
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 850–862
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

850

Conversational Question Answering over Knowledge Graphs with
Transformer and Graph Attention Networks

Endri Kacupaj1, Joan Plepi2, Kuldeep Singh3, Harsh Thakkar4,
Jens Lehmann1,5, and Maria Maleshkova1

1Smart Data Analytics Group, University of Bonn, Bonn, Germany
2Technische Universität Darmstadt, Darmstadt, Germany

3Zerotha Research and Cerence GmbH, Germany
4Zerotha Research and Osthus GmbH, Germany

5Fraunhofer IAIS, Dresden, Germany

{kacupaj,jens.lehmann,maleshkova}@cs.uni-bonn.de
joan.plepi@tu-darmstadt.de
kuldeep.singh1@cerence.com
harsh.thakkar@osthus.com

jens.lehmann@iais.fraunhofer.de

Abstract
This paper addresses the task of (complex)
conversational question answering over a
knowledge graph. For this task, we propose
LASAGNE (muLti-task semAntic parSing
with trAnsformer and Graph atteNtion
nEtworks). It is the first approach, which
employs a transformer architecture extended
with Graph Attention Networks for multi-task
neural semantic parsing. LASAGNE uses a
transformer model for generating the base
logical forms, while the Graph Attention
model is used to exploit correlations between
(entity) types and predicates to produce node
representations. LASAGNE also includes a
novel entity recognition module which detects,
links, and ranks all relevant entities in the
question context. We evaluate LASAGNE
on a standard dataset for complex sequential
question answering, on which it outperforms
existing baseline averages on all question
types. Specifically, we show that LASAGNE
improves the F1-score on eight out of ten
question types; in some cases, the increase in
F1-score is more than 20% compared to the
state of the art.

1 Introduction

Since their inception in the late 2000s, pub-
licly available Knowledge Graphs (e.g., DBpe-
dia (Lehmann et al., 2015) and Yago (Suchanek
et al., 2007)) have been widely used as a source
of knowledge in several natural language process-
ing (NLP) tasks such as entity linking, relation
extraction, fact-checking, and question answering.
Question answering (QA), in particular, is an essen-
tial task that maps a user natural language question

Figure 1: Conversational Question Answering task
with examples similar to CSQA dataset (Saha et al.,
2018).

to a query over a knowledge graph (KG) to retrieve
the correct answer (Singh et al., 2018). With the
increasing popularity of intelligent personal assis-
tants (e.g., Alexa, Siri), the research focus has been
shifted to conversational question answering that
involves multi-turn dialogues, incorporating the
phenomenon of anaphora and ellipses (Christmann
et al., 2019; Shen et al., 2019)(c.f. Figure 1).

Conversational QA is often realised by using
semantic parsing approaches, mapping an utter-
ance to a logic form for extracting answers from
a KG (Guo et al., 2018; Shen et al., 2019). The
state of the art for semantic parsing approaches de-
composes the semantic parsing process into two
stages (Shen et al., 2019). First, a logical form
is generated based on low-level features and then

851

the missing details are filled by considering both
the question and the template. Other approaches
(Dong and Lapata, 2016; Guo et al., 2018; Liang
et al., 2017) first employ an entity linking model to
identify entities in the question and subsequently
use another model to map the question to a logi-
cal form. (Zhang et al., 2018; Shen et al., 2019)
point out that the modular approaches suffer from
the common issue of error propagation along the
QA pipeline, resulting in accumulated errors. To
mitigate these errors, Shen et al. (2019) proposed
a multi-task framework, where a pointer-equipped
semantic parsing model was designed to resolve
coreference in conversations and empower joint
learning with a type-aware entity detection model.
Furthermore, the authors used simple classifiers to
predict the required (entity) types and predicates
for the generated logical forms. In this paper, we ar-
gue that Shen et al. (2019) model (the current SotA)
has the following shortcomings: 1) the (entity) type
and predicate classifiers share no common informa-
tion, except for the supervision signal propagated
to them. 2) Hence, due to missing common infor-
mation, the model can produce ambiguous results,
since the classifiers can predict entities and predi-
cates that do not correlate with each other.

Approach and Contributions: We tackle the
problem of conversational (complex) question an-
swering over a large-scale knowledge graph. We
propose LASAGNE (muLti-task semAntic parSing
with trAnsformer and Graph atteNtion nEtworks)
- a multi-task learning framework consisting of
a transformer model extended with Graph Atten-
tion Networks (GATs) (Veličković et al., 2018) for
multi-task neural semantic parsing. Our frame-
work handles semantic parsing using the trans-
former (Vaswani et al., 2017) model similar to
previous approaches. However, in LASAGNE we
introduce the following two novel contributions:
1) the transformer model is supplemented with a
Graph Attention Network to exploit the correla-
tions between (entity) types and predicates due to
its message-passing ability between the nodes. 2)
We propose a novel entity recognition module that
detects, links, filters, and permutes all relevant en-
tities. (Shen et al., 2019) uses a pointer equipped
decoder that learns and identifies the relevant enti-
ties for the logical form using only the encoder’s
information. In contrast, we use both sources of
information, i.e., the entity detection module and
the encoder, to filter and permute the relevant en-

tities for a logical form. This avoids re-learning
entity information in the current question context
and relies on the entity detection module’s informa-
tion. Our empirical results show that the proposed
novel contributions lead to substantial performance
improvements.

LASAGNE achieves the state of the art results
in 8 out of 10 question types on the Complex
Sequential Question Answering (CSQA) (Saha
et al., 2018) dataset consisting of conversations
over linked QA pairs. The dataset contains 200K
dialogues with 1.6M turns, and over 12.8M en-
tities from Wikidata1. Our implementation, the
annotated dataset with the proposed grammar, and
the results are publicly available to facilitate repro-
ducibility and reuse2.

The structure of the paper is as follows: Sec-
tion 2 summarises the related work. Section 3
presents the proposed LASANGE framework. Sec-
tion 4 describes the experiments, including the ex-
perimental setup, the results, the ablation study and
error analysis. We conclude in Section 5.

2 Related Work

We point to the survey by (Gao et al., 2018) that
provides a holistic overview of neural approaches
in conversational AI. In this paper, we stick to our
closely related work, i.e., semantic parsing-based
approaches in conversations. (Liang et al., 2017)
introduce a neural symbolic machine (NSM) ex-
tended with a key-value memory network, where
keys and values are the output of the sequence
model in different encoding or decoding steps. The
NSM model is trained using the REINFORCE al-
gorithm with weak supervision and evaluated on
the WebQuestionsSP dataset (Yih et al., 2016).

(Saha et al., 2018) propose a hybrid model of
the HRED model (Serban et al., 2016) and the key-
value memory network model (Miller et al., 2016).
The model consists of three components. The first
one is the Hierarchical Encoder, which computes a
representation for each utterance. The next module
is a higher-level encoder that computes a represen-
tation for the context. The second component is the
Key-Value Memory Network. It stores each of the
candidate tuples as a key-value pair where the key
contains the concatenated embedding of the rela-
tion and the subject. In contrast, the value contains

1https://www.wikidata.org/
2https://github.com/endrikacupaj/

LASAGNE

https://www.wikidata.org/
https://github.com/endrikacupaj/LASAGNE
https://github.com/endrikacupaj/LASAGNE

852

Action Description
set → find(e, p) set of objects part of the triples with subject e and predicate p
set → find reverse(e, p) set of subjects part of the triples with object e and predicate p
set → filter type(set, tp) filter the given set of entities based on the given type
set → filter multi types(set1, set2) filter the given set of entities based on the given set of types
dict → find tuple counts(p, tp1, tp2) extracts a dictionary, where keys are entities of type1 and values are the number of

objects of type2 related with p
dict → find reverse tuple counts(p, tp1, tp2) extracts a dictionary, where keys are entities of type1 and values are the number of

subjects of type2 related with p
set → greater(dict, num) set of those entities that have greater count than num
set → lesser(dict, num) set of those entities that have lesser count than num
set → equal(dict, num) set of those entities that have equal count with num
set → approx(dict, num) set of those entities that have approximately same count with num
set → atmost(dict, num) set of those entities that have at most same count with num
set → atleast(dict, num) set of those entities that have at least same count with num
set → argmin(dict) set of those entities that have the most count
set → argmax(dict) set of those entities that have the least count
boolean → is in(entity, set) check if the entity is part of the set
number → count(set) count the number of elements in the set
set → union(set1, set2) union of set1 and set2
set → intersection(set1, set2) intersection of set1 and set2
set → difference(set1, set2) difference of set1 and set2

Table 1: Predefined grammar with respective actions to generate logical forms.

the embedding of the object. The last component is
the decoder used to create an end-to-end solution
and produce multiple types of answers.

(Guo et al., 2018) present a model that converts
an utterance in conversation to a logical form. The
model follows a flexible grammar, in which the
generation of a logical form is equivalent to pre-
dicting a sequence of actions. A dialogue memory
management is proposed and integrated into the
model, so that historical entities, predicates, and
action sub-sequences can selectively be replicated.
(Shen et al., 2019) proposed the first multi-task
learning framework that learns type-aware entity
detection and pointer-equipped logical form gen-
eration simultaneously. The multi-task learning
framework takes advantage of the supervision from
the subtasks.

3 LASAGNE

In a conversation, the input data consists of utter-
ances u and their answers a, extracted from the
knowledge graph. Our framework LASAGNE em-
ploys a multi-task semantic parsing approach. In
particular, it maps the utterance u to a logical form
z, depending on the conversation context. Figure 2
shows the architecture of LASAGNE.

3.1 Grammar

For the semantic parsing task, we propose a gram-
mar that can be used to capture the entire context
of the input utterance with the minimum number
of actions. Table 1 illustrates the complete gram-
mar with all the defined actions. We considered the

work by (Guo et al., 2018) as a starting point for
generating them, however, we have updated many
of the semantic actions. For instance, for a couple
of actions, we also define their reverse occurrence
(e.g. find, find reverse)).

3.2 Transformer

To translate the input conversation into a sequence
of actions (logical form), we utilise a transformer
model (Vaswani et al., 2017). Specifically, the
transformer here aims to map a question q, that
is a sequence x = {x1, . . . , xn}, to the answer
label l, that can be also defined as a sequence
y = {y1, . . . , ym}, by modelling the conditional
probability p(y|x).

3.2.1 Input and Word Embedding

We have to incorporate the dialog history from
previous interactions as an additional input to our
model for handling coreference and ellipsis. To do
so, we consider the following utterances for each
turn: 1) the previous question, 2) the previous an-
swer, and 3) the current question. Utterances are
separated from one another by using a [SEP] to-
ken. At the end of the last utterance, we append
a context token [CTX], which is used as the se-
mantic representation for the entire input question.
In the next step, given an utterance q containing n
words {w1, . . . , wn} we first tokenise the conver-
sation context using WordPiece tokenization (Wu
et al., 2016), and after that, we use the pre-trained
model GloVe (Pennington et al., 2014) to embed
the words into a vector representation space of di-

853

Figure 2: LASAGNE (Multi-task Semantic Parsing with Transformer and Graph Attention Networks) architecture.
It consists of three modules: 1) A semantic parsing-based transformer model, containing a contextual encoder and
a grammar guided decoder using the grammar defined in Table 1. 2) An entity recognition module, which identifies
all the entities in the context, together with their types, linking them to the knowledge graph. It filters them based
on the context and permutes them, in case of more than one required entity. Finally, 3) a graph attention-based
module that uses a GAT network initialised with BERT embeddings to incorporate and exploit correlations between
(entity) types and predicates. The resulting node embeddings, together with the context hidden state (hctx) and
decoder hidden state (dh), are used to score the nodes and predict the corresponding type and predicate.

mension d 3. Our word embedding model provides
us with a sequence x = {x1, . . . , xn} where xi is
given by, xi = GloV e(wi) and xi ∈ Rd.

3.2.2 Contextual Encoder
The word embeddings x, are forwarded as input to
the contextual encoder, which uses the multi-head
attention mechanism described by (Vaswani et al.,
2017). The encoder here outputs the contextual
embeddings h(enc) = {h(enc)1 , . . . , h

(enc)
n }, where

h
(enc)
i ∈ Rd and it can be defined as:

h(enc) = encoder(x; θ(enc)), (1)

where θ(enc) are the encoder’s trainable parameters.

3.2.3 Grammar-Guided Decoder
We use a grammar guided decoder for generating
the logical forms. The decoder also employs the

3Across the model, we use the same dimension d for all
the representations, unless it is explicitly noted.

multi-head attention mechanism. The decoder out-
put is dependent on the encoder contextual em-
beddings h. The main task of the decoder is to
generate each corresponding action, based on Ta-
ble 1, alongside with the general semantic object
from the knowledge graph (entity, type, predi-
cate). In other words, the decoder will predict
the main logical form without using or initialis-
ing any specific information from the knowledge
graph. Here we define the decoder vocabulary
as V (dec) = {find, find reverse, . . . , entity,
type, predicate, value}, where all the actions
from Table 1 are included. On top of the decoder
stack, we employ a linear layer alongside a softmax
to calculate each token’s probability scores in the
vocabulary. We define the decoder stack output as
follows:

h(dec) = decoder(h(enc); θ(dec)),

p
(dec)
t = softmax(W (dec)h

(dec)
t),

(2)

854

where h
(dec)
t is the hidden state in time step

t, θ(dec) are the decoder trainable parameters,
W (dec) ∈ R|V (dec)|×d are the linear layer weights,
and p(dec)t ∈ R|V (dec)| is the probability distribution
over the decoder vocabulary in time step t. The
|V (dec)| denotes the decoder’s vocabulary size.

3.3 Entity Recognition Module
The entity recognition module is composed of two
sub-modules, where each module is trained using a
different objective.

3.3.1 Entity Detection and Linking
Entity Detection It aims to detect and link the
entities to the KG. The module is inspired by (Shen
et al., 2019) and performs type-aware entity de-
tection by using BIO sequence tagging jointly
with entity type tagging. Specifically, the en-
tity detection vocabulary is defined as V (ed) =

{O, {B, I}×{TPi}N
(tp)

i=1 }, where TPi denotes the
i-th entity type label, N (tp) stands for the number
of the distinct entity types in the knowledge graph
and |V (ed)| = 2×N (tp)+1. For performing the se-
quence tagging task we use an LSTM (Hochreiter
and Schmidhuber, 1997) and the module is defined
as:

h(l) = LeakyReLU(LSTM(h(enc); θ(l))),

p
(ed)
t = softmax(W (l)h

(l)
t),

(3)

where h(enc) is the encoder hidden state, θ(l) are the
LSTM layer trainable parameters, h(l)t is the LSTM
hidden state for time step t, W (l) ∈ R|V (ed)|×d are
the linear layer weights and p

(ed)
t are the entity

detection module prediction for time step t. |V (ed)|
denotes the entity detection vocabulary size.

Entity Linking Once the entity BIO labels and
their types are recognised, the next steps for the
entity linking are: 1) the BIO labels are used to
locate the entity spans from the input utterances.
2) An inverted index built for the knowledge graph
entities is used to retrieve candidates for each pre-
dicted entity span. Finally, 3) the candidate lists
are filtered using the predicted (entity) types. From
the filtered candidates, the first entity is considered
as correct.

3.3.2 Filtering and Permutation
After finding all the input utterances’ entities, we
perform two additional tasks in order to use entities
in the generated logical form. First, we filter the
relevant entities, and then we need to permute the

entities in the order required for the logical form.
The module receives as an input the concatenation
of the hidden states of the encoder h(enc) and the
hidden states of the LSTM h(l) from the entity de-
tection model. The module here learns to assign
index tags to each input token. We define the mod-
ule vocabulary as V (ef) = {0, 1, . . . ,m} where 0
is the index assigned to the context entities that are
not considered. The remaining values are indices
that permute our entities based on the logical form.
Here, m is the total number of indices based on
the maximum number of entities from all logical
forms. Overall, our filtering and permutation mod-
ule is modelled using a feed-forward network with
two linear layers separated with a Leaky ReLU
activation function and appended with a softmax.
Formally we define the module as:

h(ef) = LeakyReLU(W (ef1)[h(enc);h(l)]),

p
(ef)
t = softmax(W (ef2)h

(ef)
t),

(4)

where W (ef1) ∈ Rd×2d are the weights of the first
linear layer and h

(ef)
t is the hidden state of the

module in time step t. W (ef2) ∈ R|V (ef)|×d are
the weights of the second linear layer, |V (ef)| is
the size of the vocabulary and p(ef)t denotes the
probability distribution over the tag indices for the
time step t.

3.4 Graph Attention-Based Module

A knowledge graph (KG) can be denoted as a set
of triples K ⊆ E ×R× E where E andR are the
set of entities and relations respectively. To build
the (local) graph, we consider the relations and the
types of entities that are linked with these relations
in the knowledge graph K. We define a graph
G = {T ∪ R,L} where T is the set of types,R is
the set of relations and L is a set of links (tp1, r)
and (r, tp2) such that ∃(e1, r, e2) ∈ K where e1 is
of type tp1 and e2 is of type tp2.

To propagate information in the graph and to
project prior KG information into the embed-
ding space, we use the Graph Attention Networks
(GATs) (Veličković et al., 2018).

We initialise each node embedding h(g) =

{h(g)1 , . . . , h
(g)
n } using pretrained BERT embed-

dings, and n = |T ∪ R|. A GAT layer uses
a parameter weight matrix, and self-attention, to
produce a transformation of input representations
h
(g)

= {h(g)1 , . . . , h
(g)
n }, where h

(g)
i ∈ Rd as

855

shown below:

h
(g)

= g(h(g); θ(g)), 4 (5)

and θ(g) are the trainable parameters. We model
the task of predicting the correct type or predicate
in the logical form as a classification task over the
nodes in graph G, given the current conversational
context and decoder hidden state. For each time
step t in the decoder, we calculate the probability
distribution p(g)t over the graph nodes as:

p
(g)
t = softmax(h

(g)T
h
(c)
t), (6)

where h
(g) ∈ Rd×n and h(c)t is a linear projection

of the concatenation of the context representation
and the decoder hidden state, given as follows,

h
(c)
t = LeakyReLU(W (g)[h

(enc)
ctx ;h

(dec)
t]), (7)

and W (g) ∈ Rd×2d.

3.5 Learning
The framework consists of four trainable modules,
grammar guided decoder, entity detection, filter-
ing and permutation, and the GAT-based module
for types and predicates. Every module consists
of a loss function that contributes to the overall
performance of the framework, as shown in Sec-
tion 4.3. To account for multi-tasking, we perform
a weighted average of all the single losses:

L = λ1L
dec + λ2L

ed + λ3L
ef + λ4L

g, (8)

where λ1, λ2, λ3, λ4 are the relative weights, which
are learned during training by taking into account
the difference in magnitude between losses by in-
corporating the log standard deviation (Armitage
et al., 2020; Cipolla et al., 2018). Ldec, Led, Lef ,
and Lg are the respective negative log-likelihood
losses of the grammar guided decoder, entity de-
tection, filtering and permutation, and GAT-based
modules. These losses are defined as follows:

Ldec = −
m∑
k=1

logp(y
(dec)
k |x),

Led = −
n∑

j=1

logp(y
(ed)
j |x),

Lef = −
n∑

i=1

logp(y
(ef)
i |x),

Lg = −
m∑
k=1

I
(y

(dec)
k ∈{type,pred})logp(y

(g)
k |x),

(9)

4For more details about GAT please refer to the appendix.

where n and m are the length of the input utter-
ance x and the gold logical form, respectively.
y
(dec)
k ∈ V (dec) are the gold labels for the decoder,
y
(ed)
j ∈ V (ed) are the gold labels for entity detec-

tion, y(ef)j ∈ V (ef) are the gold labels for filtering

and permutation, and y(g)k ∈ {T ∪ R} are the gold
labels for the GAT-based module. The model ben-
efits from multiple supervision signals from each
module, and this improves the performance in the
given task.

4 Experiments

4.1 Experimental Setup
Datasets We use the Complex Sequential Ques-
tion Answering (CSQA) dataset5 (Saha et al.,
2018). CSQA was built on the large-scale knowl-
edge graph Wikidata. Wikidata consists of 21.2M
triples with over 12.8M entities, 3,054 entity types,
and 567 predicates. The CSQA dataset consists of
around 200K dialogues where each partition – train,
valid, test contains 153K, 16K, 28K dialogues, re-
spectively. The questions involve complex reason-
ing to determine the correct answers.

Model Configurations We incorporate a semi-
automated preprocessing step to annotate the
CSQA dataset with gold logical forms. For each
question type and subtype in the dataset, we cre-
ate a general template with a pattern sequence that
the actions should follow. Thereafter, we follow a
set of rules to create the specific gold logical form
that extracts the gold sequence of actions based
on the type of question for each question. The ac-
tions used for this process are the ones in Table 1.
For all the modules in the LASAGNE framework,
we employ an embedding dimension of 300. We
utilise the transformer model with six heads for the
multi-head attention model with two layers. For
the optimisation, we use the Noam optimiser pro-
posed by (Vaswani et al., 2017), where authors use
an Adam optimiser (Kingma and Ba, 2015) with
several warmup steps for the learning rate. Please
refer to the appendix submitted with the paper for
more details.

Models for Comparison We compare the
LASAGNE framework with the last three baselines
that have been evaluated on the employed dataset.
The first baseline is (Saha et al., 2018) where au-
thors introduce the HRED+KVmem model. The
second baseline is D2A (Guo et al., 2018), which

5https://amritasaha1812.github.io/CSQA

https://amritasaha1812.github.io/CSQA

856

Methods HRED-KVM D2A MaSP LASAGNE (ours) ∆

Question Type #Examples F1 Score
Overall 206k 9.39% 66.70% 79.26% 82.91% +3.65%

Clarification 12k 16.35% 35.53% 80.79% 69.46% -11.33%
Comparative Reasoning (All) 15k 2.96% 48.85% 68.90% 69.77% +0.87%

Logical Reasoning (All) 22k 8.33% 67.31% 69.04% 89.83% +20.79%
Quantitative Reasoning (All) 9k 0.96% 56.41% 73.75% 86.67% +12.92%

Simple Question (Coreferenced) 55k 7.26% 57.69% 76.47% 79.06% +2.59%
Simple Question (Direct) 82k 13.64% 78.42% 85.18% 87.95% +2.77%

Simple Question (Ellipsis) 10k 9.95% 81.14% 83.73% 80.09% -3.64%
Question Type #Examples Accuracy

Overall 66k 14.95% 37.33% 45.56% 64.34% +18.78%
Verification (Boolean) 27k 21.04% 45.05% 60.63% 78.86% +18.23%

Quantitative Reasoning (Count) 24k 12.13% 40.94% 43.39% 55.18% +11.79%
Comparative Reasoning (Count) 15k 8.67% 17.78% 22.26% 53.34% +31.08%

Table 2: LASAGNE’s performance comparison on the CSQA dataset having 200K dialogues with 1.6M turns and
over 12.8M entities. LASAGNE achieves “overall” (weighted average on all question types) new state of the art
for both the F1 score and the question type results’ accuracy metric.

uses a semantic parsing approach based on a
seq2seq model. Finally, the current state of the
art is MaSP (Shen et al., 2019), which is also a
semantic parsing approach.

Evaluation Metrics We use the same metrics
as employed by the authors of the CSQA dataset
(Saha et al., 2018) as well as the previous baselines.
The “F1-score” is used for questions that have an
answer composed of a set of entities. The “Accu-
racy” metric is used for the question types whose
answer is a number or a boolean value (YES/NO).
We also provide an overall score for each evaluation
metric and their corresponding question categories.

4.2 Results

Table 2 summarises the results comparing the
LASAGNE framework against the previous base-
lines. LASAGNE outperforms the previous base-
lines weighted average on all question types (The
row “overall” in the Table 2). Furthermore,
LASAGNE is a new SotA in 8 out of 10 ques-
tion types, and in some cases, the improvement is
up to 31 percent.
What worked in our case? For question types
that require more than two entities for reasoning,
such as Logical Reasoning (All) and Verification
(Boolean), LASAGNE performs considerably bet-
ter (+20.79% and +18.23% respectively). This
is mainly due to the proposed entity recognition
module. Furthermore, for question types that re-
quire two or more (entity) types and predicates,
such as Quantitative Reasoning (All), Quantita-
tive Reasoning (Count) and Comparative Reason-

ing (Count) LASAGNE also outperforms MaSP
(+12.92%, +11.79% and +31.08% respectively).
Here, the improvement is due to the graph attention-
based module, which is responsible for predicting
the relevant (entity) types and predicates. Another
interesting result is that LASAGNE also performs
better in two out of three Simple Question involv-
ing one entity and one predicate categories. The
performance shows the robustness of LASAGNE.
What did not work in our case? LASAGNE no-
ticeably under-performs on the Clarification ques-
tion type, where MaSP retains the state-of-the-
art. The main reason is the spurious logical forms
during the annotation process which has further
impacted the Simple Questions (Ellipses) perfor-
mance.

4.3 Ablation Study

Effect of GAT and Multi-task Learning Table 3
summarises the effectiveness of the GAT-based
module and the multi-task learning. We can ob-
serve the advantage of using them together in
LASAGNE. To show the effectiveness of GAT-
based module, we replace it with two simple clas-
sifiers, one for each predicate and type categories.
We can observe that the performance drops signifi-
cantly for the question types that require multiple
entity types and predicates (e.g. Quantitative Rea-
soning (All), Quantitative Reasoning (Count) and
Comparative Reasoning (Count)). When we ex-
clude the multi-task learning and train all the mod-
ules independently, there is a negative impact on
all question types. In LASAGNE, the filtering and

857

Methods Ours w/o GATs w/o Multi
Question Type F1 Score

Clarification 66.94% 57.33% 59.43%
Comparative 69.77% 57.72% 66.41%

Logical 89.83% 78.52% 86.75%
Quantitative 86.67% 75.26% 82.18%

Simple (Coref) 79.06% 76.46% 77.23%
Simple (Direct) 87.95% 83.59% 85.39%

Simple (Ellipsis) 80.09% 77.19% 78.47%
Question Type Accuracy

Verification 78.86% 63.38% 75.24%
Quantitative 55.18% 40.87% 46.27%
Comparative 53.34% 41.73% 45.90%

Table 3: The effectiveness of the GAT and the multi-
task learning. The first column contains the results of
the LASAGNE framework, where all the modules are
trained simultaneously. The second and third columns
selectively remove the GAT and the multi-task learning
from LASAGNE.

permutation module, along with the GAT-based
module, is heavily dependent on the supervision
signals received from the previous modules. There-
fore it is expected that without the multi-task learn-
ing, LASAGNE will underperform on all question
types, since each module has to re-learn inherited
information.

4.4 Task Analysis

Tasks Accuracy
Entity Detection 86.75%

Filtering & Permutation 97.49%
Grammar-Guided Decoder for Logical Forms 98.61%

GAT-Based Module for Type/Predicate 92.28%

Table 4: Tasks accuracy of the LASAGNE framework.

Table 4 illustrates the task accuracy of
LASAGNE. The Entity Detection task has the low-
est accuracy (86.75%). The main reason here is the
errors in the entity type prediction. On the other
hand, for all other tasks, we have accuracy above
90%.

Effect of Filtering and Permutation For justi-
fying the effectiveness and superior performance
of LASAGNE’s filtering and permutation module,
we compare the overall performance of the entity
recognition module to the corresponding module
from MaSP. Please note, entity detection modules
in both frameworks adopt a similar approach as de-
fined in section 3.3. In Table 5 we can see that the
MaSP entity recognition module provides an over-
all accuracy of 79.8% on test data, while our mod-

ule outperforms it with an accuracy of 92.1%. The
main reason for the under-performance of MaSP is
that it uses only token embeddings without any en-
tity information. In contrast, our approach avoids
re-learning entity information in the question con-
text and relies on the entity detection module’s
information.

Model Entity Recognition Accuracy
MaSP 79.8%

LASAGNE 92.1%

Table 5: Comparing MaSP (Shen et al., 2019) and
LASAGNE for entity recognition performance.

4.5 Error Analysis
For the error analysis, we randomly sampled 100
incorrect predictions. We detail the reasons for two
types of errors observed in the analysis:

Entity Ambiguity Even though our entity de-
tection module assigns (entity) types to each pre-
dicted span, entity ambiguity remains the biggest
challenge for our framework. For instance, for
the question, “Who is associated with Jeff Smith
?” LASAGNE entity detection module correctly
identifies “Jeff Smith” as an entity surface form
and correctly assigns the (entity) type “common
name”. However, the Wikidata knowledge graph
contains more than ten entities with exactly the
same label and type. Our entity linking module
has difficulties in such cases. Wikidata entity link-
ing is a newly emerging research domain that has
its specific challenges such as entities sharing the
same labels, user-created non-standard entity la-
bels and multi-word entity labels (up to 62 words)
(Mulang et al., 2020b). Additional entity contexts,
such as entity descriptions and other KG contexts,
could help resolve the Wikidata entity ambiguity
(Mulang et al., 2020a).

Spurious Logical Form For specific question
categories, we could not identify gold actions for
all utterances. Therefore spurious logical form is a
standard error that affects LASAGNE. Specifically,
we have spurious logical forms for categories such
as “Comparative, Quantitative, and Clarification”
but still can achieve SotA in the comparative and
quantitative categories.

5 Conclusions

In this article, we focus on complex question an-
swering over a large-scale knowledge graph con-
taining conversational context. We provide a

858

transformer-based framework to handle the task in
a multi-task semantic parsing manner. At the same
time, we propose a named entity recognition mod-
ule for entity detection, filtering, and permutation.
Furthermore, we also introduce a graph attention-
based module, which exploits correlations between
(entity) types and predicates for identifying the
gold ones for each particular context. We empiri-
cally show that our model achieves the best results
for numerous question types and also overall. Our
ablation study demonstrates the effectiveness of the
multi-task learning and of our graph-based module.
We also present an error analysis on a random sam-
ple of “wrong examples” to discuss our model’s
weaknesses. For future work, we believe that rein-
forcement learning is a viable alternative to explore
complex conversational question answering with-
out gold annotations.

Acknowledgments

The project leading to this publication has received
funding from the European Union’s Horizon 2020
research and innovation program under the Marie
Skłodowska-Curie grant agreement No. 812997
(Cleopatra).

References
Jason Armitage, Endri Kacupaj, Golsa Tahmasebzadeh,

Maria Maleshkova, Ralph Ewerth, Jens Lehmann,
et al. 2020. Mlm: A benchmark dataset for mul-
titask learning with multiple languages and modali-
ties. arXiv preprint arXiv:2008.06376.

Philipp Christmann, Rishiraj Saha Roy, Abdalghani
Abujabal, Jyotsna Singh, and Gerhard Weikum.
2019. Look before you hop: Conversational ques-
tion answering over knowledge graphs using judi-
cious context expansion. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, pages 729–738.

R. Cipolla, Y. Gal, and A. Kendall. 2018. Multi-task
learning using uncertainty to weigh losses for scene
geometry and semantics. In 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 7482–7491.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018.
Neural approaches to conversational ai. In The

41st International ACM SIGIR Conference on Re-
search & Development in Information Retrieval,
pages 1371–1374.

Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, and
Jian Yin. 2018. Dialog-to-action: Conversational
question answering over a large-scale knowledge
base. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, 3-
8 December 2018, Montréal, Canada, pages 2946–
2955.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Comput.,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2015. Adam, a
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations (ICLR), volume 1412.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and Christian Bizer. 2015. Dbpedia -
a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web, 6(2):167–195.

Chen Liang, Jonathan Berant, Quoc V. Le, Kenneth D.
Forbus, and Ni Lao. 2017. Neural symbolic ma-
chines: Learning semantic parsers on freebase with
weak supervision. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30 -
August 4, Volume 1: Long Papers, pages 23–33. As-
sociation for Computational Linguistics.

Wei Lu, Hwee Tou Ng, Wee Sun Lee, and Luke S.
Zettlemoyer. 2008. A generative model for pars-
ing natural language to meaning representations. In
2008 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2008, Proceedings
of the Conference, 25-27 October 2008, Honolulu,
Hawaii, USA, A meeting of SIGDAT, a Special Inter-
est Group of the ACL, pages 783–792. ACL.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for di-
rectly reading documents. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016, pages 1400–1409. The
Association for Computational Linguistics.

Isaiah Onando Mulang, Kuldeep Singh, Chaitali
Prabhu, Abhishek Nadgeri, Johannes Hoffart, and
Jens Lehmann. 2020a. Evaluating the impact of
knowledge graph context on entity disambiguation
models. 29th ACM Conference on Information and
Knowledge Management (CIKM).

Isaiah Onando Mulang, Kuldeep Singh, Akhilesh Vyas,
Saeedeh Shekarpour, Ahmad Sakor, Maria Esther

https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.1109/CVPR.2018.00781
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
http://papers.nips.cc/paper/7558-dialog-to-action-conversational-question-answering-over-a-large-scale-knowledge-base
http://papers.nips.cc/paper/7558-dialog-to-action-conversational-question-answering-over-a-large-scale-knowledge-base
http://papers.nips.cc/paper/7558-dialog-to-action-conversational-question-answering-over-a-large-scale-knowledge-base
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.3233/SW-140134
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://doi.org/10.18653/v1/P17-1003
https://www.aclweb.org/anthology/D08-1082/
https://www.aclweb.org/anthology/D08-1082/
https://doi.org/10.18653/v1/d16-1147
https://doi.org/10.18653/v1/d16-1147

859

Vidal, Soren Auer, and Jens Lehmann. 2020b. En-
coding knowledge graph entity aliases in an atten-
tive neural networks for wikidata entity linking. In
Proceedings of 21st Conference on Web Information
System and Engineering.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Amrita Saha, Vardaan Pahuja, Mitesh M. Khapra,
Karthik Sankaranarayanan, and Sarath Chandar.
2018. Complex sequential question answering: To-
wards learning to converse over linked question an-
swer pairs with a knowledge graph. In Proceed-
ings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, pages 705–
713. AAAI Press.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C. Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In Pro-
ceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA, pages 3776–3784. AAAI Press.

Tao Shen, Xiubo Geng, Tao Qin, Daya Guo, Duyu
Tang, Nan Duan, Guodong Long, and Daxin Jiang.
2019. Multi-task learning for conversational ques-
tion answering over a large-scale knowledge base.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2442–
2451, Hong Kong, China. Association for Computa-
tional Linguistics.

Kuldeep Singh, Arun Sethupat Radhakrishna, An-
dreas Both, Saeedeh Shekarpour, Ioanna Lytra, Ri-
cardo Usbeck, Akhilesh Vyas, Akmal Khikmatul-
laev, Dharmen Punjani, Christoph Lange, et al. 2018.
Why reinvent the wheel: Let’s build question an-
swering systems together. In Proceedings of the
2018 World Wide Web Conference, pages 1247–
1256.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference
on World Wide Web, pages 697–706.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998–6008.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Liò, and Yoshua Bengio.
2018. Graph Attention Networks. International
Conference on Learning Representations.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation.
arXiv e-prints, page arXiv:1609.08144.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2016, August 7-12, 2016, Berlin, Germany, Vol-
ume 2: Short Papers. The Association for Computer
Linguistics.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J. Smola, and Le Song. 2018. Variational
reasoning for question answering with knowledge
graph. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intel-
ligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 6069–6076. AAAI Press.

A Grammar

We propose a new grammar to annotate the dataset
with a gold logical form to perform the seman-
tic parsing task. We consider the work by (Guo
et al., 2018) as a starting point for generating them.
While we differ in many actions regarding their se-
mantic and therefore their implementation. Our
goal was to define more precise and richer ac-
tions, which gives us a more flexible grammar in
terms of being used to annotate a wider range of
question’s complexities. For instance, for a cou-
ple of actions, we also define their reverse occur-
rence (e.g. find, find reverse)). We do this in or-
der to match the knowledge graph triple direction

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17181
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17181
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17181
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11957
https://doi.org/10.18653/v1/D19-1248
https://doi.org/10.18653/v1/D19-1248
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://openreview.net/forum?id=rJXMpikCZ
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://doi.org/10.18653/v1/p16-2033
https://doi.org/10.18653/v1/p16-2033
https://doi.org/10.18653/v1/p16-2033
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16983

860

(subject-predicate-object). In some questions, we
might have the subject or the object entity. Hav-
ing both normal and reverse actions helps us to
identify directly the correct answer based on the
action the model predicted. Furthermore, we also
define actions that do not exist in (Guo et al., 2018).
Some of them are find tuple counts, atmost, atleast.
Table 1 illustrates the complete grammar with all
the defined actions. Following (Lu et al., 2008),
we define each action with a function that can be
executed on the knowledge graph. Finally, in order
to execute a sequence of actions, we have to parse
it into a tree structure. There our executor starts
from the tree leaves and it recursively executes the
leftmost non-terminal node until the whole tree is
complete.

B Case Study

Table 9 shows examples from different question
types in the CSQA dataset and the logical forms
generated from our model. As we can see, our
actions can cover reasoning for every question
type by following certain patterns depending on
them. The sequences can cover all the different
complexities of the questions. For example, the
logical forms pattern of Simple Questions to Quan-
titative or Comparative is slightly different due to
increased complexity of the latter questions. The
reasoning over Quantitative or Comparative ques-
tion involves more actions in order to reach the
correct answer.

For the question type Simple Question (Direct),
we can see the question “Which administrative
territory is the birthplace of Antonio Reguero ?”.
The correct logical form for this example is “fil-
ter type(find(Antonio Reguero, place of birth), ad-
ministrative territorial entity)”. Here we can dis-
tinguish two different actions; the first one is the
filter type and the other one is the find action. The
find action receives as input an entity subject and
a predicate and provides the set of object enti-
ties from the Knowledge Graph. Whereas, the
filter type action receives as input a set of entities
along with an entity type and results to a set of
entities that belong to that particular entity type.

C Hyperparamters and module
configurations

Table 6 summarizes the hyperparameters used
across the LASAGNE framework. For the trans-
former module, we use the configurations from

Hyperparameters Value
epochs 20

batch size 64
dropout ratio 0.1
learning rate 0.001
warmup steps 4000

optimizer Adam
β1 0.9
β2 0.999
ε 1e-09

model dimension 300
model pretrained embeddings GloVe

non-linear activation LeakyRelu
GAT input dimension 3072
GAT node dimension 300

GAT pretrained embeddings BERT

Table 6: Hyper-parameters for LASAGNE framework.

(Vaswani et al., 2017). Our model dimension is
dmodel = 300, with a total number of H = 6 heads
and L = 2 layers. The inner feed-forward lin-
ear layers have dimension dff = 600. Following
the base transformer parameters, we apply residual
dropout (Srivastava et al., 2014) to the summation
of the embeddings and the positional encodings
in both encoder and decoder stacks with a rate of
0.1. The entity detection module has a dimension
of 300. Our base LSTM here is followed with
a LeakyReLU, dropout, and a linear layer. The
output of the linear layer is the module prediction
while the LSTM hidden state is propagated to the
filtering and permutation layer. The filtering and
permutation module receives an input of dimen-
sion 600 where here a linear layer is responsible
to reduce it to 300 which is the framework dimen-
sion. Like in the previous module, a LeakyReLU,
dropout, and a linear layer are used for the final
predictions. Finally, for the GAT-based module,
we use pre-trained BERT embeddings for type and
predicate labels. Hence the input dimension on this
module is 3072. The GAT layer will produce rep-
resentations with an embedding size of 300. Next,
multiple linear, dropout, and LeakyReLU layers
are used to produce the final predictions.

D Graph Attention Networks

Figure 3 shows the aggregation process of graph
attention layer between the (entity) types and pred-
icates from Wikidata. The KB types and predi-
cates are the nodes of the graph, and there exist
an edge only between types and predicates with
the condition that there exist a triple which in-
volved the predicate and an entity of that type. We
use GATs (Veličković et al., 2018) to capture dif-

861

Methods HRED-KVM D2A MaSP LASAGNE (ours)
Question Type #Examples Precision Recall Precision Recall Precision Recall Precision Recall

Overall 206k 6.30% 18.40% 66.57% 66.83% 80.48% 78.07% 87.08% 80.31%
Clarification 12k 12.13% 25.09% 33.97% 37.24% 77.66% 84.18% 81.80% 60.35%

Comparative Reasoning (All) 15k 4.97% 2.11% 54.68% 44.14% 81.20% 59.83% 83.88% 59.73%
Logical Reasoning (All) 22k 5.75% 15.11% 68.86% 65.82% 78.00% 61.92% 98.67% 82.43%

Quantitative Reasoning (All) 9k 1.01% 0.91% 60.63% 52.74% 79.02% 69.14% 79.66% 95.02%
Simple Question (Coreferenced) 55k 5.09% 12.67% 56.94% 58.47% 76.01% 76.94% 72.71% 86.62%

Simple Question (Direct) 82k 8.58% 33.30% 77.37% 79.50% 84.29% 86.09% 94.94% 81.92%
Simple Question (Ellipsis) 10k 6.98% 17.30% 77.90% 84.67% 82.03% 85.50% 93.74% 69.91%

Question Type #Examples Accuracy
Overall 66k 14.95% 37.33% 45.56% 64.34%

Verification (Boolean) 27k 21.04% 45.05% 60.63% 78.86%
Quantitative Reasoning (Count) 24k 12.13% 40.94% 43.39% 55.18%
Comparative Reasoning (Count) 15k 8.67% 17.78% 22.26% 53.34%

Table 7: Precision and recall comparison with baselines.

Figure 3: The aggregation process of graph attention
layer between the (entity) types and predicates from
Wikidata knowledge graph. The dashed lines represent
an auxiliary edge, while aij represents relative atten-
tion values of the edge. We also incorporate the predi-
cates (relations) as nodes of the graph instead of edges.

ferent level of information for a node, based on
the neighborhood in the graph. We denote with
h(g) = {h(g)1 , . . . , h

(g)
n } the initial representations

of the nodes, which will also be the input features
for the GAT layer. To denote the influence of node
j to the node i, an attention score eij is computed
as eij = a(Wh

(g)
i ,Wh

(g)
j), where W is a param-

eterized linear transformation, and a is an attention
function. In our case, we follow the GAT paper,
and compute eij score as follows,

eij = LeakyReLU(aT [Wh
(g)
i ||Wh

(g)
j]), (10)

where a ∈ R2d is a single-layer feedforward net-
work, and || denotes concatenation. This attention
scores are normalized using a softmax function
and producing the αij scores for all the edges in a
neighborhood. These normalized attention scores

are used to compute the output features h
(g)
i of a

node in a graph, by applying a linear combination
of all the nodes in the neighborhood as below,

h
(g)
i = σ(

∑
j∈Ni

αijWh
(g)
j) (11)

where σ is a non-linear function. Following
(Veličković et al., 2018) and (Vaswani et al., 2017)
we also apply a multi-head attention mechanism
and compute the final output features as,

h
(g)
i = σ(

1

K

K∑
k=1

∑
j∈Ni

αk
ijW

kh
(g)
j) (12)

where K is equal to the number of heads, and αk
ij ,

Wk are the corresponding attention scores and lin-
ear transformation by the k-th attention mechanism.
During our experiments, we found out the K = 2
was sufficient for our model.

E Experiments

Table 7 summarizes precision and recall results
comparing LASAGNE framework against the pre-
vious baselines. Furthermore, a detailed task analy-
sis for each task on each question type is illustrated
on Table 8.

862

Tasks Entity Detection Filt. & Permut. Logical Form Type/Predicate
Question Type Accuracy

Clarification 92.19% 99.97% 98.36% 86.70%
Comparative Reasoning (All) 92.03% 99.88% 99.00% 97.18%

Logical Reasoning (All) 72.20% 99.44% 98.18% 95.95%
Quantitative Reasoning (All) 87.38% 100.0% 99.56% 95.87%

Simple Question (Coreferenced) 93.50% 96.92% 98.50% 90.12%
Simple Question (Direct) 90.58% 99.34% 98.58% 89.71%

Simple Question (Ellipsis) 77.90% 99.98% 98.81% 90.02%
Verification (Boolean) 79.50% 84.66% 99.79% 98.10%

Quantitative Reasoning (Count) 77.77% 99.80% 97.34% 92.09%
Comparative Reasoning (Count) 92.04% 99.98% 98.66% 96.92%

Table 8: Task accuracy from LASAGNE. We can obtain that entity detection is the task with lowest accuracy while
filtering and permutation together with logical form generation are the tasks with highest accuracy.

Question Type Question Logical Forms

Simple
(Direct)

Q1: Which administrative territory is the
birthplace of Antonio Reguero ?

filter type(
find(Antonio Reguero, place of birth),

administrative territorial entity)

Simple
(Ellipsis)

Q1: Which administrative territories are
twin towns of Madrid ?
A1: Prague, Moscow, Budapest
Q2: And what about Urban
Community of Brest?

filter type(
find(Urban Community of Brest, twinned administrative body),

administrative territorial entity)

Simple
(Coref)

Q1: What was the sport that Marie Pyko
was a part of ?
A1: Association football
Q2: Which political territory does that
person belong to ?

filter type(
find(Marie Pyko, country of citizenship),

political territorial entity)

Quantitative
Reasoning
(Count)

Q1: How many beauty contests and business
enterprises are located at that city ?
A1: Did you mean Caracas?
Q2: Yes

count(union(
filter type(find reverse(Caracas, located in), beauty contest),
filter type(find reverse(Caracas, located in), business enterprises)

))

Quantitative
Reasoning
(All)

Q1; Which political territories are known to
have diplomatic connections
with max number of political territories ?

argmax(
find tuple counts(diplomatic relation, political territorial entity,
political territorial entity))

Comparative
Reasoning
(Count)

Q1: How many alphabets are used as the
scripts for more number of languages
than Jawi alphabet ?

count(greater(count(
filter type(find(Jawi alphabet, writing system), language)),
find tuple counts(writing system, alphabet, language)))

Comparative
Reasoning
(All)

Q1: Which occupations were more number
of publications and works mainly
about than composer ?

greater(union(
find reverse tuple counts(main subject, occupation, publication),
find reverse tuple counts(main subject, occupation, work)),
count(filter multi types(find reverse(composer, main subject), publication, work)))

Verification
Q1: Was Geir Rasmussen born at that
administrative territory ?

is in(find(Geir Rasmussen, place of birth), Chicago)

Table 9: Examples from the CSQA dataset (Saha et al., 2018) annotated with gold logical form.

