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Abstract

Most, if not all forms of ellipsis (e.g., ‘so
does Mary’) are similar to reading compre-
hension questions (‘what does Mary do’), in
that in order to resolve them, we need to
identify an appropriate text span in the pre-
ceding discourse. Following this observation,
we present an alternative approach for En-
glish ellipsis resolution relying on architec-
tures developed for question answering (QA).
We present both single-task models, and joint
models trained on auxiliary QA and corefer-
ence resolution datasets, clearly outperform-
ing the current state of the art for Sluice Ellip-
sis (from 70.00 to 86.01 F1) and Verb Phrase
Ellipsis (from 72.89 to 78.66 F1).

1 Introduction

Ellipsis resolution is a hard, open problem in NLP,
and an important source of error in machine trans-
lation, question answering, and dialogue under-
standing (Vicedo and Ferrández, 2000; Dzikovska
et al., 2009; Chung and Gildea, 2010; Macketanz
et al., 2018; Petrn Bach Hansen and Sgaard, 2020).
There are no large annotated text corpora for this
phenomenon, even for English, and we only have
annotations for a subset of the known ellipsis con-
structions. Since annotation is expensive and cum-
bersome, any synergies with existing NLP tasks
could be useful and enable us to leverage auxiliary
data when learning models for ellipsis resolution.

This paper presents a simple yet strong ap-
proach to ellipsis resolution based on a straightfor-
ward observation, depicted in Figure 1, that ellip-
sis resolution can be converted to a QA problem.
Ellipsis and questions put in focus referentially de-
pendent expressions (Carlson, 2006), or free vari-
ables (Partee, 1978), that need to be resolved in or-
der to comprehend the discourse. For similar ob-
servations about different tasks, see McCann et al.
(2018) and Gardner et al. (2019).

This straightforward observation leads us to

Sluice Ellipsis

Context: … But the way things are structured now you have to 
set aside your ego to make things happen. The whole thing 
worked out. I don't know how, but it did. Both sides had to 
work to make it happen …

Question: I don't know how, but it did.

Answer: The whole thing worked out
 

Verb Phrase Ellipsis

Context: … It has to be considered as an additional risk for the 
investor," said Gary P. Smaby of Smaby Group Inc., 
Minneapolis. "Cray Computer will be a concept stock," he said. 
"You either believe Seymour can do it again or you don't …

Question: You either believe Seymour can do it again or you 
don't.

Answer: believe Seymour can do it again

Figure 1: Examples of Sluice Ellipsis and Verb Phrase
Ellipsis, represented as “questions” about their asso-
ciated contexts. Wh-phrases and auxiliary verbs are
marked in red and elided phrases are marked in blue.

suggest treating different forms of ellipsis reso-
lution – and later, as an auxiliary task, corefer-
ence resolution – as a QA problem, and to apply
state-of-the-art architectures for QA to ellipsis res-
olution tasks, as well as to experiment with using
training data for QA and coreference resolution to
improve our new ellipsis resolution models.

Contributions We cast ellipsis as a QA prob-
lem, enabling us to induce models for it using neu-
ral architectures originally developed for QA. Ap-
plying these architectures out of the box enables
us to establish strong results1 for ellipsis resolu-
tion tasks, improving significantly over previous
work. Using the same architecture for the differ-
ent ellipsis resolution tasks, as well as for QA and
coreference resolution, enables us to explore syn-

1Though we report state-of-the-art results for both sluice
and verb phrase ellipsis, we consider these models as strong
baselines for future research as they are obtained purely using
existing methods.
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ergies between the tasks, and we show that train-
ing joint models on these tasks leads to even better
performance.

2 Methodology

In this section, we briefly describe the various
datasets used for training, and explain how they
are converted into QA format. We then move on
to the choice of model architectures and the rea-
soning behind their selection.

Sluice Ellipsis For training and evaluation of
Sluice Ellipsis resolution models, we use the cor-
pus introduced by Anand and McCloskey (2015),
which contains 3,103 annotated examples of em-
bedded sluices, collected from the New York
Times section of the English Gigaword corpus.
Since the annotators were free to paraphrase the
antecedent, in some cases, a string match on the
context does not return antecedent span indices.
To ensure a fair comparison, we follow previous
work (Rønning et al., 2018), which is also the cur-
rent state-of-the-art, in ignoring these instances,
and use their split for training, development and
testing.

Verb Phrase Ellipsis Bos and Spenader (2011)
provide Verb Phrase (VP) Ellipsis annotations for
the WSJ part of the Penn Treebank. All 25 sec-
tions were annotated, and we follow them in using
sections 0-19 for training, and 20-24 for testing.
We further hold out sections 18-19 from the train-
ing data for development. This also enables to us
compare our results directly with the current state-
of-the-art for VP Ellipsis (Zhang et al., 2019).

Coreference Resolution For coreference reso-
lution, which we use as an auxiliary task, we train
and evaluate on two corpora: (i) the English por-
tion of the OntoNotes 5.02 corpus with the stan-
dard data split used in the CoNLL-2012 shared
task (Pradhan et al., 2012), and (ii) the WikiCoref
corpus (Ghaddar and Langlais, 2016), which con-
tains annotations of 30 documents from the En-
glish Wikipedia. From this dataset, we use 22 doc-
uments for training, 4 documents for development,
and 4 for testing.

QA We also use SQuAD v1.1 (Rajpurkar et al.,
2016) as an auxiliary reading comprehension
dataset.

2https://catalog.ldc.upenn.edu/
LDC2013T19

Task Train Dev Test ACL

ELLIPSIS

Sluice Ellipsis 1.4k 480 992 351
VP Ellipsis 264 20 78 984

AUXILIARY

OntoNotes 153k 18.8k 19.5k 463
WikiCoref 5.6k 630 638 2.2k

SQuAD 87.6k 10.6k - 117

Table 1: QA pair counts and average context lengths
(ACL) for different datasets, after conversion

Data Conversion For converting the various
datasets into the QA format of <context,
question, answer> triples, we perform a
simple restructuring as shown in Figure 1. We
consider the entire document as the context; the
sentence in which the ellipsis/mention is present
becomes the question, and the antecedent/entity
becomes the answer. In case of coreference reso-
lution, where a single sentence can have n men-
tions, we create n questions where every ques-
tion is the same sentence with a different mention
i ∈ {1 . . . n} marked for resolution with <ref>
and </ref> tags. Table 1 shows the number of
QA pairs created from each dataset and the aver-
age number of words in their contexts.

QA Architectures Generally, QA models have
two main components: (i) an encoder module
which learns to represent the question and its con-
text, and (ii) a span selection module which pre-
dicts the start and end span indices of the an-
swer if it is present in the context. In this work,
we present experiments with three diverse models
which take entirely different approaches to build
the encoder module: (i) DrQA (Chen et al., 2017),
with an LSTM encoder, (ii) QANet (Yu et al.,
2018), with a CNN encoder, and (iii) BERT (De-
vlin et al., 2019), with a (pretrained) transformer
encoder. We use the three different models to
show that the between-task synergies are relatively
robust across architectures; but one architecture
(BERT) is clearly superior to the others and will
be the standard baseline we propose for future re-
search.3

3Note that there are many differences between these ar-
chitectures; not only the encoder networks. The number of
parameters differ, and BERT is pre-trained on large volumes
of data. Our purpose here is not comparing strategies, but
simply showing that synergies can be seen across all archi-
tectures. For more details, see Appendix B.

https://catalog.ldc.upenn.edu/LDC2013T19
https://catalog.ldc.upenn.edu/LDC2013T19
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TASK SOTA SINGLE TASK JOINT

DRQA QANET BERT DRQA QANET BERT

Sluice Ellipsis 70.00 (Rønning et al., 2018) 77.48 75.70 85.10 80.17 77.11 86.01
VP Ellipsis 72.89 (Zhang et al., 2019) 62.86 1.93 76.42 63.54 22.49 78.66

Table 2: Ellipsis resolution scores are token-level F1. Bold-faced results are better than the previous state-of-the-
art; underlined results are the new state-of-the-art. When evaluated, our best joint architecture scores 72.31 on
OntoNotes and 65.30 on WikiCoref (macro-averages of MUC, B3, and CEAFφ4scores). See Appendix C.2 for
why these numbers are not directly comparable to previously reported coreference resolution results in literature.

Figure 2: Dataset ablations (F1)

3 Experiments & Results

We conduct two sets of experiments: (i) the
SINGLE-TASK experiments, in which we train and
evaluate separate models for the two ellipsis reso-
lution tasks; and (ii) the JOINT modelling exper-
iments, where we train on the best possible com-
bination of ellipsis resolution, coreference resolu-
tion and QA data, as determined on the validation
set. The results can be seen in Table 2.4

Single-Task Setup The SINGLE-TASK DrQA
model improves the state-of-the-art on sluice ellip-
sis by 7.48 F1. The SINGLE-TASK QANet model
also improves the state-of-the-art on sluice ellip-
sis by 5.7 F1, but fails to learn anything meaning-
ful for VP ellipsis. We hypothesise this is due to
the fact that 264 training examples are not enough
to train the model’s large stack of encoder blocks
from scratch.

The SINGLE-TASK BERT model achieves state-
of-the-art results in both the ellipsis datasets with
absolute error reductions of 50.33% (Sluice Ellip-
sis) and 13.02% (VP Ellipsis). Interestingly, it also
achieves a 17.10% error reduction over the best
previously reported results on WikiCoref, but see
Appendix C.2 for why such a direct comparison of
numbers is not entirely fair.

Joint Setup The JOINT models always perform
on-par with, or better than the SINGLE-TASK

4The reported results are the average of three independent
runs with different random seeds.

models. In this setup, the BERT models beat the
previous state-of-the-art for both Sluice and VP
Ellipsis with 53.37% and 21.28% absolute error
reductions respectively.

4 Dataset ablations

We determine the best task combinations on held-
out validation data for each ellipsis resolution
task.5 For Sluice Ellipsis, the best results are ob-
tained by training the models on a combination of
Sluice and VP Ellipsis data. For VP Ellipsis, the
best performance is attained when the models are
trained with a combination of all datasets. When
training a model for a particular task, we sample
auxiliary data from other datasets to match the size
of the main task’s dataset. For each dataset, the
variations in its F1 scores of the best performing
architecture when combined with other datasets
are shown in Figure 2. The most interesting find-
ings from these ablations are mentioned below.

When the two ellipsis datasets are combined,
the overall performance of the models increase for
both tasks by around 1% each. This shows that
the two types of ellipsis are similar, and that when
learning ellipsis resolution models, there is con-
siderable synergy between the two resources. If
we add subsampled coreference data when train-
ing these models, the Verb Phrase Ellipsis mod-
els gain up to 2.9%. One possible explanation

5These ablations are performed on the best performing
(BERT) model.
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Then at 10:15, the Dow suddenly 
started to rebound, and when it shot 
upward it did so even faster than 
the early-morning fall.

Gold shot upward
VPEs shot upward
VPEj it shot upward

Then the whole thing will start to collapse, 
just as it did in the 1970s, and the ghosts 
and banshees will be howling through the 
place turning people's hair white.

Gold      collapse
VPEs 

VPEj       collapse

A 190-point drop isn't likely to make 
much of a dent; multiply that a few 
times over, though, and it will.

Gold      make much of a dent
VPEs 

VPEj

make much of a dent; multiply 
that a few times over
A 190-point drop isn't likely to 
make much of a dent

go to war to stop anyone from trying to 
grab Iran. But that ghost wouldn't settle 
for words, he wanted money and people

Example (a) Example (b) Example (c)

Figure 3: Selected gold and predicted antecedent spans from SINGLE-TASK Verb Phrase Ellipsis (VPEs in figure)
and JOINT Verb Phrase Ellipsis (VPEj in figure) models.

could be more similarities between noun phrases
and verb phrases, than between noun phrases and
the sentences that are elided in Sluice Ellipsis res-
olution.

5 Error Analysis

We now look at some errors made by our best
performing models. First, we compare the errors
made by our SINGLE-TASK and JOINT Sluice El-
lipsis resolution models before moving on to VP
Ellipsis.6

Sluice Ellipsis The JOINT Sluice Ellipsis re-
sults improve modestly over the SINGLE-TASK

Sluice Ellipsis results. This is noteworthy, since
the added VP Ellipsis data is quite small com-
pared to the size of the sluice data. These mod-
els consistently select an antecedent of the right
syntactic form, which is normally a complete sen-
tence. Many of the errors consist of empty out-
puts: SINGLE-TASK Sluice Ellipsis produces 58
empty outputs, while JOINT Sluice Ellipsis pro-
duces 63. Another source of error is discontigu-
ous antecedents. It is not unusual for the gold
antecedent to be a discontiguous span (Donecker,
1996), but our models are not permitted to produce
such antecedents, so these cases will always be a
source of error.

All the systems have problems when the an-
tecedent follows the ellipsis, as in the following
example: I don’t know why, but they seem to need
a story. We also compared the right and left pe-
riphery scores of sluices, and found better results
predicting the right periphery: for SINGLE-TASK

Sluice Ellipsis, there were 678 matches on the left
edge, and 733 on the right edge; for JOINT Sluice

6We also briefly discuss how coreference resolution ben-
efits from synergies with ellipsis in Appendix C.1.

Ellipsis, there were 703 left matches and 734 right
matches.

Verb Phrase Ellipsis The SINGLE-TASK VP
models trained with just VP Ellipsis data improves
on the current state of the art, and further improve-
ment is observed when trained on auxiliary data,
especially the Sluice Ellipsis resolution dataset.
While the JOINT VP Ellipsis model is gener-
ally better than the SINGLE-TASK model, joint
training with Sluice Ellipsis resolution data also
seems to introduce unfortunate biases. While the
SINGLE-TASK model always selects antecedents
of the right syntactic form, i.e., verb phrases, the
JOINT model may select sentential antecedents.
See examples in Figure 3.

In Example (a), the JOINT VP model incor-
rectly includes the subject it, presumably because
the sluice data includes complete sentences as an-
tecedents. Similarly in Example (b) – though
the SINGLE-TASK model correctly chooses an an-
tecedent beginning with the verb make, it contin-
ues with additional material that does not form a
coherent antecedent. The JOINT result is also in-
correct, but note that it consists of the complete
sentence containing the correct VP antecedent.
Example (b) presents the advantages and disad-
vantages of the joint ellipsis training data. While
the two types of ellipsis require antecedents of dif-
ferent forms, they have similar requirements in
terms of where in the context the antecedent is
to be found. Example (c) further supports this
point. Here the JOINT result is perfect, while the
SINGLE-TASK result finds an antecedent that is in
the wrong part of the discourse. The SINGLE-
TASK model is slightly better with left periphery
matches than right: we found 58 left and 55 right
matches. This is reversed with the JOINT model,
with 54 left and 60 right matches.
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6 Related Work

We are not the first to use question answering
to redefine a set of tasks. Recently, He et al.
(2015) showed that semantic role labeling anno-
tations could be solicited by asking simple ques-
tions that implicitly target predicate-argument re-
lations in a sentence. Parallel to our work, Hou
(2020) cast bridging anaphora resolution as ques-
tion answering based on context. Wu et al. (2020)
and Li et al. (2020) also reformulate coreference
resolution and named entity recognition as QA.
In the realm of re-framing relation extraction as
a QA problem, Levy et al. (2017) and Abdou et al.
(2019) create monolingual and multilingual tem-
plate based QA datasets respectively, which yield
relation extraction models which were better at
generalizing in the zero-shot setting. Extending
this idea, McCann et al. (2018) introduced the De-
caNLP challenge, which casts 10 core tasks in
NLP as question-answering problems. Similar to
our work, their architecture jointly learns across
all of these tasks. DecaNLP includes pronoun res-
olution, a subset of coreference resolution, but it
does so only on a small, hand-crafted dataset; it
does not address ellipsis.

Limitations of our approach One limitation of
our approach is that, like most previous work, we
assume ellipsis and coreference resolution amount
to finding antecedent spans that corefer with the
target mention. This is not always the case; the
elided material can: (i) have extra-linguistic an-
tecedents, and (ii) refer to something that is con-
textually implied.

7 Conclusion

We present strong models for Sluice and Verb
Phrase ellipsis resolution problems, by reformu-
lating them as machine reading comprehension
problems, significantly outperforming the previ-
ously best reported results. We also empirically
show that training these models jointly and with
auxiliary data from coreference resolution and
question-answering further improves their per-
formance. Our code is publicly available at
https://github.com/rahular/ellipsis-baselines.
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A Similarity between Ellipsis and
Coreference Resolution

Linguists have long pointed out deep links among
different forms of ellipsis, as well as between el-
lipsis and pronominal anaphora. For example,
Merchant (2001) presents a unified account of el-
lipsis phenomena within a minimalist syntactic
framework, and theorists such as Postal (1966) and
Elbourne (2013) go so far as to argue that pro-
nouns are also elliptical forms. The exact nature
of the connections between ellipsis and anaphoric
constructions remains a subject of controversy
among linguists. However it is clear that there
are rooted connections, and in our view these con-
nections represent potential areas to be exploited
with forms of knowledge transfer among datasets
of different types.

Typically in NLP, ellipsis and coreference have
been treated as distinct tasks. Possible exceptions

include Lin et al. (2016), who present a rule-based,
feature-rich system for handling ellipsis and coref-
erence in Chinese medical dialogues, but the syn-
ergy between the two subsystems is limited; and
Banjade et al. (2015), who reduce ellipsis and
coreference to problems of alignment to an aux-
iliary text implicitly describing the universe of the
dialogue in question.

B QA Models

We briefly describe the architectures of the QA
models below. All experiments are conducted on
a single 12 GB GPU. For all models, we use the
hyperparameter values recommended in their re-
spective papers.

DrQA The Document Reader component of
DrQA consists of a context and a question en-
coder followed by two span prediction classi-
fiers. The context encoder is a multi-layer bi-
directional LSTM (Hochreiter and Schmidhuber,
1997) which takes in word embeddings (Penning-
ton et al., 2014, GloVe), similarity based features
(whether the token appears in the question in it’s
original, lowercase or lemma form), and other to-
ken level features (positional tags, named entities
and term frequency) as input. The concatenation
of each layer’s hidden units is used as the context
vector. The question encoder is another LSTM
which takes word embeddings as input and com-
bines the resulting hidden units using a simple at-
tention mechanism to form the question vector. A
bilinear term which captures the similarities be-
tween context and question vectors is used to com-
bine the two vectors and the resulting vector used
as input to the span prediction classifiers. The two
classifiers predict the start and the end span re-
spectively and are trained independently.

QANet In QANet, each encoder layer is a stack
of depthwise separable convolutions followed by
a multi-head self-attention mechanism placed in-
side a residual block. Initially, words in the con-
text and question are embedded using a combina-
tion of GloVe and character embeddings. They
are then contextualized individually with an en-
coder block. The representations are then passed
through a context-query attention layer to obtain a
combined representation of the context and ques-
tion. This is further passed through three encoding
blocks before feeding it into a classifier for pre-
dicting the answer spans.
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Figure 4: Exact match percentage (bars) and number of
occurrences (dots) of referential forms in OntoNotes

BERT We use the pre-trained BERTBASE un-
cased model to encode questions and their con-
texts. It has 12 Transformer blocks, 12 self-
attention heads, and a hidden size of 768. Word
piece tokenization (Wu et al., 2016) is performed,
both on the context paragraph and the question.
The boundaries of the two sequences are marked
by dummy symbols. The context and the question
are joined with a [SEP ] token in between, and the
[CLS] token is prepended at the beginning to form
the input. The representation of the [CLS] token is
fed into a single-layer MLP with 2 outputs which
is used to predict the span indices.7

C Coreference Resolution

In this section, we analyse the best performing
coreference models and discuss why they cannot
be compared with other works in literature.

C.1 Error Analysis
The JOINT OntoNotes model improves a little over
the SINGLE-TASK counterpart. Here we exam-
ine specific referential forms in OntoNotes (Wi-
kiCoref has similar traits), as shown in Figure 4.
In general, performance is better on frequent pro-
nouns – e.g., ‘he’ over ‘she’, ‘this’ and ‘that’. An
exception to this is that ‘it’ is less accurate, but
more frequent than ‘he’. It is notable that the pos-
sessive pronouns (‘his’, ‘her’, ‘its’) are all more
accurate than their nominative counterparts (‘he’,
‘she’, ‘it’), perhaps because they tend to have a
closer connection to their antecedents. Overall,
the single-word referential forms are less accurate
than multiple-word forms. For example, definite

7We use the implementation detailed in Wolf et al. (2020).

descriptions (forms beginning with ‘the’) are more
accurate than any of the single-word forms, with
the exception of ‘its’. We speculate that multi-
word forms provide more specific information,
thus limiting the set of potential antecedents. It is
also interesting to break down error by the gram-
matical gender of the pronouns. Male pronouns
generally tend to be more accurate than their fe-
male counterparts. Antecedents of ‘he’ and ‘his’
are matched 20% more frequently than for ‘she’
and ‘her’. This is probably due to an unfortu-
nate bias in OntoNotes, where female pronouns
are 50% rarer than male pronouns.

C.2 Result Comparability
Converting coreference into QA fundamentally
changes the coreference resolution problem: It,
on the one hand, makes the coreference resolution
problem harder, in that we require the identifica-
tion of a specific antecedent span, rather than any
mention in the entity chain; on the other hand, the
problem becomes easier by providing the brack-
eting of the mention that needs to be resolved.
Due to these differences, it is not possible to di-
rectly compare our results with others in literature.
For analysis, to make our results more comparable
with Lee et al. (2018), we provided their model
with the bracketing of the mentions and consid-
ered the first mention to be the antecedent. This
way we can reinterpret their clusters as question-
answer pairs and do not penalize them for mention
bracketing errors, only considering pairs where
they correctly identify mentions. Note this gives
their model an advantage over ours, as their model
considers multiple sources of evidence for infer-
ring the coreference links, and gets to pick the
subset of data on which the models are compared.
On OntoNotes, in this setting, and after pruning
around 7, 358 mentions Lee et al. (2018) brack-
eted wrongly, their new average F1 score is 75.9.
Our performance on the same subset of the data is
72.1. Upon manual inspection, we see the model
in Lee et al. (2018) has a strong bias favoring nom-
inal antecedents, whereas our model is more likely
to predict clausal antecedents. On WikiCoref, our
model remains better than the previous state of the
art by some margin, with an F1 of 69.2 over 43.6.


