
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 659–668
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

659

Query Generation for Multimodal Documents

Kyungho Kim1, Kyungjae Lee1, Seung-won Hwang2∗,
Young-In Song3 and Seungwook Lee3

1Yonsei University, 2Seoul National University, 3NAVER
1{ggdg12, lkj0509}@yonsei.ac.kr, 2seungwon.hwang@gmail.com,

3{song.youngin, swook.lee}@navercorp.com

Abstract

This paper studies the problem of generating
likely queries for multimodal documents with
images. Our application scenario is enabling
efficient “first-stage retrieval” of relevant doc-
uments, by attaching generated queries to doc-
uments before indexing. We can then index
this expanded text to efficiently narrow down
to candidate matches using inverted index, so
that expensive reranking can follow. Our eval-
uation results show that our proposed multi-
modal representation meaningfully improves
relevance ranking. More importantly, our
framework can achieve the state of the art in
the first-stage retrieval scenarios.

1 Introduction

As more documents on the web are generated and
consumed by mobile devices with cameras, docu-
ments are often multimodal, containing informa-
tion in both text and image modalities. This poses
a new challenge of finding relevance documents
across modalities. More formally, the relevance
of document, consisting of text t and image i, to
the given query keywords q, should be modeled as
a trimodal function f(q, t, i), rather than a simple
lexical match between q and t (or, BM25 baseline)
assuming the semantics of image i is fully rep-
resented by the surrounding text (or, paired-text
assumption).

Prior research observes that paired-text assump-
tion is often violated (Henning and Ewerth, 2017) –
for example, some semantics can be better cap-
tured in image modality, and may not (or, can-
not) be described in text. Meanwhile, BM25 base-
line (Robertson et al., 1994) would fail to serve
queries for such semantics.
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To overcome this limitation of BM25, one may
model relevance from query as a trimodal func-
tion f(q, t, i) (Nian et al., 2017; Kordan and Kotov,
2018) instead, but they require runtime invocation
of f for the given query q with all potential docu-
ment matches. This incurs a prohibitive runtime
overhead, unacceptable for search engines find-
ing results online. A common practice is to use
a cheap BM25 ranking as a “first-stage retrieval”,
efficiently supported by inverted index, to quickly
narrow down to a few candidate documents, then
evaluate f(q, t, i). However, due to simple nature
of BM25 using exact term matching, a document
will be missed, if the query term is absent in t, even
though it semantically matches image or another
term in the text.

Our contribution is to keep first-stage retrieval
as efficient as BM25, but enable multimodal se-
mantic matching, using Query Generation (QG)
before indexing. More specifically, we generate a
likely query q from a joint modeling of t and i, to
create an expanded text t′ = q ∪ t such that (q, t′)
pair has more lexical overlaps, or better paired than
(q, t), for first-phase retrieval. Specifically, we train
a sequence-to-sequence model, such that given
the representation of multimodal document, this
model generates possible queries that users may
ask to retrieve such document. This is analogous to
doc2query (Nogueira et al., 2019) approach used
for first-stage retrieval of textual relevance rank-
ing, though this model, dealing with text modality
only, cannot apply to our problem of retrieving
multimodal documents.

For such multimodal representation for QG, a
naive baseline is bimodal representation shown in
Figure 1a: We may assume (t, i), even when lexi-
cal overlaps are low, is semantically paired in the
embedding space. Note this is a relaxed version of
paired-text assumption. Given this relaxed assump-
tion, common architecture of bimodal representa-
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Figure 1: (a) bimodal and (b) trimodal representation for QG, query is used for disentangling shared and private
space and relaxing paired-text assumption of bimodal representation.

tion for QG consists of the encoders for image i and
text t. Each generates vector representation, which
is later fused into a multimodal space, then decoded
into a textual caption. Specifically, we consider
two strong baselines: (a) cross-modal representa-
tion, pretrained from a large-scale paired corpus
of image and caption, such as LXMERT (Tan and
Bansal, 2019), ViLBERT (Lu et al., 2019), and
VisualBERT (Li et al., 2019), finetuned for our
task, and (b) memory network structure (Park et al.,
2017). Based on these baselines, we design Bi-
modal QG combining the advantages of the two as
a strong baseline. Then, we extend into Trimodal
QG leveraging text, image and query (q, t, i).

Alternatively, we may further relax paired-text
assumption and propose Trimodal QG in Figure 1b:
(t, i) can be partially paired, where some seman-
tics is conveyed in one modality. To deal with that
challenge, the query given at training, helps “disen-
tangle” shared and private semantics as additional
loss terms. Another role of query is improving im-
age representation, to de-emphasize semantics not
discussed in either text or query.

In summary, our contributions are as follows:

• We study QG for multimodal documents, as
an enabler for efficient first-stage ranking.

• We build a multi-task model, for query gener-
ation and representation learning, to generate
effective queries for offline indexing.

• We improve the QG model by considering
query as third modality in order to work well
without paired-text assumption.

• We validated that our model outperforms all
baselines in both public dataset and real-life

web search query logs and quality annotation
for multimodal documents.

2 Related Work

Our work is closely related to the following three
areas of research.

2.1 Web search with images
Most efficient way to treat multimodal document
ranking has been making paired-text assumption
(Coelho et al., 2004; Azilawati and Meriam, 2008),
such that simply matching q with t is sufficient. Our
work is as efficient, by incurring no additional run-
time overhead, but does not make such assumption.
Alternatively, Rodrı́guez-Vaamonde et al. (2015)
adds a reranking phase, checking if the images are
relevant to the query, supervised by whether the
given image is correlated with clicks.

Our distinction: We do not build on paired-text
assumption, and can be viewed as generating a
better-paired document by adding likely queries.

2.2 Image captioning
Another closely related work is the task of gen-
erating textual captions to the given query. As
overviewed in Section 1, state-of-the-art models
include bimodal joint representation of image i
and text t (Kiros et al., 2014b; You et al., 2016;
Park et al., 2017). Alternatively, such joint mod-
els can also be transferred from pretrained models,
such as LXMERT (Tan and Bansal, 2019), ViL-
BERT (Lu et al., 2019), and VisualBERT (Li et al.,
2019). Section 3 will compare and contrast these
two approaches, and discuss why these models are
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Figure 2: Proposed bimodal QG baseline, combining (a) cross-modal and (b) memory-based state-of-the-arts

limited for our task setting. (Jeon et al., 2003) is a
non-neural model trained to annotate images with
textual description, though requiring expensive su-
pervision of segmented image with term.

Our distinction: We propose and validate tri-
modal joint representation for higher-quality cap-
tioning. Meanwhile, we do not require segment-
level annotation, though our query-guided trimodal
image representation naturally emphasizes impor-
tant segments.

2.3 QG for first-stage retrieval

QG for first-stage text retrieval was pioneered
by doc2query (Nogueira et al., 2019), generat-
ing likely queries for the document for index-
ing purposes in text modality. Our work can be
viewed as query generation for multimodal docu-
ments: For each document, the task is to predict
a set of likely queries. We train a sequence-to-
sequence transformer using a data set of (query,
relevant document) pairs. Alternatively, inverted
index can be built for a latent term (Zamani et al.,
2018), though it cannot be human-interpreted or
reweighed. In contrast, we focus on inverted index
on actual terms, as it is human interpretable and
combines more naturally with legacy tf-idf ranker
and reweighting module.

Our distinction: We validate the effectiveness
of trimodal QG over bimodal state-of-the-art meth-
ods.

3 Bimodal Baselines: LXMERT and
Memory-Based Generator

This section compares and contrasts two bimodal
baselines: LXMERT 1 and Memory-Based Genera-
tor encode text t and image i into vector representa-
tions (Section 3.1), then the two are aggregated into
a multimodal representation (Section 3.2), such
that this vector can feed a decoder to generate a
text sequence (Section 3.3). Specifically, we build
Bimodal QG baseline, combining LXMERT repre-
sentation and Memory-Based Generator decoding.
Figure 2 shows overall architecture of our Bimodal
QG baseline.

3.1 Text and image encoder

LXMERT and Memory-Based Generator gener-
ate text and image vectors, using transformer and
memory network structure respectively. Both can
be explained as key memory, aggregating value
memory representation with proper self-attention,
denoted as key and val, respectively, following the
conventions of prior literature (Sukhbaatar et al.,
2015).

Formally, we encode textual context words C
= {w1, w2, ..., wj} obtained by concatenating the
n−dimensional word embedding (w ∈ Rn) of the

1Out of cross-modal representations discussed in Section
1, we empirically found LXMERT performs the best in our
problem setting and thus adopt it as a baseline.
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top-j words with the highest TF-IDF weights 2.

T key
i = ReLU(W1wi + b1), i ∈ [1, j]

T val
i = ReLU(W2wi + b2), i ∈ [1, j]

T key = [T key
1 ; ...;T key

j ]

T val = [T val
1 ; ...;T val

j ]

where W1, W2 ∈ Rm×n, b1, b2 ∈ Rm are train-
able linear transformation parameters where m is
the dimension of memory. When parameter, such
as T or I , is denoted without superscript (key or
val), it refers both key and val vectors.

Similarly, an image input U ∈ R2048 is gener-
ated from pool5 feature vector of Resnet-101 CNN
encoder, which is similarly embedded into:

Ikey = ReLU(W3U + b3)

Ival = ReLU(W4U + b4)

where W3,W4 ∈ Rm×2048 and b3, b4 ∈ Rm are
trainable matrices for tuning on given dataset. Fi-
nal image embedding is generated with key and
value vector, following the convention of attention
network (Kiros et al., 2014a). Note only the rep-
resentation of text and image is used at this point,
and using query representation will be discussed
in Section 4. Also, LXMERT extract image fea-
tures by using Faster-RCNN (Ren et al., 2015) and
transformer structure, which is pre-trained on large
dataset combined by MSCOCO (Lin et al., 2014)
and Visual Genome (Krishna et al., 2016). There-
fore, both methods can be applicable on general
images.

3.2 Multimodal fusion
The goal of multimodal fusion module in Figure 2
is to get text and image representations as input,
and create a joint representation as output. When
paired-text assumption holds (Figure 1a), this can
be achieved by simply concatenating or adding
two input modalities, and the future layers will be
tuned for a proper alignment of the two. However,
such concatenation is less effective when paired-
text assumption does not hold as in Figure 1b.

One solution is transfer learning from pretrained
joint representation model trained from a large-
scale paired resources, such as LXMERT (Tan
and Bansal, 2019). LXMERT is a transformer-
based architecture for cross-modal representation

2C can be a subset of arbitrary size from t, which we
empirically tune to j = 30.

learning, for predicting masked words from the
text modality, and vice versa. This auxiliary task,
known as masked cross-modality language model,
helps building connections across modalities. In
our problem setting, this option can be considered
for public English dataset, as pre-trained LXMERT
with a large scale paired training resources is read-
ily available to generate a joint representation
Mlxm, to replace simple concatenated fusion em-
bedding Mfusion ([I;T ]).

3.3 Bimodal QG: Joint text decoding for
query generation

We now observe the two baselines: LXMERT, fo-
cuses on the problem of joint representation, but
does not consider a decoder of generating a query
sequence from such representation (Figure 2a).
Meanwhile, Memory-Based Generator has the ad-
vantage of tightly coupling the key-value encoder
and CNN decoder, by concatenating the represen-
tations of all modalities, co-attended based on the
query keywords generated thus far, as illustrated in
Figure 2b. This multimodal vector is calculated in
each time step and used to decode the next word,
which is an effective decoder design adopted for
our model:

Mtotal = [I;T ;Q]

With this joint representation, query generation is
predicting the output probability of the next word
among all vocabularies, by a convolution neural
network, denoted as CNN in Figure 2.

For combining with the strength of LXMERT,
we can simply replace the cross modal embedding
vector in Figure 2 by Mlxm for bimodal QG. Alter-
natively, for ablation purpose, Mlxm can directly
decoded without memory-based decoder, which we
denote as LXMERT QG. Our final loss of bimodal
captioning is a seq2seq loss.

Lseq = −
l∑

t=0

log(P (yt|y<t, I, T ))

where t is the time step and l is the length of cap-
tion.

4 Trimodal QG: Query-aware
representation

Our proposed bimodal QG partially contributes
to relax paired-text assumption, but neither image
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and text representation is aware of queries. We
argue that, queries carry rich semantics and con-
tribute significantly to to relax paired-text assump-
tion, specified as two key contributions C1 and C2
below.

• C1: We use query to improve image
and text representation to disentangle into
shared/private semantics where q matches the
shared semantics.

• C2: As query generation is better trained
when t and i are paired, we revise image rep-
resentation to enhance pairedness with given
query.

Motivated, we propose two new loss functions
L1 and L2, addressing C1 and C2 respectively.

4.1 Query-aware relevance
For addressing C1, we model “private” parts of
image and text, denoted as Pi and Pt, to relax the
paired-text assumption. Our goal is to build joint
representation S, aligning only the shared part of
image and text, with query q.

S =W5[I
key;T key] + b5

Pi =W6I
key + b6

Pt =W7T
key + b7

whereW5,W6,W7 ∈ Rm×2m and b5, b6, b7 ∈ Rm

are trainable parameters. Ikey and T key are the
image and text input vectors, respectively. These
inputs are concatenated into [Ikey, T key] and mul-
tiplied by W5 so that the combined modality can
be projected into same semantic space with private
vectors Pi and Pt.

To ensure this joint representation to project
closely to the representation of query, query em-
bedding vector Qv is generated by LSTM with
generated query y0, ..., yt−1:

Qv = LSTM(Q)

with the objective loss to keep private vectors away
from query, and shared close to query:

Limg
1 = max{0, r − (sim(Qv, S)− sim(Qv, Pi))}

Ltext
1 = max{0, r − (sim(Qv, S)− sim(Qv, Pt))}

L1 = Limg
1 + Ltext

1

where r is the margin parameter. This margin
enables our model to relax the decision function
in LXMERT, predicting whether t and i are
paired, as a binary classification. Unlike such
binary prediction, computing zero or one score
for partially paired pair (Figure 1b), the above
two losses compute a scalar score and make a soft
decision based on similarity. The query-aware
relevance loss L1 is defined by combining the two
losses for each modality.

4.2 Query-aware alignment

For C2, we revise image representation to highlight
query-related semantics, to make it semantically
pair better with text representation. To reflect a
(possibly nonlinear) relation with the query and the
image, a fully connected neural network is applied
to each modality before gating. Formally, query-
aware image embedding Vp is described below:

Aq = σ(w8Qv + b8)

Vp = (w9I
key + b9)�Aq

where Qv is the query embedding, Aq is the atten-
tion derived from query with sigmoid σ, � means
element-wise multiplication and w9 ∈ Rm×m and
b9 ∈ Rm are trainable parameters. w8 ∈ Rm×m

and b8 ∈ Rm are learned with m-dimension query
embedding. We apply the fully connected layer
(first term before element-wise multiplication) to
project image near query embedding.

We apply query-aware image representation to
the multimodal space learning:

L2 = max{0, r−(sim(Vp, T
key
+ )−sim(Vp, T

key
− ))}

where r is the margin and + means positive text
where text belongs into same document with given
image and − means negative text from different
document.

Finally, we combine the two loss functions as a
final query-aware loss Lq:

Lq = L1 + L2

Our final loss of trimodality captioning is the sum
of seq2seq loss and query aware alignment loss:

Lfinal = Lseq + Lq
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R@1 R@10 R@30
BM25 0.166 0.672 0.809

LXMERT QG 0.175 0.684 0.813
Bimodal QG 0.207 0.718 0.816

Ours (Trimodal QG) 0.213 0.723 0.823

Table 1: Public dataset results for first-stage retrieval

5 Experiment

The goal of our evaluations is to validate the ef-
fectiveness of our approach in public dataset and
real-world Web search queries and settings. In par-
ticular, we have two research questions:

• RQ1 Would QG task benefit from LXMERT
model? How does our approach compare with
BM25 or Bimodal for first-stage retrieval?

• RQ2 Would our approach improve real-life
Web search queries?

We use public dataset for RQ1 and real-life
queries and quality annotation for ad-hoc web
search task from NAVER for RQ2.

5.1 RQ1: Public reproducible scenarios
5.1.1 Dataset
As there is no public dataset with query workloads
and multimodal documents, we repurpose a public
dataset of instructional videos (Kim et al., 2020) by
transforming videos into multimodal documents,
which consists of 2000 query-video pairs, where
each video is a recipe instruction from YouCook2
dataset3. We first sample an image correspond-
ing to each sentence in the transcript, by captur-
ing a center frame. As this may create too many
(image,sentence) pairs, we propose to cluster into
more natural boundaries using temporal and seman-
tic aspects: A pair of successive frames, each with
textual transcript and a set of objects 4, will be
merged if more than clip% objects overlap, which
is empirically tuned for each experiment. When
clip% is set to 100%, it is our initial setting without
merging, and this can be tuned to better fit the tar-
get scenario. Figure 3 shows the example of video
clipping, where associated frames are merged into
multimodal paragraphs with images and transcripts.
The lengths of extracted multimodal paragraphs
are from 1 to 20 according to video. Therefore it

3http://youcook2.eecs.umich.edu/
4extracted from each frame using Faster-RCNN (Ren et al.,

2015)

can correspond to short to long length of actual
documents.

5.1.2 Experiment settings
To preprocess text and image input data, we use
NLTK text tokenizer (Sukhbaatar et al., 2015) and
Resnet-101 CNN respectively. When learning a
query generator, the dimensionality of image and
word embedding vector is set to 2048 (by follow-
ing the size of pool5 vector of ResNet) and 100
respectively. The dimensionality of memory m
and query embedding are empirically determined
to 256. Mini-batch stochastic gradient descent
method is used to learn our query generator. Specif-
ically, we used Adam optimizer (Kingma and Ba,
2014) with the default setting. The initial learning
rate is set as 0.001 and is divided by 1.2 at every
five epoch until it reaches 30 epochs. The number
of generated query is up to 8.

In this study, we follow a standard two-stage doc-
ument retrieval scenario: First, top 30 candidate
documents are ranked and selected from the index
using a first-stage ranker, namely BM25, LXMERT,
Bimodal, and Trimodal in Table 1. Then, the
second-stage ranker follows, which is generally
more sophisticated and expensive, such as BERT-
based ranker (Nogueira et al., 2019). However, we
stress that our work is orthogonal to second-stage
ranker and focus on first-stage results.

5.1.3 Results
First-stage ranking results on this public English
dataset are shown in Table 1. In this dataset, eval-
uation metrics is limited to R@K, due to binary
nature of relevance annotation: the ratio of ground
truth videos that appear in our top-K results, when
K = 30 is returning all results. In real-life eval-
uation in the next section, graded relevance anno-
tations will be collected to evaluate rank accuracy.
BM25 in the table uses raw BM25 score on text t
itself. The other QG models (LXMERT QG, Bi-
modal QG, and Trimodal QG) are implemented
as BM25 scoring on expanded text t′ with queries,
generated from each QG model respectively. In all
evaluations, relevance scores on t and t′ are aggre-
gated with linear weighting, which we empirically
tune λ = 0.9 for t′ (and 1− λ for t). In all metrics,
Bimodal and Trimodal outperform BM25 ranking,
validating our hypothesis that considering image
for joint document representation is effective.

Based on this result, our evaluations from this
point on focus on evaluating Trimodal, with real-
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Figure 3: An example of video clipping to show how we transform a video into a multimodal document. Each
multimodal document is clustered into paragraphs, with images and transcripts, shown as red boxes.

Figure 4: Qualitative examples demonstrating caption
generation of our model on public dataset. Successful
cases are highlighted by green. Failure case is high-
lighted by red.

life settings, allowing multilinguality, graded rele-
vance annotation, and a realistic ranker.

5.1.4 Qualitative results

The example images, contexts, and captions are
presented in Figure 4. It shows an improvement on
search by generating queries for multimodal docu-
ments. An example of correctly generating query
is shown in the first and second image of Figure 4.
The images and contexts are highly related to the
name of cooking, but it does not exist in the context
where the words are selected by applying TF-IDF
to transcript. In this case, our model could make
a considerable contribution to search performance
by directly generating the query itself like “fried”
and “macaroni”. The failure case is shown in the
third image of Figure 4. The recipe for hummus
and mashed potato both have a mashing step and
similar-looking ingredient. If the cooking method
and the appearance, color, and texture of the in-
gredients are similar, the model has a probability
of generating other queries. As shown above, our
model does great for generating query words to
support first-level retrieval.

5.2 RQ2: Real-world ad-hoc web search
scenarios

5.2.1 Dataset
The source dataset used in our experiments is the
evaluation set of the web search ranking task from
the real-life commercial search engine. This dataset
contains about 28,000 queries, for each of which
60 document URLs from search engine results are
found. In real-time commercial dataset, annotating
the relevance of all query-document pairs is im-
practical. Instead, we pooled top 60 documents, as
used widely in IR evaluation to reduce annotation
efforts, where only top ranked documents from a
small set of retrieval runs are manually assessed
for relevance to investigate the impact of first-stage
retrieval. These documents are labeled by expert
query annotators into one of five graded relevance
score, ranging from 1 (poor) to 5 (excellent), or
left unlabelled. Since unlabelled documents were
randomly sampled from low ranks of search results,
we treat all unlabelled documents as irrelevant ones
(score 1). Additionally each query is classified into
domains by NAVER.we evaluate real world dataset
in such experiment setting.

5.2.2 Experiment settings
Out of all domain areas, we observe five main cate-
gories where the image information is expected
to complement missing information from text–
namely, Fashion, Place, Entertainment, Commerce,
and Food/Recipe. We select query-document pairs
annotated as described above for these categories.
More specifically, Table 2 shows the selected cate-
gories and the number of queries in each category.

As a realistic ranker, we replace BM25 and train
LambdaMart, as implemented in LightGBM (Ke
et al., 2017; Meng et al., 2016), which is gradi-
ent boosting framework developed by Microsoft
that uses tree based learning algorithms. The rank-
ing model is trained and tested separately for each
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Category # of queries
Fashion 119

Entertainment 347
Food/Recipe 205

Place 971
Commerce 1665

Table 2: Statistics of categories selected from real-life
data

category. For evaluation metrics, we follow the
convention of prior work, to use NDCG@1, 5, 10,
evaluated using a 5-fold cross-validation. A de-
tailed description of the text features and image
feature used to learn the ranking model is as fol-
lows.

To handle Korean text, we replace a tokenizer
from KoNLPy 5. Except this, all other experiment
settings, including configurations to learn our query
generator, remain unchanged from previous experi-
ments.

BM25F score of query-document
BM25 score of query-document title
BM25 score of query-highlighted text
Exact matching of query-document
Query proximity score on document
Query proximity score on document title
Covered query term ratio of document title
Covered query term ratio of front section
Covered query term ratio of highlighted text

Table 3: Descriptions of real-life text features selected

Each document in real-life search engine is rep-
resented by hundreds of pre-computed features.
Among them, we select nine widely used features
related to textual similarity between a query and
document. The selected features are shown in Ta-
ble 3. Those features are used for the text baseline
in Table 4.

5.2.3 Results
Table 4 reports accuracy gains in the five selected
categories. For the four of five categories, our
proposed approach achieved up to 10.8% gain on
NDCG@1.

The category seeing the highest gain has been
Food/Recipe, where images can be informative and

5Korean Natural Language Processing in python (Park and
Cho, 2014)

complement textual instructions in this domain, as
consistently observed empirically.

On the other hand, Commerce domain, though
we expected showing the image of actual goods
would complement text information, was the worst
performing category. Our analysis shows that ex-
pert annotation was biased to highly rated official
sites, while the same item can be sold in millions of
sites with lower authority. Meanwhile, our models
focusing on document relevance only, following
the convention of ad-hoc retrieval scenarios, could
not distinguish such difference.

Table 5 shows the search performance of each
category when a document is ranked using only
trimodal-aware image feature. The best search per-
formance category is the Food/Recipe, which had
the highest performance gain in Table 4, and the
other categories show a similar performance. The
score of ranking model using only image feature
can achieve performance about 62% of that of us-
ing all features, with respect to NDCG@5.

Table 6 reports the accuracy gains of all cate-
gories over strong baselines. Only our trimodal
query generation shows positive results on all do-
mains. This demonstrates that our proposed query-
aware trimodal loss contributes to capturing the
query-relevant semantic of images.

6 Conclusion

We study the problem of representing a multimodal
document to be indexable for efficient first-stage.
Our contribution is posing the problem as trimodal
QG to augment the given text, by proposing a tri-
modal joint representation of image, text, and query
without paired-text assumption. We validate our
approach over both public dataset and real-life web
search data collected from commercial search en-
gines.
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