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Abstract

Quality estimation aims to measure the qual-
ity of translated content without access to a
reference translation. This is crucial for ma-
chine translation systems in real-world scenar-
ios where high-quality translation is needed.
While many approaches exist for quality es-
timation, they are based on supervised ma-
chine learning requiring costly human labelled
data. As an alternative, we propose a tech-
nique that does not rely on examples from
human-annotators and instead uses synthetic
training data. We train off-the-shelf architec-
tures for supervised quality estimation on our
synthetic data and show that the resulting mod-
els achieve comparable performance to models
trained on human-annotated data, both for sen-
tence and word-level prediction.

1 Introduction

The adoption of Machine Translation (MT) has
been increasing in areas ranging from government
and finance, to even social media due to the sub-
stantial improvements achieved from Neural Ma-
chine Translation (NMT). However, even with im-
proved performance, translation quality is not con-
sistent across language pairs, domains, and sen-
tences. This can be detrimental to end-user’s trust
and can cause unintended consequences arising
from poor translations. Thus, having metrics to as-
sess the quality of translated content is crucial to en-
sure that only high-quality translations are provided
to end-users or downstream tasks. Quality Estima-
tion (QE) metrics aim to predict translation quality
without access to reference translations (Blatz et al.,
2004; Specia et al., 2009, 2013).

State-of-the-art QE techniques have leveraged
MT systems and language-specific human annota-
tions as supervision, including direct assessment
and post-editing (Kepler et al., 2019a; Fonseca
et al., 2019; Sun et al., 2020). However, these

annotations are costly and time-consuming, partic-
ularly for word-level QE, where each token needs
a label.

Some unsupervised approaches take inspiration
from statistical MT (Popović, 2012; Moreau and
Vogel, 2012; Etchegoyhen et al., 2018) or apply
uncertainty quantification (Fomicheva et al., 2020)
for QE. However, their performance is inferior to
that of supervised models. In related areas such
as automatic post-editing, parallel data has been
used to create synthetic post-editing data (Negri
et al., 2018), however this technique only com-
pares machine-translated sentences to references.
Our approach augments MT errors with additional
errors via masked language model rewriting.

We leverage noisy, mined comparable sentences
obtained by weakly-supervised techniques (El-
Kishky et al., 2020b). These noisy bitexts have
been mined from a variety of domains such as
Wikipedia (Schwenk et al., 2019a) and large web-
crawls (Schwenk et al., 2019b; El-Kishky et al.,
2020a; El-Kishky and Guzmán, 2020) and have
been shown to be an invaluable source of train-
ing data for NMT models. Using this data is cru-
cial to avoid data leakage between a trained NMT
model and the data we use to create synthetic QE
data. For each source-target sentence pair from
the mined data, we apply an MT system to gener-
ate a candidate translation of the source sentence.
Additionally we rewrite each target reference sen-
tence using a masked language model to introduce
errors. These two approaches generate two alterna-
tive “translations” of the source sentence. We then
produce pseudo-labels for each token in these trans-
lations by edit distance alignment to the original
reference sentence. This results in each translated
word being pseudo-labelled as correct or incorrect,
which is our synthetic QE training data. Analo-
gously, sentence-level training data is derived as
the proportion of incorrect words per sentence.
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Figure 1: The pipeline to synthesize data for QE from
comparable mined data.

Our main contributions are: (i) We explore a
simple technique to effectively generate synthetic
data for QE that allows for both word-level and
sentence-level estimation (ii) we demonstrate that
our technique performs comparably to off-the-shelf
models trained on human-annotated data.

2 QE Task Description

Word-level QE has been mainly framed as the task
of predicting which words in the translation need
to be post-edited. As such, word-level QE aims to
assign a tag for each word and gap between words
in a machine-generated translation as correct, i.e.,
the word does not need editing, or incorrect, i.e.,
the words should be substituted, deleted, or inserted
(tags for gaps) (Specia et al., 2020).

For word-level, we denote the tag of each word
in a translation as mt ∈ {OK, BAD}, where t ∈
[1, T ] and T is the length of the translation. Also,
we denote the tag of each gap between two words
(including the beginning and the end) as gt ∈
{OK, BAD}, where t ∈ [1, T + 1].

In traditional QE, data is collected by first trans-
lating source sentences using an MT model. Sec-
ond, experts post-edit these translations. Third, the
post-edits and machine translations are aligned in
such a way that induces the minimum edit distance
between the tokens of each. Finally, each mt is la-
belled as BAD if it should be deleted or substituted
and each gt is labelled as BAD if at least a word
should be inserted there. Sentence-level QE labels
can be generated by computing the Human-targeted
Translation Error Rate (HTER) (Snover and Brent,
2001; Snover et al., 2006), which is the minimum
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Figure 2: The rewriting process by text-infilling using
a masked language model.

ratio of edit operations needed to fix the translation
to the number of its tokens. We explore the possi-
bility to skip the costly human post-editing process
by proposing a data synthesis pipeline, which we
then test on human labelled data.

3 Approach to Data Synthesis

As depicted in Figure 1, we synthesize data from
mined Wikipedia datasets, where each example
consists of a (source, target) sentence pair.

We create candidate translations of source sen-
tences in two ways: For the first approach, we apply
the NMT model to translate each source sentence.
For the second approach, we rewrite each reference
target sentence using a masked language model
(MLM), as shown in the MLM Rewrites block in
Figure 1. The two approaches create two forms of
translations. Then, by treating target sentences as if
they were post-edited data (pseudo post-edits), we
identify errors in each candidate translation by look-
ing at the insertions, deletions, and substitutions
between the references and generated translations.

Neural Machine Translation. For the first ap-
proach to generating synthetic data, we use a pre-
trained NMT model to create translations. The
NMT model is the same model that was used
to generate translations in the supervised data;
the architecture is a standard transformer as used
in (Vaswani et al., 2017; Ott et al., 2019). The
process of creating synthetic QE data first involves
translating each source sentence using this model
and taking the output as a translation which will
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Data English-German English-Chinese

size MT bad (%) Gap bad (%) size MT bad (%) Gap bad (%)

Human annotation 7K 27.8 4.7 7K 54.2 8.4
NMT 459K 38.2 5.7 189K 49.5 6.8
MLM (word-QE) 459K 40.7 2.9 189K 53.9 8.6
MLM (sent-QE) 459K 43.1 3.3 189K 49.9 2.7

Table 1: Statistics of annotated and synthetic (NMT and MLM) data.

later be used to generate the synthetic labels. When
decoding, we apply a beam of 5 following the NMT
models available in Fomicheva et al. (2020) to gen-
erate a candidate translation. Next, we take the
mined reference target sentence and treat it as a
pseudo post-editing of the machine translation.

We then compute the edit distance between MTs
and pseudo post-edits. The resulted edit operations
are the pseudo tags, which consist of word tags
mt and gap tags gt. This process is illustrated in
Algorithm 1.

Algorithm 1: DataSynthesis-NMT
Input: pairs (source, target) from mined data,

pretrained NMT model
Output: (MTs, pseudo tags)
for each pair (source, target) do

MTs = NMT(source)
{mt}Tt=1, {gt}T+1

t=1 = edit distance(MTs, target)
pseudo tags = ({mt}Tt=1, {gt}T+1

t=1 )
return (MTs, pseudo tags)

Rewriting by Masked Language Model (MLM).
Our second approach to creating synthetic QE train-
ing data is to introduce errors by rewriting target
sentences. We inject these errors by performing
text-infilling (Zhu et al., 2019; Lewis et al., 2019).
As displayed in Figure 2, we perform text-infilling
by applying three operations: (1) randomly sub-
stituting a proportion of tokens with a <mask>
token, (2) deleting consecutive tokens, and (3) in-
serting additional consecutive <mask> tokens. We
determine the lengths of consecutive deletions and
insertions by drawing them from a Poisson dis-
tribution with mean λ = 1 shifted by 1 to avoid
zero-length insertions or deletions. We then use a
pre-trained masked language model (MLM) sup-
plied with the source sentence as input to infill the
masked reference sentence. We select multilingual
BERT (Devlin et al., 2019) as it is pre-trained on
Wikipedia which is in-domain to our test set. We
present the target-rewriting approach in detail in
Algorithm 2.

In Section 4, we will investigate the performance

Algorithm 2: DataSynthesis-Rewriting
Input: pairs (S,W ):=(source, target) from mined

data, pretrained MLM
Input: Ps, Pd, Pi as the probabilities of substitution,

deletion, and insertion
Output: (pseudo MTs, pseudo tags)
for each pair (S,W ) do

W ′ = randomly mask tokens in W by Ps

D = randomly mark deletion in W ′ by Pd

W ′ = randomly delete a text span from marks D
in W ′ (length∼ Poisson(λ = 1) + 1)
I = randomly mark insertion in W ′ by Pi

W ′ = randomly insert contiguous masks from
marks I in W ′ (length∼ Poisson(λ = 1)+1)

rewrites = MLM fills in masks(S,W ′)
{mt}Tt=1, {gt}Tt=1 = edit distance(rewrites, W )
pseudo tags = ({mt}Tt=1, {gt}T+1

t=1 )
return (rewrites, pseudo tags)

of QE models trained on NMT-based synthetic data,
rewriter-based synthetic data, and a two-model en-
semble where each model is trained on a different
form of synthetic data.

4 Experiments and Results

We focus on data released by the WMT20 shared
task on QE for predicting post-editing effort,
which includes English-to-German (En-De) and
English-to-Chinese (En-Zh) word-level data and
their sentence-level HTER (Specia et al., 2020).1

As the human-annotated data is sampled from
Wikipedia, we choose to synthesize data from Wiki-
Matrix (Schwenk et al., 2019a), which consists of
mined Wikipedia parallel data from which we sam-
ple pairs with a LASER (Artetxe and Schwenk,
2019) margin score threshold of 1.06 to ensure
high-quality pairs. We note that the original QE
data is not a subset of WikiMatrix. The German
and Chinese text were tokenized using the Moses2

and Jieba3 tokenizers, respectively. We list the
statistics of the filtered Wikimatrix data as well as
our resulting synthetic data in Table 1.

For the off-the-shelf QE model, we choose the
1Available here: https://github.com/sheffieldnlp/mlqe-pe
2https://github.com/alvations/sacremoses
3https://github.com/fxsjy/jieba
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Data English-German English-Chinese

MCC F1-Ok F1-Bad MCC F1-Ok F1-Bad

Human annotation 0.399 0.879 0.495 0.525 0.820 0.659
MLM 0.332 0.892 0.438 0.500 0.850 0.643
NMT 0.379 0.826 0.468 0.525 0.859 0.660
NMT + MLM 0.399 0.866 0.493 0.546 0.835 0.675
Improvement (%) +0.20 -1.40 -0.40 +4.00 +1.83 +2.43

Table 2: Results of word-level QE trained on human-annotated (7k) and synthetic data. Improvement in MCC for
en-de & en-zh shows synthetic data can train word-level models comparable to human-annotated data. We report
improvement comparing models trained with human-annotation vs our combined NMT+MLM synthetic data.

Data English-German English-Chinese

Pearson MAE RMSE Pearson MAE RMSE

Human annotation 0.394 0.150 0.187 0.490 0.151 0.186
MLM 0.290 0.156 0.195 0.418 0.224 0.269
NMT 0.327 0.229 0.270 0.482 0.161 0.203
NMT + MLM 0.373 0.172 0.205 0.506 0.148 0.183
Improvement (%) -5.50 +14.7 +9.63 +3.18 -1.79 -1.67

Table 3: Results of sentence-level HTER QE trained on human-annotated and synthetic data. For Pearson, positive
improvement is better while for MAE & RMSE negative is better. We report improvement comparing models
trained with human-annotation vs our combined NMT+MLM synthetic data.

multi-task predictor-estimator model (Kim et al.,
2017) implemented by OpenKiwi v0.1.3 (Kepler
et al., 2019b). This was the top-performing archi-
tecture for QE at WMT19 (Kepler et al., 2019a;
Fonseca et al., 2019). We train the predictor on par-
allel MT data provided by the WMT20 QE shared
task. The predictor reads in words’ contextualized
word representations, the estimator passes these
features through a 2-layer 125-dimension bidirec-
tional LSTM (biLSTM) and then feeds the outputs
into 1-layer linear word-level classifier. The first
output of the biLSTM is also fed into a multi-layer
perceptron to predict a sentence-level score. For
multi-task learning, we train the model with both
word- and sentence-level data.

For a fair comparison, we take the pre-trained
predictor provided by the WMT20 QE shared task,
fine-tune the whole model on the human annotated
data, and compare results to those when fine-tuned
on our synthetic data. We test by comparing model
predictions and held-out human-annotated QE at
word and sentence-level. At the word level, we
measure QE performance with Matthew’s Corre-
lation Coefficient (MCC) (Matthews, 1975) (main
metric), as well as F1 scores for BAD and OK tags.
At the sentence-level, we measure the sentence-
level Pearson’s correlation (Benesty et al., 2009),
mean absolute error (MAE) and Root-mean-square
deviation (RMSE).

As shown in Table 2, for word-level QE,4 the
model trained on synthetic data generated from
NMT translations performs comparably to the same
model trained on the original 7k human-annotated
post-edits. This suggests that having human annota-
tors post-edit each translation to create training data
may be unnecessary and using reference sentences
is good enough. The model trained on the MLM
rewriting synthetic data generally under-performs
compared to NMT generated data on MCC. How-
ever, we note that it performs better on F1 on OK
tags. Therefore, we also ensemble the two mod-
els trained on each set of synthetic data through a
linear combination. This yields comparable or bet-
ter performance than the model trained on human-
annotated data according to the main metric, MCC.

In Table 3, we compare the models trained on
human-annotated data to our synthetic data for pre-
dicting sentence-level HTER scores. Again our
synthetic data from NMT-generated translations
outperforms MLM-rewriting data. Both under-
perform models trained on human-annotated data,
but when combined they significantly improve and
even outperform human-annotated for En-Zh. This
once again suggests that the two forms of synthetic
data are complementary and provide valuable sig-
nals for QE.

4The results reported in Tables 2 and 3 are evaluated on
the test set provided (test20).
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size MCC F1-BAD F1-OK

English-German
100k 37.72 46.23 83.99
200k 38.45 46.79 84.27

All (459k) 38.68 46.78 83.85

English-Chinese
50k 53.07 66.58 83.65

100k 53.88 67.13 84.10
All (189k) 53.42 66.86 84.47

Table 4: Ablation study of synthetic data amounts.

5 Discussion

In this section, we further analyze how the quantity
of synthetic data impacts performance, and what
types of errors are represented in each of the MLM
and NMT portions of the synthetic data.

5.1 Amount of Synthetic Data
As previously observed, the amount of synthetic
data is orders of magnitude larger than the amount
of human-annotated data. It begs the question:
How much benefit do we get from smaller amounts
of synthetic data? To analyze how the quantity of
synthetic data affects QE performance, we conduct
an ablation study of word-level QE.5 As shown in
Table 4, using only about half of the synthetic data
generated (200k for En-De and 100k for En-Zh) is
comparable to using the full generated set. While
this suggests an upper-bound in performance to
training on synthetic data. The ablation also sug-
gests that this synthetic process can yield good
performance with even a small amount of synthetic
data.

5.2 Error Analysis
In addition to the performance, we posit that there
are essential differences between MLM and NMT
synthetic data. To test that, bilingual volunteers
qualitatively analyzed the types of mistakes from
MLM rewrites vs traditional NMT translations.
The major reported differences in error types are:

1. Deletions from NMT translations appear more
natural and do not destroy the sentence flu-
ency. However, deletions in MLM rewrites
are more destructive (e.g., “new york restau-
rants” vs “new restaurants” The semantics is
changed).

2. Most incorrect insertions or deletions from
NMT translations are due to re-ordering

5The ablation study is only trained on word-level data.

words. (e.g., “on 2020 in california” vs “in
california on 2020”) However insertions with
MLM-rewrites introduces seemingly random
words.

3. NMT translations often have semantically dis-
tant word substitutions. However, MLM-
rewrites tend to substitute similar words (e.g.,
“strong tea” vs “powerful tea”).

In summary, NMT translations and MLM-
rewrites appear to generate different types of er-
rors – the former leads to more subtle errors while
the latter often introduces more catastrophic errors.
Since a high-quality QE model should be able to
detect both types of errors, ensembling the models
trained on these two forms of synthetic data indeed
is expected to outperform using only one form of
synthetic data.

6 Conclusions and Future Work

In this work we devise a technique for building
word and sentence-level QE models by creating
synthetic training data. By training an off-the-shelf
model on our synthetic data, we achieve perfor-
mance comparable to and often better than training
on human-annotated data. This technique for data
synthesis can be invaluable if human annotation
is difficult to come-by, for example when dealing
with low-resource scenarios.

This work can be extended in various ways.
While we investigate the scenario of utilizing solely
synthetic data, further work can study the effects
of augmenting human-labeled data with synthetic
data. Further work can analyze the efficacy of this
technique into low-resource language pairs where
such human-annotation is difficult to obtain. Addi-
tionally, instead of a simple MLM re-writer, adver-
sarial training to generate and detect errors could
provide more realistic synthetic data.
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