation uses automatic metrics for style
due to the difficulty associated with conducting hu-
man evaluation in author attribution tasks (Syed
et al., 2020). The skill needed to identify the au-
thor’s style is very intense thus making the human
evaluation very costly. A more granular and de-
tailed study on understanding how humans inter-
pret an author’s style is required to design a proper
feedback mechanism. This is, however, outside the
scope of this work.

6.1 What Did Not Work

In this section, we discuss some of our explorations
that did not work as expected to aid future research
in author stylization. We experimented with var-
ious reinforcement learning setups as it was a
more natural choice once we had scoring engines
for rewards. Using the VANILLALM as a policy
and we explored Self Critical Sequence Training
(SCST) (Rennie et al., 2017; Ranzato et al., 2015)
and Proximal Policy Optimization (Schulman et al.,
2017). However, all the setups were unstable in
various ways for our problem. Note that our ex-

periments and observations here are limited to the
problem of author stylized rewriting only. SCST or
self-critical sequence training is aimed at bringing
the advantages of reinforcement learning setups
for sequence level problems. A model (or pol-
icy) generates/explores outputs (or episodes) using
multinomial sampling and greedy sampling. If the
greedily sampled episode reward is rb and the non-
greedily sampled episode reward is r - the whole
setup is trained using REINFORCE (Sutton and
Barto, 2018) with r as the actual reward and rb as
baseline reward. We found this to limit exploration
considering our problem is relatively much harder
than previous metrics on which SCST has been suc-
cessful due to our target metric being of an exact
value. It, therefore, resulted in no improvement in
either style or content scores. We, therefore, shifted
to its modified version to encourage exploration,
where we generated multiple episodes for each in-
put and averaged their scores to use that as baseline
reward rb and trained the setup on all generated
episodes using REINFORCE (Sutton and Barto,
2018). We found this approach to be effective at
style incorporation but not generalizable at all. The
model learned to repeat certain patterns with poor
content preservation abilities. We, tried, to balance
it with occasional denoising autoencoder loss train-
ing but that only delayed the overfitting and not
solve it. We also attempted Proximal Policy Opti-
mization in a setup same as (Sun et al., 2019) but
it resulted in even worse outputs due to the critic’s
failure to approximate complex value functions for
our objectives.

As discussed already, we only accept those di-
rectives which have scores above the threshold. We
also tried a variant of it which had even those di-
rectives which do not score above the threshold.
We scored them negatively thereby resulting in a
bit similar framework like SCST but within some
steps, we found more negative scores than positive
due to bad content preservation pushing the model
away from a bad state towards some undefined state
resulting in spurious and inconsistent outputs.

7 Conclusion and Future Work

In this work, we addressed the shortcomings of
the prior approaches for the task of author styl-
ized rewriting and overcame them through DRAG:
a Director-Generator approach. We showed the
effectiveness of our proposed approach for styl-
ized rewriting on three different authors from the



871

Guteneberg Corpus. Furthermore, we discussed the
limitations of our approach and some of the failure
cases to aid future research. While our DRAG ap-
proach is able to stabilize the training while improv-
ing the content preservation abilities of the model,
a standard reinforcement learning approach, when
stabilized, has the potential to improve these scores
to a much more improved level. Improved under-
standing of author style while keeping a human
in the loop and stabilizing RL with transformers
models are subjects of future research.
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