
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 841–849
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

841

Adv-OLM: Generating Textual Adversaries via OLM

Vijit Malik Ashwani Bhat Ashutosh Modi
Indian Institute of Technology Kanpur (IIT Kanpur)
{vijitvm, bashwani}@iitk.ac.in

ashutoshm@cse.iitk.ac.in

Abstract

Deep learning models are susceptible to adver-
sarial examples that have imperceptible pertur-
bations in the original input, resulting in adver-
sarial attacks against these models. Analysis
of these attacks on the state of the art trans-
formers in NLP can help improve the robust-
ness of these models against such adversarial
inputs. In this paper, we present Adv-OLM, a
black-box attack method that adapts the idea
of Occlusion and Language Models (OLM)
to the current state of the art attack methods.
OLM is used to rank words of a sentence,
which are later substituted using word replace-
ment strategies. We experimentally show that
our approach outperforms other attack meth-
ods for several text classification tasks.

1 Introduction
In recent times, deep learning models have become
pervasive across different domains. Many of the re-
cent deep models have shown SOTA performance
on a variety of NLP tasks (Wang et al., 2018). Con-
sequently, deep models are being deployed in a
variety of production systems for real-life appli-
cations. Hence, it becomes imperative to ensure
the reliability and robustness of such models as it
might pose a threat to security.

Recent studies have pointed out the vulnerability
of deep models to adversarial attacks (Goodfellow
et al., 2014). Adversarial attack comprises gen-
erating adversarial samples by performing small
perturbations to the original input, making them
imperceptible to humans while fooling the deep
learning models to give incorrect predictions.

Adversarial attack on textual data is much more
difficult due to the discrete nature of the text. The
basic requirement of imperceptibility of perturba-
tion by human judges is much more challenging
in a language data setting. Therefore, the adver-
sarial sample needs to be grammatically correct

and semantically sound. Perturbations at word or
character level that are perceptible to human judges
have been explored in-depth (Ebrahimi et al., 2017;
Belinkov and Bisk, 2017; Jia and Liang, 2017;
Gao et al., 2018). Work on defense against mis-
spellings based attacks (Pruthi et al., 2019) and
use of optimization algorithms for attacks like ge-
netic algorithm (Alzantot et al., 2018; Wang et al.,
2019) and particle swarm optimization (Zang et al.,
2020) have also been explored. With the rise of
pre-trained language models, like BERT (Devlin
et al., 2018) and other transformer-based models,
generating human imperceptible adversarial exam-
ples has become more challenging. Wallace et al.
(2019), Jin et al. (2019), and Pruthi et al. (2019)
have explored these models from different perspec-
tives.

Adversarial examples can be generated using
black-box, where no knowledge about the model
is accessible, and white-box, where information
about the technical details of models are known.
Generation of textual adversarial samples in a
black-box setting consists of two steps 1) Find-
ing words to replace in a sample (Word Rank-
ing) 2) Replacing the chosen word (Word Replace-
ment). Word Ranking is necessary to ensure that
the word that contributes the most to the output
prediction is considered as the candidate for re-
placement in the next step. Other constraints like
generating semantically similar adversarial sam-
ples, human imperceptibility, and minimal pertur-
bation percentage are also considered. Previous
work has obtained word ranking by performing
deletion of words (e.g., BAE-R (Garg and Ramakr-
ishnan, 2020), TextFooler (Jin et al., 2019)), and re-
placement of words with [UNK] token (e.g., BERT-
Attack (Li et al., 2020)) and then ranking the words
based on the output logits difference.

Recently in the model explainability domain, the
method of Occlusion and Language Models (OLM)



842

(Harbecke and Alt, 2020) has been proposed, the
authors argue that the data likelihood of the sam-
ples obtained after either deleting the token or re-
placement with [UNK] token is very low, which
makes these methods unsuitable for determining
relevance of the word towards the output proba-
bility. The authors propose the use of language
models for calculating the relevance of the words
in a sentence. Taking inspiration from OLM, we
propose Adv-OLM, a black box attack method,
that adapts the idea of OLM (as the Work Rank-
ing Strategy) to find the relevant words to replace.
We empirically show that OLM provides a better
set of ranked words compared to the existing word
ranking strategies for the generation of adversarial
examples.
We summarize our contributions as follows:
• We propose a new method Adv-OLM, to rank

words for generating adversarial examples.
• We empirically show that Adv-OLM has a

higher success rate and lower perturbation per-
centage than previous attacking methods.

The implementation for the proposed approach
is made available at the GitHub repository: https:
//github.com/vijit-m/Adv-OLM.

2 Problem Formulation
We are given a corpus consisting of n input sam-
ples, X = {x1, . . . , xn} with corresponding la-
bels Y = {y1, . . . , yn} and a trained classification
model f(f : X→ Y) that maps an input samples
to its correct label. We assume a black-box setting
where the attacker can only query the classifier for
output label probabilities for the given input. For an
input sample x ∈ X, the task is to construct an ad-
versarial sample x′ such that, f(x) = y, f(x′) =
y′ with y 6= y′, and Similarity(x′, x) ≥ ε.
Here, Similarity : X × X → (0, 1) can be both
the semantic and syntactic similarity function, and
ε is the minimum similarity threshold. Ideally,
the amount of perturbation should be minimized.
The first step is to rank the words of the sample x.
Based on the ranking, starting from the most impor-
tant word, the word is replaced by some candidate
word that keeps the perturbed sample x′ semanti-
cally similar and grammatically sound but changes
the output prediction.

3 Methodology
Adv-OLM uses the idea of Occlusion and Lan-
guage Models to perform Word Ranking using both
OLM and OLM-S methods. OLM uses a language
model to sample some candidate instances for a

word and then replaces the word. Let xi be a word
of the input x and x\i be the incomplete input with-
out this word. Then the OLM relevance score r
given the prediction function f and label y is (Here
fy is the logit value corresponding to the label y.)

rf,y(xi) = fy(xi)− fy(x\i) (1)

Here, fy(x\i) is not accurately defined and needs
to be approximated since x\i is the incomplete in-
put. A language model pLM generates input by
predicting the masked word as x̂i that is as natural
as possible for the model and thus approximates to:

fy(x\i) ≈
∑
x̂i

pLM (x̂i|x\i)fy(x\i ∪ x̂i) (2)

where, fy(x\i ∪ x̂i) is the prediction of the classifi-
cation model after the language model’s prediction
x̂i is added to the incomplete input x\i.

The other method OLM-S calculates the sensi-
tivity of a position in the text and has nothing to do
with the word present at that position in the original
input. The sensitivity score of OLM-S is calculated

sf,y(xi) =
√∑

x̂i
pLM (x̂i|x\i)(fy(x\i ∪ x̂i)− µ)2

where µ is the mean value from Equation 2. The
sensitivity score sf,y(xi) is used for word ranking
in OLM-S.

After performing the Word Ranking step using
the relevance scores generated by OLM and OLM-
S, the next step is to replace highly scored words
with semantically similar words that form grammat-
ically correct sentences (Word Replacement) such
that the output prediction changes. Word replace-
ment strategy is kept similar to existing methods.
TextFooler uses Synonym Extraction, POS check-
ing and semantic similarity checking whereas BAE-
R uses a Language Model for word replacement.
(details in Appendix C).

Dataset Classes Train Test Avg. Length
Classification

IMDB 2 25K 500 245.12
Yelp 2 560K 500 132.33
AG’s News 4 120K 500 40.41

Natural Language Inference
MNLI 3 433K 500 29.72

Table 1: Statistic of Datasets. Avg. Length is the aver-
age number of words in the test set.

4 Experiments
We experiment with different benchmark datasets
for text classification and entailment: IMDB, AG
News, Yelp Polarity and MNLI (details in Ap-

https://github.com/vijit-m/Adv-OLM
https://github.com/vijit-m/Adv-OLM


843

(a) TextFooler Attack on fine-tuned BERT on IMDB data sample. [Negative(100%) → Positive(59%)]

(b) Adv-OLM Attack on fine-tuned BERT on IMDB data sample. [Negative(100%) → Positive(95%)]

Figure 1: Qualitative Examples of TextFooler and Adv-OLM on BERT classifier (Red words are replaced by Green
words while changing the output prediction probability.)

Dataset Method Word Ranking
BERT ALBERT

Original Acc. Attacked Acc. Success Rate Perturbed % Original Acc. Attacked Acc. Success Rate Perturbed %

AG’s

News

BAE-R

OLM

93.8%

78% 16.84% 6.72%

94.4%

79.2% 16.1% 8.37%

OLM-S 79% 15.78% 6.35% 82.4% 12.71% 6.9%

Original (delete) 78.8% 15.99% 6.42% 79.4% 15.89% 7.67%

TextFooler

OLM 19.2% 79.53% 23.52% 20.4% 78.39% 21.24%

OLM-S 21.4% 77.19% 20.96% 20.2% 78.6% 20.18%

Original (delete) 21.4% 77.19% 23.19% 22.0% 76.69% 21.15%

PWWS - 44.8% 52.24% 16.21% 36.8% 61.02% 14.8%

Yelp

BAE-R

OLM

97.2%

38.4% 60.49% 6.45%

97.4%

41.4% 57.49% 7.07%

OLM-S 55.2% 43.21% 10.36% 39.6% 59.34% 7.11%

Original (delete) 41.6% 57.20% 7.28% 35.0% 64.07% 6.49%

TextFooler

OLM 5.2% 94.65% 9.10% 2.6% 97.33% 10.17%

OLM-S 7.8% 91.98% 13.31% 2.8% 97.13% 10.13%

Original (delete) 6.6% 93.21% 9.95% 3.8% 96.1% 9.57%

PWWS - 6.2% 93.62% 6.9% 3.8% 96.1% 6.82%

Table 2: Comparison between word ranking strategies on AG’s News and Yelp for fine-tuned BERT and ALBERT.
Our method Adv-OLM has OLM (or OLM-S) as the word ranking strategy.

Dataset Method Word Ranking Original Acc. Attacked Acc. Success Rate Perturbed %

MNLI

BAE-R

OLM

84.6%

20.6% 75.65% 7.82%

OLM-S 20.8% 75.41% 8.22%

Original (delete) 14.0% 83.45% 6.4%

TextFooler

OLM 6.6% 92.2% 8.29%

OLM-S 7.0% 91.73% 8.59%

Original (delete) 6.8% 91.96% 6.98%

PWWS - 3.2% 96.22% 6.62%

Table 3: Comparsion between previous methods and Adv-OLM on MNLI fine-tuned BERT. Our method Adv-
OLM has OLM (or OLM-S) as the word ranking strategy.

pendix A). The statistics of the final dataset are
shown in Table 1. Test set was randomly choosen
stratified set. For evaluating the effectiveness of
our proposed approach, we experiment with SOTA
text classifiers i.e. transformer based models like
BERT (Devlin et al., 2018), ALBERT (Lan et al.,
2019), RoBERTa (Liu et al., 2019) and DistilBERT

(Sanh et al., 2019).

We replaced the existing word ranking strate-
gies (i.e. Original (delete)) of previous attack
methods: Textfooler (Jin et al., 2019) and BAE-R
(Garg and Ramakrishnan, 2020) with word rank-
ings generated using OLM and OLM-S while
keeping rest of the attack procedure same. The



844

Model Method Word Ranking Original Acc. Attacked Acc. Success Rate Perturbed %

BERT

BAE-R

OLM

92.0%

38.8% 57.83% 2.79%

OLM-S 33.2% 63.91% 2.33%

Original (delete) 42.6% 53.70% 2.92%

Textfooler

OLM 29.8% 67.61% 4.52%

OLM-S 26.4% 71.3% 3.16%

Original (delete) 31.8% 65.43% 5.26%

PWWS 28.2% 69.35% 2.92%

ALBERT

BAE-R

OLM

92.8%

27.4% 70.47% 3.58%

OLM-S 23.2% 75.0% 3.4%

Original (delete) 26.8% 71.12% 3.48%

Textfooler

OLM 1.4% 98.49% 6.65%

OLM-S 1.4% 98.49% 5.39%

Original (delete) 2.4% 97.41% 6.57%

PWWS 3.8% 95.91% 3.76%

RoBERTa

BAE-R

OLM

94.2%

29.4% 68.79% 4.08%

OLM-S 28.0% 70.28% 3.57%

Original (delete) 29.4% 68.79% 3.9%

Textfooler

OLM 0.0% 100% 7.62%

OLM-S 0.2% 99.79% 6.43%

Original (delete) 0.2% 99.79% 6.89%

PWWS 0.4% 99.58% 5.38%

DistilBERT

BAE-R

OLM

91.8%

22.6% 75.38% 3.29%

OLM-S 21.6% 76.47% 2.93%

Original (delete) 21.6% 76.47% 3.34%

Textfooler

OLM 0.2% 99.78% 4.03%

OLM-S 0.2% 99.78% 3.55%

Original (delete) 0.2% 99.78% 4.44%

PWWS 0.6% 99.35% 3.0%

BiLSTM

BAE-R

OLM

83.8%

10.8% 87.11% 2.78%

OLM-S 10.4% 87.59% 2.71%

Original (delete) 8.6% 89.74% 2.52%

Textfooler

OLM 0% 100% 2.38%

OLM-S 0% 100% 2.41%

Original (delete) 0% 100% 1.95%

PWWS 0% 100% 1.63%

Table 4: Comparison between previous methods and Adv-OLM for IMDB dataset across different models. Our
method Adv-OLM has OLM (or OLM-S) as the word ranking strategy.

comparison is provided between the attacks gen-
erated through original word ranking, and OLM
adapted word ranking (including comparison with
PWWS attack method (Ren et al., 2019)) in ta-
ble 2, table 3 and table 4. PWWS (Probability
Weighted Word Saliency) method considers the
word saliency along with the classification probabil-
ity. The change in value of the classification proba-
bility is used to measure the attack effect of the pro-
posed substitute word, while word saliency shows
how well the original word affects the classifica-
tion. We use the default language model (BERT)
employed in the OLM and OLM-S, and kept the
number of samples generated by the OLM language
model as 30 in all the experiments.

The following evaluation metrics are used:
• Attacked Acc.: Accuracy of the model after

attack. Lower the better.

• Success Rate: Ratio of number of success-
ful attacks and the total number of attempted
attacks1. Higher the better.
• Perturbed Percentage: Ratio of number of

words that were modified by the attack and the
total number of words in the input example.
Lower the better.

We use TextAttack’s (Morris et al., 2020) fine tuned
models on these datasets and used it to execute the
attacks, including Adv-OLM (Appendix B).
Number of queries in Adv-OLM: From equa-
tions 2 and 3, it is clear that unlike other methods
of deletion and [UNK] token replacement, which
perform only a single query, we need to perform
multiple queries. We set the number of samples

1Note that total number of attempted attacks are not the
same as number of input examples i.e., the samples which
were originally wrongly classified by the model even before
an attack are skipped



845

Figure 2: Average Number of Queries vs Number
of samples in Adv-OLM attack on BERT on IMDB
dataset.

generated by the OLM language model to 30 for
our experiment. In the worst case, we would have
all 30 samples of the token as unique, which will
query the model 30 times. However, experimen-
tally it was not the case. To study this, we varied
the number of samples and evaluated the OLM
ranking step’s number of queries. In fig 2, we plot-
ted the number of queries for OLM averaged over
the input samples against the number of samples.
We can see that there is not a significant difference
in the total number of samples in our case (OLM +
Textfooler queries) when compared with PWWS.

5 Results and Analysis
Results are shown in Tables 2, 3 and 4. Table 2
provides the results on AG News and Yelp datasets
on fine-tuned BERT and ALBERT model. Our
method performs better on both datasets by increas-
ing the success rate by about 1-3% than the previ-
ous methods and also decreasing the perturbation
percentage. Table 3 gives the results of attacking
a fine-tuned BERT on MNLI. Although we did
not perform better than original BAE-R, we were
still able to outperform TextFooler. Due to the un-
availability of MNLI fine-tuned ALBERT model
in TextAttack, we did not perform an attack on
ALBERT. It can also be seen from Table 2 that
the perturbation percentage for AG’s News exceed
more than 20%, which seems to be a perceptible
change, but since the average length of the article
is only 40.41, making the space for finding relevant
words less, the perturbation percentage becomes
very high.

To compare attacks across different transformer-
based models, we evaluate the performance of Adv-
OLM on IMDB dataset. Table 4 provides the re-

sults of different attack methods on BERT, AL-
BERT, RoBERTa, DistilBERT and BiLSTM. Adv-
OLM was able to outperform previous attack meth-
ods on BERT, ALBERT, RoBERTa by increasing
the success rate up to 10% for BAE-R and up to
6% for TextFooler. Perturbation percentage was
also reduced by 1-2%. On DistilBERT, Adv-OLM
showed no change in the success rate, but the per-
turbation percentage was lowered slightly. We also
performed an attack on a non-transformer based
BiLSTM model which did not show any improve-
ments in the success rate. For BAE-R, it even
showed a decrease in the success rate for Adv-
OLM. One possible reason for this might be that
in both OLM and OLM-S word sampling is per-
formed using a transformer-based BERT language
model. We also have qualitative results on IMDB
dataset (Figure 1a, 1b).

Experimentally it was observed that better words
were ranked when OLM/OLM-S was used as the
Word Ranking strategy (Figure 1b). When com-
paring with the original methods, Adv-OLM has
more number of queries, which is due to the fact
that for word rankings, OLM/OLM-S queries the
model a number of times, thus increasing the over-
all queries. However, the difference in the number
of Adv-OLM queries with the existing attacking
methods is not very significant since the model is
queried only for unique words from the samples
generated from the language model.

6 Conclusion
In this work, we present Adv-OLM, a black box at-
tacking method that uses OLM based word ranking
strategy, improving the attack performance signif-
icantly over previous methods. We also studied
how replacing a single variable in a complex sys-
tem with a new existing method can improve upon
the previously existing attack strategies. For future
work, we would like to experiment with other lan-
guage models in the OLM algorithm. We plan to
study the effect of using different transformers for
the language model and the target model.

References
Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,

Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. arXiv preprint arXiv:1804.07998.

Yonatan Belinkov and Yonatan Bisk. 2017. Synthetic
and natural noise both break neural machine transla-
tion. arXiv preprint arXiv:1711.02173.



846

Minhao Cheng, Jinfeng Yi, Pin-Yu Chen, Huan Zhang,
and Cho-Jui Hsieh. 2020. Seq2sick: Evaluating the
robustness of sequence-to-sequence models with ad-
versarial examples. In AAAI, pages 3601–3608.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and De-
jing Dou. 2017. Hotflip: White-box adversarial
examples for text classification. arXiv preprint
arXiv:1712.06751.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.
Pathologies of neural models make interpretations
difficult. arXiv preprint arXiv:1804.07781.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yan-
jun Qi. 2018. Black-box generation of adversarial
text sequences to evade deep learning classifiers. In
2018 IEEE Security and Privacy Workshops (SPW),
pages 50–56. IEEE.

Siddhant Garg and Goutham Ramakrishnan. 2020.
Bae: Bert-based adversarial examples for text clas-
sification. arXiv preprint arXiv:2004.01970.

Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2014. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572.

David Harbecke and Christoph Alt. 2020. Consider-
ing likelihood in nlp classification explanations with
occlusion and language modeling. arXiv preprint
arXiv:2004.09890.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
arXiv preprint arXiv:1707.07328.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and
Percy Liang. 2019. Certified robustness to
adversarial word substitutions. arXiv preprint
arXiv:1909.00986.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2019. Is bert really robust? natural lan-
guage attack on text classification and entailment.
arXiv preprint arXiv:1907.11932.

Volodymyr Kuleshov, Shantanu Thakoor, Tingfung
Lau, and Stefano Ermon. 2018. Adversarial exam-
ples for natural language classification problems.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2018. Textbugger: Generating adversarial
text against real-world applications. arXiv preprint
arXiv:1812.05271.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang
Xue, and Xipeng Qiu. 2020. Bert-attack: Adver-
sarial attack against bert using bert. arXiv preprint
arXiv:2004.09984.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake
Grigsby, Di Jin, and Yanjun Qi. 2020. Textattack:
A framework for adversarial attacks, data augmenta-
tion, and adversarial training in nlp.

Danish Pruthi, Bhuwan Dhingra, and Zachary C Lip-
ton. 2019. Combating adversarial misspellings
with robust word recognition. arXiv preprint
arXiv:1905.11268.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.
2019. Generating natural language adversarial ex-
amples through probability weighted word saliency.
In Proceedings of the 57th annual meeting of the as-
sociation for computational linguistics, pages 1085–
1097.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Samson Tan, Shafiq Joty, Min-Yen Kan, and Richard
Socher. 2020. It’s morphin’ time! Combating
linguistic discrimination with inflectional perturba-
tions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2920–2935, Online. Association for Computa-
tional Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. arXiv preprint
arXiv:1908.07125.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Xiaosen Wang, Hao Jin, and Kun He. 2019. Natural
language adversarial attacks and defenses in word
level. arXiv preprint arXiv:1909.06723.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combina-
torial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6066–6080.

http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
http://arxiv.org/abs/2005.05909
https://www.aclweb.org/anthology/2020.acl-main.263
https://www.aclweb.org/anthology/2020.acl-main.263
https://www.aclweb.org/anthology/2020.acl-main.263


847

Appendix
A Datasets

We evaluate our adversarial attacks on text clas-
sification and natural language inference datasets.
We evaluate our method on 500 samples randomly
selected from the test set of the given dataset.
Text classification We used the following text clas-
sification datasets:

• IMDB: Document-level large Movie Review
dataset for binary sentiment classification. 2

• Yelp: The Yelp reviews dataset consists of
reviews from Yelp. This is a dataset for sen-
timent classfication. It is extracted from the
Yelp Dataset Challenge 2015 data. 3

• AG’s News: Sentence level news-type classi-
fication dataset, containing 4 types of news:
World, Sports, Business, and Science. 4

Natural Language Inference

• MNLI: The corpus of sentence pairs man-
ually labeled for classification with the la-
bels entailment, contradiction, and neutral,
supporting the task of natural language in-
ference (NLI). Unlike SNLI, MNLI is more
diverse, based on multi-genre texts, covering
transcribed speech, popular fiction, and gov-
ernment reports. 5

Average Length is the average number of words in
the randomly chosen 500 samples taken from its
test set for each dataset.

B Textattack
TextAttack is an open-source python framework

for adversarial attacks, data augmentation and ad-
versarial training in NLP.

Because of the modularity that TextAttack pro-
vides, it enables researchers to construct new at-
tacks from a combination of novel and existing
approaches or perform analysis on the already ex-
isting approaches. This helps in composing and
comparing the attacks in a shared environment.
TextAttack makes it easy to perform benchmark
comparisons across all the previous attacks per-
formed across models. Text Attack provides clean,
readable implementations of 16 adversarial attacks

2IMDB dataset
3Yelp dataset
4AG’s News dataset
5MNLI dataset

Attack Recipes

BAE (Garg and Ramakrishnan, 2020) PWWS (Ren et al., 2019)

Bert-Attack (Li et al., 2020) TextFooler (Jin et al., 2019)

DeepwordBug (Gao et al., 2018) HotFlip (Ebrahimi et al., 2017)

Alzantot (Alzantot et al., 2018) Morpheus (Tan et al., 2020)

IGA (Wang et al., 2019) Pruthi (Pruthi et al., 2019)

Input-Reduction (Feng et al., 2018) PSO (Zang et al., 2020)

Seq2Sick (Cheng et al., 2020) TextBugger (Li et al., 2018)

Kuleshov (Kuleshov et al., 2018) Fast Alzantot (Jia et al., 2019)

Table 5: Adversarial attacks implemented in Textattack

from the literature. Out of which two are se-
quence to sequence attacks and nine are classifica-
tion based attacks from the GLUE benchmark. A
list of these attacks is presented in Table 5. Tex-
tAttack is directly integrated with HuggingFace’s
transformers and NLP libraries. This allows users
to test attacks on models and datasets.

TextAttack builds attacks from four components:

1. A search method that selects the words to be
transformed.

2. A transformation that generates a set of pos-
sible perturbations for the given input.

3. A set of constraints implied on the transfor-
mation to ensure that the perturbations are
valid with respect to the original input.

4. A goal function that determines whether an
attack is successful in terms of model out-
puts. For classification tasks, untargeted, and
targeted. For a sequence to sequence tasks,
non-overlapping output, and minimum BLEU
score.

For our approach, we attack TextAttack’s fine-
tuned models on datasets discussed in A, that are
publically available on huggingface6 Textattack is
also used for the execution of all the previous at-
tacking methods and our Adv-OLM as well.

C Word Replacement Strategies
C.1 TextFooler Word Replacement Strategy

Following workflow was proposed by the paper:
Synonym Extraction: Gather a candidate set

CANDIDATES for all possible replacements of
the selected word wi and every other word in the
vocabulary. To represent the words, counter fit-
ting word embeddings were used. Using this set

6TextAttack fine-tuned models on HuggingFace

http://ai.stanford.edu/~amaas/data/sentiment/
http://www.yelp.com/dataset_challenge
http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://www.nyu.edu/projects/bowman/multinli/
https://huggingface.co/textattack/


848

of embedding vectors, top N synonyms whose co-
sine similarity with w is higher than some δ were
chosen.

POS Checking: In the set CANDIDATES of
the word wi, only the ones with the same part-of-
speech(POS) as wi were kept. This step assures
that the grammar of the text is mostly maintained.

Semantic Similarity Checking: For each re-
maining word c ∈ CANDIDATES, these were
substituted for wi in the sentence X , and an ad-
versarial example Xadv was obtained. Universal
Sentence Encoder (USE) was used to encode the
two sentences into high dimensional vectors and
then use their cosine similarity score to calculate
the sentence similarity between X and Xadv. The
words resulting in similarity scores above a preset
threshold ε were placed in a final candidate pool
(FINCANDIDATE).

Finally, every candidate word from the FINCAN-
DIDATE was chosen one by one, and the one that
resulted in the least confidence score of label y was
considered as the best replacement for word wi.
C.2 BAE-R Word Replacement Strategy

BAE uses a pre-trained BERT masked language
model(MLM) to predict the mask tokens for re-
placement. Since BERT is powerful and trained
on the large training corpus, the predicted mask to-
kens fit well grammatically in the sentence. BERT-
MLM does not, however, guarantee semantic co-
herence to the original text. To ensure semantic
similarity on introducing perturbations in the input
text, a set of K masked tokens were filtered out
using Universal Sentence Encoder(USE) based on
sentence similarity score. An additional check for
grammatical correctness of the generated adversar-
ial example by filtering out predicted tokens that
do not form the same part of speech(POS) as the
original token in the sentence was performed.



849

D More Examples

(a) TextFooler Attack on fine-tuned ALBERT on IMDB data sample. [Negative(100%) → Positive(51%)]

(b) Adv-OLM attack on fine-tuned ALBERT on IMDB data sample. [Negative(100%) → Positive(57%)]

Figure 3: Qualitative Examples of TextFooler and Adv-OLM on ALBERT classifier (Red words are replaced by
Green words while changing the output prediction probability.)

(a) TextFooler Attack on fine-tuned ALBERT on IMDB data sample. [Negative(100%) → Positive(51%)]

(b) Adv-OLM attack on fine-tuned ALBERT on IMDB data sample. [Negative(100%) → Positive(65%)]

Figure 4: Qualitative Examples of TextFooler and Adv-OLM on RoBERTa classifier (Red words are replaced by
Green words while changing the output prediction probability.)


