CHOLAN: A Modular Approach for Neural Entity Linking on Wikipedia
and Wikidata

Manoj Prabhakar Kannan Ravi', Kuldeep Singh?, Isaiah Onando Mulang’?,
Saeedeh Shekarpour*, Johannes Hoffart’, and Jens Lehmann®

"'Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
manoj.prabhakar@hpi.de

2Smart Data Analytics, University of Bonn, Bonn, Germany
{mulang, jens.lehmann}@cs.uni-bonn.de

3Zerotha Research and Cerence GmbH, Aachen, Germany
kuldeep.singhl@cerence.com

4University of Dayton, Dayton, USA
sshekarpourl@udayton.edu

>Goldman Sachs, Frankfurt, Germany
johannes.hoffart@gs.com

Abstract

In this paper, we propose CHOLAN, a modu-
lar approach to target end-to-end entity link-
ing (EL) over knowledge bases. CHOLAN
consists of a pipeline of two transformer-
based models integrated sequentially to ac-
complish the EL task. The first transformer
model identifies surface forms (entity men-
tions) in a given text. For each mention, a
second transformer model is employed to clas-
sify the target entity among a predefined can-
didates list. The latter transformer is fed by
an enriched context captured from the sen-
tence (i.e. local context), and entity descrip-
tion gained from Wikipedia. Such exter-
nal contexts have not been used in state of
the art EL approaches. Our empirical study
was conducted on two well-known knowledge
bases (i.e., Wikidata and Wikipedia). The
empirical results suggest that CHOLAN out-
performs state-of-the-art approaches on stan-
dard datasets such as CoNLL-AIDA, MSNBC,
AQUAINT, ACE2004, and T-REx.

1 Introduction

The explicit schema, graph-based structure, and
interlinking nature of information represented in
publicly available knowledge graphs (KGs) e.g.,
DBpedia (Auer et al., 2007), Freebase (Bol-
lacker et al., 2007), Wikidata (Vrandecic, 2012) or
knowledge bases (KBs) such as Wikipedia; intro-
duce a new landscape of features, as well as struc-
tured knowledge and embeddings. Researchers
have developed several techniques to align infor-
mation available in unstructured text to the con-
cepts of these KGs (Wu et al., 2019b; Broscheit,
2019).

End-to-end Entity Linking (hereafter EL) task
follows this direction; such that, given a sentence
EL first identifies the entity mention in the sen-
tence, then maps these mentions to the most likely
KG/KB entities. The EL comprises of a three-
step process. With respect to the given exam-
ple sentence Soccer: Late Goals Give Japan win
Over Syria, the first step called mention detection
(MD) identifies the surface forms Japan and Syria.
The next step is candidate generation (CG) aiming
to find a list of possible entity candidates in the
KG/KB for each entity mention. For example, the
candidates list for entity mention Japan consists in
part of Japan national football team, Japan (coun-
try), Japan (Band) and for Syria is Syria (Roman
province), Syria national football team, Greater
Syria. Finally, the third step deals with the en-
tity disambiguation (ED) which employs the co-
reference and contextual features to discriminate
the most likely entity from the candidates list e.g.,
Japan national football team and Syria national
football team are correct entities.

Entity Linking approaches are broadly cate-
gorised into three categories. The initial attempts
(Hoffart et al., 2011; Piccinno and Ferragina,
2014) solve MD and ED as independent sub-tasks
of EL (i.e., a pipeline based system). However,
these approaches exhibit a behaviour where er-
rors propagate from MD to ED hence might down-
grade the overall performance of the system. The
second category has emerged in an attempt to mit-
igate these errors, where researchers focused on
jointly modelling MD and ED, emphasising the
importance of the mutual dependency of the two
sub-tasks (Kolitsas et al., 2018). These two EL

504

Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 504-514
April 19 - 23, 2021. ©2021 Association for Computational Linguistics



approaches depend on an intermediate candidate
generation step and rely on a pre-computed list of
entity candidates. For example, (Kolitsas et al.,
2018) propose a joint MD and ED model and in-
herits the candidate list from (Ganea and Hof-
mann, 2017). The third approach combines the
three sub-steps in a joint model and illustrates that
each of those tasks is interdependent (Durrett and
Klein, 2014; Broscheit, 2019).

The recent EL approaches focus on jointly mod-
elling two or three subtasks (Sevgili et al., 2020).
Furthermore, the NLP research community has ex-
tensively used transformers in end-to-end models
for entity linking (Broscheit 2019, Peters et al.
2019, and Févry et al. 2020). Nevertheless, these
works report less performance than (Kolitsas et al.,
2018), which is a bi-LSTM based model. The
observations regarding the limited performance of
transformer-based models for the EL motivate our
work, and in this paper, our focus is to understand
the bottlenecks in the entity linking process. We
argue that the less studied task in literature, i.e.,
candidate generation, has an essential role in the
EL models’ performance, which has not been a
focus in the recently proposed transformer-based
entity linking models.

In this paper, we hypothesise that the trans-
former models, though trained on a large corpus,
may require additional task-specific contexts. Fur-
thermore, inducing the context at the entity dis-
ambiguation step may positively impact the over-
all performance, which has not been utilised in
the state of the art methods due to monolithic im-
plementations (Kolitsas et al., 2018; Peters et al.,
2019; Broscheit, 2019; Févry et al., 2020). Sub-
sequently, we deviate from the joint modelling
of two or three subtasks of the EL and revert to
the methodology opted by earlier EL systems in
2011 (Hoffart et al., 2011), i.e. treat each sub-
task independently. As such, we study the re-
search question: RQ: what is the impact of each
sub-task (aka component) on the overall outcome
of the transformer-based entity linking approach?
We propose an intuitive novel approach named
CHOLAN, comprising a modular architecture of
two transformer models to solve MD and ED in-
dependently. In the first step, CHOLAN employs
BERT (Devlin et al., 2019) model to identify men-
tions of the entities in an input sentence. The sec-
ond step involves expanding each mention with
a list of KB entity candidates. Finally, the en-
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tity mention, sentence (local context), an entity
candidate, and entity Wikipedia description (entity
context) are fed as input sequences in the second
BERT based model to predict the correct KB en-
tity (cf. Figure 1). We train MD and ED steps
independently during training, and while testing,
we run the CHOLAN pipeline end-to-end for pre-
dicting the KB entity. The following are the novel
features of CHOLAN:

e The core focus of the approach is to flexibly
induce external context and candidate lists in
a transformer-based model to improve the
EL performance. CHOLAN is independent
of a particular candidate list and additional
background context. We study four differ-
ent configurations of CHOLAN to demon-
strate the impact of candidate generation
step and background knowledge (i.e. en-
tity and sentential context) induced in the
model. CHOLAN achieves a new state of
the art performance on several datasets: T-
REx (ElSahar et al., 2018) for Wikidata;
AIDA-B, MSBC, AQUAINT, and ACE2004
for Wikipedia (Hoffart et al., 2011; Guo and
Barbosa, 2018).

e CHOLAN is the first approach which is
empirically demonstrated to be transferable
across KBs having completely different un-
derlying structure and schema i.e., on semi-
structured Wikipedia and fully structured
Wikidata.

The implementation is publicly available!. The
paper is structured as follows: next section
summarises the related work. Section 3 describes
the problem statement and approach. Section 4
explains the experimental settings followed by
results in 5. We conclude in Section 6.

2 Related Work

Mention Detection (MD): The first attempt to
organise a named entity recognition (NER) task
traced back to 1996 (Grishman and Sundheim,
1996). Since then, numerous attempts have been
made ranging from conditional random fields
(CRFs) with features constructed from dictionar-
ies (Rocktéschel et al., 2013) or feature-inferring
neural networks (Collobert and Weston, 2008).

'nttps://github.com/ManojPrabhakar/
CHOLAN
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Figure 1: CHOLAN has three building blocks: i) BERT-based Mention Detection that identifies entity mentions in
the text ii) Candidate Generation that retrieves a set of entities for the mention iii) Entity Disambiguation: employs
BERT transformer model powered by background knowledge from KB and local sentential context.

Recently, contextual embedding based models
achieve state of the art for NER/MD task (Ak-
bik et al., 2018; Devlin et al., 2019). We point
to the survey by Yadav and Bethard (2018) for de-
tails about NER. Few early EL. models have per-
formed MD task independently (Ceccarelli et al.,
2013; Cornolti et al., 2016).

Candidate Generation (CG): There are four
prominent approaches for candidate generation.
First is a direct matching of entity mentions
with a pre-computed candidate set (Zwicklbauer
et al., 2016). The second approach is the dic-
tionary lookup, where a dictionary of the associ-
ated aliases of entity mentions is compiled from
several knowledge base sources (e.g. Wikipedia,
Wordnet) (Sevgili et al., 2020; Fang et al., 2019;
Cao et al., 2017). The third approach is to gen-
erate entity candidates using empirical probabilis-
tic entity-map p(e|m). The p(e|m) is a pre-
calculated prior probability of correspondence be-
tween positive mentions and entities. A widely
used entity map was built by (Ganea and Hof-
mann, 2017) from Wikipedia hyperlinks, Cross-
wikis (Spitkovsky and Chang, 2012) and YAGO
(Hoffart et al., 2011) dictionaries. End-to-end EL
approaches such as (Kolitsas et al., 2018; Cao
etal., 2018) relies on the entity map built by Ganea
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and Hofmann. The next approach for generat-
ing the candidates is proposed by (Sakor et al.,
2019). Authors build a local KG by expanding en-
tity mentions using Wikidata and DBpedia entity
labels and associated aliases. The local KG can
be queried using BM25 ranking algorithm (Lo-
geswaran et al., 2019). The modular architec-
ture of CHOLAN gives us the flexibility to exper-
iment with several ways of generating entity can-
didates. Hence, we reused candidate list proposed
by (Ganea and Hofmann, 2017) and built a new
CG approach based on (Sakor et al., 2019).

End to End EL: Few EL approaches accomplish
MD and ED tasks jointly. (Nguyen et al., 2016)
propose joint recognition and disambiguation of
named-entity mentions using a graphical model
and show that it improves EL. The work in (Kolit-
sas et al., 2018) also proposes a joint model for
MD and ED. Authors use a bi-LSTM based model
for mention detection and computes the similar-
ity between the entity mention embedding and
set of predefined entity candidates. The work in
(Broscheit, 2019) employs BERT to jointly model
three subtasks of the EL. Author employ an entity
vocabulary of 700K top most frequent entities to
train the model. Work in (Févry et al., 2020) uses
a Transformer architecture with large scale pre-



training from Wikipedia links for EL. For CG, au-
thors train the model to predict BIO-tagged men-
tion boundaries to disambiguate among all enti-
ties. For Wikidata KG, Opentapioca is an entity
linking approach which relies on a heuristic-based
model for disambiguation of the mentions in a text
to the Wikidata entities (Delpeuch, 2020). Arjun
(Mulang et al., 2020) is the most similar to our ap-
proach CHOLAN and trains two independent neu-
ral models for MD and ED. It generates candidates
on the fly using a Wikidata entity alias map. Arjun
does not induce any context in the model.

3 Problem Statement and Approach

We formally define EL task as follows:
given an input sequence of words W =
{wy,we,ws,...,wy}, and a set of entities
denoted by £ from a KG/KB. The EL task aligns
the text into a subset of entities represented as
© : W — & where &' C £. We formulate the
EL task as a three step process in which the first
step is the mention detection (MD). The MD
is a function 6; : W — M, where the set of
mentions is denoted by M = (mj,ma,...,mg)
(k < n) and each mention m, is a sequence
of words starting from ¢ to end position j:
(wi,wiﬂ,...,wj) O < 2,7 < n)
The next task is candidate generation where for
each mention m, a set of candidates C'(m,)=
{ef,...,e}|eF € £} is derived. Finally, the entity
disambiguation (ED) task aims to map each
mention m, € M to the most likely entity from
its list of candidates. In our case, we model the
ED task as a classification task and augment
the input with extra signals as context. For
every candidate entity ¢; € C(m,), the model
estimates a probability p;, thus the most likely
entity is the one with the highest probability as
v = argmaxy, {P(p; | my,cf, W,C)} where W
and C are the input representations respectively
for the given sentence (local context) and the con-
text derived from KG/KB. As such the probability
of score p; is conditioned not only on m; and ¢
but also on W and C as contextual parameters.

m9)

3.1 CHOLAN Approach

The CHOLAN architecture comprises of three
main modules as illustrated in Figure 1.

3.1.1 Mention Detection (MD)

We adapt the vanilla BERT (Devlin et al., 2019)
model for the task of entity mention detection in
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an unstructured text. For each input sentence,
we append the special tokens [CLS] and [SEP]
to the beginning and end of the sentence, respec-
tively. This is then used as input to the model
which learns a representation of the tokens in the
sentence. We then introduce a (logistic regres-
sion based) classification layer on top of the BERT
model to determine named entity tags for each to-
ken following the BIO format (Sang and Meul-
der, 2003). Our BERT' model is initialised us-
ing publicly available weights from the pretrained
BERT 5 45 model and is fine-tuned to the spe-
cific dataset for detecting a mention m;. Please
note that BERT g 45 model is the latest approach
which successfully outperformed in various NLP
tasks, including MD. Thus, we reuse this model
for the completion of our approach.

mi = BERT (w;) (1)

3.1.2 Candidate Generation (CG)

One of the critical focus of CHOLAN is to under-
stand the bottleneck at the CG step. Hence, we
reuse the DCA candidate list and propose a novel
candidate list to understand the candidate genera-
tion impact on overall EL performance.

DCA Candidates: (Yang et al., 2019) adapts
the probabilistic entity-map p(elm) created by
(Ganea and Hofmann, 2017) (cf. section 2) to cal-
culate the prior probabilities of candidate entities
for a given mention. In the probabilistic entity-
map, each entity mention has 30 potential entity
candidates. Yang and colleagues also provide as-
sociated Wikipedia description of each entity. In
CHOLAN, we reuse candidate set C'(m) provided
by (Yang et al., 2019) and further consider associ-
ated Wikipedia entity descriptions.

Falcon Candidates: (Sakor et al., 2019) created
a local index of KG items from Wikidata enti-
ties expanded with entity aliases. For example,
in Wikidata the entity Q332 has the label “Fin-
land”. Sakor and colleagues expanded the en-
tity label with other aliases from Wikidata such as
“Finlande”, “Finnia”, “Land of Thousand Lakes”,
“Suomi”, and “Suomen tasavalta”. We adopt this
local KG index to generate entity candidates per
entity mention in the employed datasets. The lo-
cal KG has a querying mechanism using BM25f
algorithm (cf. equation (2)) and ranked by the
calculated score. We build a predefined candidate
set using the top 30 Wikidata entity candidates in

https://www.wikidata.org/wiki/Q33
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C_Falcon(m) for each entity mention. We en-
rich the candidates set obtained from Wikidata by
the correspondence from Wikipedia. We also add
the first paragraph of Wikipedia as entity descrip-
tions (only if Wikidata entity has corresponding
Wikipedia page) to the hyperlinks. By selecting
two different candidate list, our idea is to under-
stand the impact of candidate generation step on
end-to-end entity linking performance.

e; = BM25"(m;) (2)

3.1.3 Entity Disambiguation (ED)

In order to use the power of the transformers, we
propose “WikiBERT” to perform the ED task. In
WikiBERT, our novel methodological contribution
is the induction of local sentential context and
global entity context at the ED step in a trans-
former model, which has not been used in the re-
cent EL. models. WikiBERT is derived from the
vanilla BERT 3 45 model and fine-tuned on the
two EL datasets (CoNLL-AIDA and T-REx). We
view the ED task as sequence classification task.
The input to our model is a combination of two
sequences. The first sequence .S concatenates the
entity mention m € M and sentence YV where
the sentence acts as a local context. The second
sequence .S2 is a concatenation of entity candidate
e € C(m)/C_Falcon(m)(obtained from Equa-
tion 2) and its corresponding Wikipedia descrip-
tion (entity context ct;). The two sequences are
paired together with special start and separator to-
kens: ([CLS] S; [SEP] So [SEP]). The sequences
are fed into the model which in turn learns the in-
put representations according to the architecture of
BERT (Devlin et al., 2019). Any given token (lo-
cal context word, entity mention, or entity context
words) is a summation of the three embeddings :

i. Token embedding: refers to the embedding
of the corresponding token. We make note
here on specific tokens that comprises the
input representations for our model more
specialised as compared to other fine-tuning
tasks. The entity mention tokens appended at
the beginning of S; and separated from the
sentence context tokens by a single vertical
token bar |, likewise, for the entity context se-
quence So, we prepend the entity title tokens
from the KB before adding the descriptions.

ii. Segment embedding: each of the sequences
receive a single representation such that
the segment embedding for the local con-
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text Er o refers to the representation for Sy
whereas E'rc is the representation of So
iii. Position embedding: represents the position
of the token in an input sequence. A token
appearing at the i-th position in the input se-
quence is represented with E;
To train the model, we use the negative sampling
approach similar to Yamada and Shindo (2019).
The candidate list is generated for each identified
mention. The desired entity candidate item is la-
belled as one, and the rest of the incorrect candi-
date items (from candidate list) are labelled as zero
for a given mention. This process iterates over all
the identified mentions using Equation 1.

The training process fine-tunes BERT using the
contextual input from sentence and Wikipedia re-
sulting into the WikiBERT model (Equation (3)).
The model predicts the relatedness of the two se-
quences by classifying it as either positive or neg-
ative.

€, = WZk"LBERT(mZ, €, Cti) (3)
4 Experimental Setup

4.1 Datasets

For Wikidata EL, we rely on T-REx dataset (ElSa-
har et al., 2018). We adapt the subset of T-REx
used by Mulang et al. (2020) for a fair evalua-
tion setting. The dataset contains 983,257 sen-
tences (786,605 in training and 196,652 in the test
set) accommodating 3,133,778 instances of sur-
face forms which are linked to 85,628 distinct
Wikidata entities. T-REx does not have a sepa-
rate validation set to fine-tune the hyperparame-
ters. Therefore, we further divide the train set into
a 90:10 ratio for training and validation.

For EL over Wikipedia, we adapt standard
dataset CoNLL-AIDA proposed by (Hoffart et al.,
2011) for the training. The dataset contains 18,448
linked mentions in 946 documents, a test set of
4,485 mentions in 231 documents, and a validation
set of 4,791 mentions in 216 documents. For test-
ing, we use AIDA-B (test) dataset from (Hoffart
et al., 2011) and MSNBC, AQUAINT, ACE2004
datasets from (Guo and Barbosa, 2018).

4.2 Models for Comparison

4.2.1 Baselines over Wikidata

We now briefly explain Wikidata baselines.

1. OpenTapioca (Delpeuch, 2020): is a heuristic-
based end-to-end approach that depends on topic
similarity and mapping coherence for linking



Wikidata entity in an input text.

2. Arjun (Mulang et al., 2020): is a pipeline of
two attentive neural networks employed for MD
and ED. Arjun is the SotA, and we take baseline
values from Arjun’s paper.

4.2.2 Baselines over Wikipedia

1. (Hoffart et al., 2011): build a weighted graph of
entity mentions and candidate entities. Then, the
model computes a dense subgraph that predicts the
best joint mention-entity mapping.

2. DBpedia Spotlight (Mendes et al., 2011) pro-
poses a probabilistic model and relies on the con-
text of the text to link the entities.

3. KEA (Steinmetz and Sack, 2013) employs a
linguistic pipeline coupled with metadata gener-
ated from several Web sources. The candidates are
ranked using a heuristic approach.

4. Babelfy (Moro et al., 2014) is a graph-based
approach that uses loose identification of candi-
date meanings coupled with the densest subgraph
heuristic to link the entities.

5. Piccinno and Ferragina (2014): to solve en-
tity linking, authors focus on mentions recognition
and annotations pruning to propose a voting algo-
rithm for entity candidates using PageRank.

6. Kolitsas et al. (2018) train MD and ED
task jointly using word and character-level em-
beddings. The model reuses candidate set from
(Ganea and Hofmann, 2017) and generates a
global voting score to rank the entity candidates.
7. Peters et al. (2019) induce multiple KBs into
a large pretrained BERT model with a knowledge
attention mechanism.

8. Broscheit (2019) trains MD, CG, ED task
jointly using a BERT-based model. Besides, an
entity vocabulary containing 700K most frequent
entities in English Wikipedia was utilised.

9. Févry et al. (2020) consider large scale pretrain-
ing from Wikipedia links as the context for a trans-
former model to predict KB entities.

In Wikipedia-based experiments, we report val-
ues from (Févry et al.,, 2020) and (Kolitsas
et al., 2018) for AIDA-B test set. On MSNBC
(MSB), AQUAINT (AQ), and ACE2004 (ACE)
test datasets, only (Kolitsas et al., 2018), DBpedia
Spotlight (Mendes et al., 2011), KEA (Steinmetz
and Sack, 2013), and Babelfy (Moro et al., 2014)
report the values and we compare against them.
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Hyper-parameters Value

Epochs 4

Batch size 8

Learning rate 2¢7°
Learning rate decay linear

Adam (1 0.9

Adam [2 0.999

dropout 0.1

Loss Function Cross-Entropy
Classifier Softmax

Table 1: Hyper-parameters during fine-tuning.

4.3 CHOLAN Configurations

We configure CHOLAN model applying various
candidate generation approaches detailed below.
CHOLAN-Wikidata: we train the model using T-
REXx dataset and employ C'_Falcon(m) candidate
set. The ED model (WikiBERT) is fed with the
sentential context but not with entity description
as not all Wikidata entities have a corresponding
Wikipedia entity.

CHOLAN-Wiki+FC: is trained on CoNLL-
AIDA (Hoffart et al., 2011). For CG step, we em-
ploy Falcon candidate set C_Falcon(m). Here,
the ED model (WikiBERT) is only fed with the
sentential context.

CHOLAN-Wiki+DCA: We train the MD and ED
models on CoNLL-AIDA. The CG step involves
DCA candidate set C'(m). During ED step (Wik-
iBERT), Wikipedia descriptions associated with
each entity is fed along with sentential context.
CHOLAN: inherits CHOLAN-Wiki+FC but in
addition, Wikipedia entity description is induced
into the ED model (WikiBERT).

4.4 Metrics and Hyper-parameters

On Wikidata-based experiments, we employ stan-
dard metrics of accuracy i.e., precision (P), recall
(R), and F-score (F) same as (Mulang et al., 2020).
For Wikipedia-based datasets, we use Micro-F1
score in strong matching setting (Kolitsas et al.,
2018). The strong matching needs exactly pre-
dicting the gold mention (i.e. target entity men-
tion) boundaries and its corresponding entity an-
notation in the KB. To compare the recalls of
two CG approaches, we report the performance on
gold recall. Gold recall is the percentage of entity
mentions for which the candidate set contain the
ground truth entity (Yao et al., 2019).

We have implemented all our models in PyTorch?

*https://pytorch.org/
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and optimized using Adam (Kingma and Ba,
2015). We used the pre-trained BERT models
from the Transformers library (Wolf et al., 2019).
We ran all the experiments on a single GeForce
GTX 1080 Ti GPU with 11GB size. Table 1 out-
lines the hyper-parameters used in the fine-tuning
on both the datasets. We followed the standard set-
tings suggested by (Devlin et al., 2019). The av-
erage run time is 9.31 hours/epoch for CHOLAN
and without description, it was 7.23 hours/epoch.

5 Results

We study the following research question:what is
the impact of each sub-task (aka component) on
the overall outcome of the transformer-based en-
tity linking approach? We further investigate a
sub-research question: how do the external con-
text and the candidate generation step impact the
overall performance of CHOLAN? Our every ex-
periment systematically studies the research ques-
tions in different settings.

Model P R F
Delpeuch 2020 40.7 829 57.9
Mulang et al. 2020 714 712 71.3

CHOLAN-Wikidata 75 76 754

Table 2: Comparison on T-REx test set for Wikidata
EL. Best values in bold.

5.1 Results on Wikidata dataset

Table 2 summarises CHOLAN performance on T-
REx dataset. CHOLAN-Wikidata configuration
outperforms the baselines. We dig deeper into our
reported values. We observe that for MD task,
our F-score is 94.3 (compared to 77 F-score of
Arjun (Mulang et al., 2020)). However, the gold
recall for CG step is 81.2. We generate the en-
tity candidates using an information retrieval ap-
proach (BM25' algorithm) to get the top 30 candi-
dates based on the confidence score. The Wiki-
data KG is challenging, and many labels share
the same name. It contributes to a large loss in
the F-score for the CG step. For instance, the
entity mention “National Highway” matches ex-
actly with four Wikidata ID labels while 2,055
other entities contain the full mention in their la-
bels. Please note that we did not perform retrain-
ing of (Kolitsas et al., 2018) (SOTA on Wikipedia
EL) on the T-REx dataset since we determined that
the model is tightly coupled and relies on pre-
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computed Wikipedia candidate list from (Ganea
and Hofmann, 2017).

5.1.1 Ablation Study on Wikidata

We study the impact of local context on the per-
formance of CHOLAN. Therefore, we exclude the
sentence as input in the ED step at training and
testing time. Hence, the inputs to the ED model
are only entity mention and the entity candidates
gained from the CG step. We observe that the per-
formance drops when the local sentential context
is not fed (cf. Table 3). It justifies our choice to
feed the model by the sentence during the ED task.

Model P R F

CHOLAN-Wikidata 75 76 754
CHOLAN-Wikidata (WLCT) 72 735 727

Table 3: The ablation study on T-REXx test set for Wiki-
data EL. Best values in bold. WLC' denotes model
without local context. When the local sentential con-
text is excluded from ED, the performance drops.

5.2 Results on Wikipedia datasets

Table 4 reports the performance of CHOLAN’s
configurations on AIDA-B test set. The first
configuration is "CHOLAN-Wiki+ FC” in which
MD and ED models are trained using CoNLL-
AIDA. We notice a clear jump in the perfor-
mance. We then replaced the Falcon candidate
list C'_F'alcon(m) with DCA candidates C'(m) re-
sulting into "CHOLAN-Wiki+ DCA”. In DCA
candidates, the description of entities is attached.
The performance is increased when an additional
background knowledge as an entity description is
fed. Our next configuration is CHOLAN where we
attached Wikipedia entity descriptions in Falcon
candidate list C'_F'alcon(m) (as a modification of
”CHOLAN-Wiki+ FC”). This setting outperforms
all the existing baselines and previous CHOLAN
configurations. Our experiments illustrate the im-
pact of CG step and background knowledge on
end-to-end EL performance. The improvement of
CHOLAN continues to the other three test datasets
where the jump is significantly higher compared
to the baselines (cf. Table 5). Reported values in
Table 5 also approves transferability of CHOLAN
when we apply cross-domain experiments.

5.2.1 Ablation Study on Wikipedia

We conducted three ablation studies to under-
stand the behaviour of CHOLAN’s configura-
tions over Wikipedia datasets. The first study



Model Micro F1
Hoffart et al. 2011 72.8
Mendes et al. 2011 57.8
Steinmetz and Sack 2013 42.3
Moro et al. 2014 48.5
Piccinno and Ferragina 2014 73
Kolitsas et al. 2018 824
Peters et al. 2019 73.7
Broscheit 2019 79.3
Févry et al. 2020 76.7
CHOLAN-Wiki+ FC 75.1
CHOLAN-Wiki+ DCA 71.5
CHOLAN 83.1

Table 4: Comparison on AIDA-B. Best value in bold
and previous SOTA value is underlined.

Model MSB AQ ACE
Mendes et al. 2011 40.6 452 60.5
Steinmetz and Sack 2013 30.9 359 40.3
Moro et al. 2014 39.7 358 17.8
Kolitsas et al. 2018 724 404 68.3
CHOLAN-Wiki+ FC 77.8 70 85.7
CHOLAN-Wiki+ DCA 783 759 71.3
CHOLAN 834 76.8 86.8

Table 5: The micro F1 scores are listed from the com-
parative study over three datasets (out of domain). The
model is trained over CoNLL-AIDA dataset. Best
value in bold and previous SOTA value is underlined.

is to calculate the Gold recall values for vari-
ous datasets. CHOLAN uses the candidates from
C_Falcon(m) candidate set for each entity men-
tion. While generating the candidate set from lo-
cal KG of (Sakor et al., 2019) we observe a drop in
the Gold recall as reported in Table 6. CG plays a
crucial role in trading off precision and recall. We
conclude that more robust CG approaches likely
impact overall performance. The second ablation
study is about to calculate the performance of our
configurations for ED step, i.e., running WikiB-
ERT in isolation. Here, we assume that all entities
are truly recognised; thus, our focus of the study
is the ED model. We report the impact of various
candidate generation approaches on the ED model
in Table 7. The significant jump in the perfor-
mance from "CHOLAN-Wiki+FC Vs CHOLAN”
contributes to the additional background knowl-
edge provided in CHOLAN as entity candidate
descriptions. The third ablation study tests the
impact of sentential context fed into two config-
urations on a Wikipedia dataset. Table 8 reports
the achieved performance after excluding sentence
as the additional context. Obviously, the perfor-
mance decreases. The model shows similar be-
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haviour on T-REx in Table 3. These observations
confirm our hypothesis as the ED model is en-
hanced using additional contexts.

Model AIDA-B  MSB AQ ACE
Falcon Candidates 94 938 853 973
DCA Candidates 98.3 985 942 90.6

Table 6: Gold Recall for Candidate Generation tech-
niques over Wikipedia test datasets.

Model Micro F1
Kolitsas et al. 2018 83.8
CHOLAN-Wiki+ FC 78.4
CHOLAN-Wiki+ DCA 79.1
CHOLAN 85.7

Table 7: Comparison on AIDA-B for ED. Best score in
bold and previous SOTA value is underlined.

Model Micro F1
CHOLAN-Wiki+ DCA 71.5
CHOLAN-Wiki+ DCA (WLCh) 71.2
CHOLAN 83.1
CHOLAN (WLCH) 79.6

Table 8: Ablation study on AIDA-B. We observe that
when local sentential context is removed from ED step,
the performance drops. Best values in bold. WLCT
denotes model without local context.

6 Conclusions

In the last two years, the NLP research commu-
nity has extensively tried transformer-based mod-
els for the EL task. However, the performance re-
mained lower than Kolitsas et al. (2018). This pa-
per combines the traditional software engineering
principle of modular architecture with the context-
induced transformers to effectively solve the EL
task. Our reason to deviate from an end-to-end ar-
chitecture was to provide full flexibility to our sys-
tem in terms of candidate generation list, underly-
ing KG, and induction of the context at the ED
step. We attribute CHOLAN’s outperformance to
the following reasons: 1) the modular architec-
ture, which brings flexibility and interoperability
as CHOLAN can treat each task independently.
Kolitsas et al. (2018) reports that shifting towards
joint modelling of MD and ED tasks helps miti-
gate error propagation from MD to ED. However,
the performance of BERT g 45 for the MD task is
significantly high (92.3 on AIDA-B and 94.3 F1-



score on T-REX calculated by us) remarkably re-
ducing the errors in MD. CHOLAN leverages this
capability in the MD subtask, placing more focus
on CG and ED tasks. 2) The flexibility in archi-
tecture further permits us to induce sentence and
entity descriptions as additional contexts. Further-
more, using candidate list in plug and play manner
has resulted in a significant increase in the per-
formance. In earlier transformer approaches, the
implementation is monolithic and context is not
utilised. There are scopes for improvement in our
approach. Wu et al. (2019a) introduces a novel CG
method that retrieves candidates in a dense space
defined by a bi-encoder and can be used as alter-
nate CG approach. We aim for scaling CHOLAN
to multilingual entity linking as a viable next step.
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