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Abstract

Images are core components of multi-modal
learning in natural language processing (NLP),
and results have varied substantially as to
whether images improve NLP tasks or not.
One confounding effect has been that previous
NLP research has generally focused on sophis-
ticated tasks (in varying settings), generally ap-
plied to English only. We focus on text classi-
fication, in the context of assigning named en-
tity classes to a given Wikipedia page, where
images generally complement the text and the
Wikipedia page can be in one of a number of
different languages. Our experiments across a
range of languages show that images comple-
ment NLP models (including BERT) trained
without external pre-training, but when com-
bined with BERT models pre-trained on large-
scale external data, images contribute nothing.

1 Introduction

Combining data from multiple modalities (e.g.,
text, images, categorical metadata, or user inter-
action features) has become commonplace in artifi-
cial intelligence. In NLP, examples include multi-
modal machine translation (MMT) (Elliott et al.,
2016; Elliott, 2018), visual question answering
(VQA) (Goyal et al., 2017; Johnson et al., 2017), vi-
sual commonsense reasoning (VCR) (Zellers et al.,
2019; Geva et al., 2019), and multi-modal pre-
training (Lu et al., 2019; Chen et al., 2019).

While tasks such as VQA and VCR are multi-
modal in nature, there has been research on tradi-
tionally text-based tasks such as text classification
(Shen et al., 2020; Huang, 2018) and word em-
bedding learning (Bruni et al., 2014) which has
demonstrated that the addition of images boosts
performance. At the same time, however, there is
evidence of images providing no additional infor-
mation, e.g. Caglayan et al. (2019) show that MMT
models learn to ignore visual content when trained

on a parallel corpus of image captions (Elliott et al.,
2016). These mixed findings raise the question of
when visual context is actually useful in NLP.

In this work, we take a first step towards an-
swering this question, in focusing on the task of
text classification, which has traditionally been ad-
dressed using textual data only. We identify two
gaps in the literature on multi-modal NLP: (1) no
results for pre-trained language models (LMs); and
(2) no results for languages other than English. The
first is important in terms of updating the research
relative to state-of-the-art approaches, while the
second relates to the question of how “language-
independent” systems actually are (Bender, 2011).
We fill these gaps via a text classification task over
Wikipedia articles (Sekine et al., 2019). Our main
findings are: (1) while images do help in a tradi-
tional supervised learning setting, their utility dis-
appears almost completely when combined with a
pre-trained LM; and (2) this phenomenon is not re-
stricted to English, and generalises across a variety
of languages from different families.

2 Task Description

This research is couched in the context of a
shared-task dataset released by the SHINRA
project (Sekine et al., 2019), aimed at classifying
Wikipedia pages into fine-grained entity classes.1

We chose this benchmark as many Wikipedia docu-
ments contain images, and data is provided for a to-
tal of 29 typologically-diverse languages.2 The task
is not trivial as it involves classifying Wikipedia
documents into a set of 219 classes, with the possi-
bility of multiple labels for a given document.3

1http://shinra-project.info/
shinra2020ml/?lang=en

2Data is also provided for Greek but we do not include it in
our experiments because there was no officially preprocessed
data available for this language.

3See: http://ene-project.info/ene8/
?lang=en

http://shinra-project.info/shinra2020ml/?lang=en
http://shinra-project.info/shinra2020ml/?lang=en
http://ene-project.info/ene8/?lang=en
http://ene-project.info/ene8/?lang=en


43

hi th ar da bg ro he tr id vi
30,546 59,790 73,053 86,237 89,016 92,001 96,433 111,591 115,642 116,279

hu cs no ca fi uk fa sv ko nl
120,294 125,958 135,934 139,031 144,749 167,236 169,052 180,947 190,806 199,982

pt pl ru es zh it de fr en
217,895 225,551 253,011 257,834 267,106 270,192 274,731 318,827 439,351

Table 1: Statistics of annotated data for each language.

The number of annotated pages for each lan-
guage in the SHINRA dataset is shown in Table 1
(sorted according to the number of pages). In addi-
tion to these annotated datasets — which form the
basis of the experiments in this paper — there is a
large amount of evaluation data for each language.
In an evaluation campaign over these evaluation
datasets, we achieved first place across 4 languages:
English, Italian, Spanish and Catalan (Yoshikawa
et al., 2020).

The SHINRA dataset contains only textual in-
formation from the original documents. In order
to add images, we extract the image links from the
English Wikipedia dump of June 20204 using the
zim library.5 The extracted images are then linked
with image links in the source documents in the
SHINRA dataset,6 resulting in about 88% pages
being augmented with images (noting that images
are generally shared across Wikipedia pages for
different languages other than English).

Out of the 30 languages in the original SHINRA
dataset, we experiment primarily with Arabic
(“ar”), English (“en”), Finnish (“fi”), Hindi (“hi”),
and Mandarin Chinese (“zh”), selected to span five
different language families and where the dataset
size is relatively large. From the SHINRA data,
we randomly sample 30k documents for each lan-
guage, and construct a 80%/10%/10% fixed split
for training/development/test in each language. We
use a maximum of four images for each document.7

3 Baseline Experiments

Our first set of experiments is aimed at evaluating
the empirical utility of images in the absence of
pre-trained models. This is in line with previous

4https://dumps.wikimedia.org/other/
kiwix/zim/wikipedia/wikipedia_en_all_
maxi_2020-06.zim

5https://github.com/openzim/libzim
6Because it is quite difficult to find correspondences be-

tween images and texts (Hessel et al., 2019), image links
extracted are “document-level”, instead of “sentence-level”.

7When a document has less than 4 images, we pad the
representation with blank images.

work over similar text classification tasks (Shen
et al., 2020; Huang, 2018).

Model and Features As our basic learner, we
use a linear-kernel support vector machine (Cortes
and Vapnik, 1995, SVM). For the textual inputs,
we experiment with three representations: (1) a bi-
nary bag-of-words (“BOW”); (2) sent2vec (“S2V”:
Pagliardini et al. (2018)); and (3) BERT (Devlin
et al., 2019). In this set of experiments, we train
both S2V and BERT from scratch on the SHINRA
training data only. We simply use the suggested
configuration provided by developers, without any
task-specific hyperparameter tuning. For BERT,
we use the [CLS] token as the document represen-
tation. For each document, an image representation
for each of the (up to) four images is generated.
Specifically, following standard practice in the com-
puter vision community, we firstly use the SIFT
algorithm (Lowe, 1999) to extract hundreds of fea-
tures, then use the K-means algorithm to cluster
these features and generate frequency histograms,
which are so-called visual bag-of-words (VBoW),
and finally use an SVM to classify these histogram
features. We also experiment with Faster R-CNN
(Ren et al., 2015), pre-trained on Visual Genome
(Krishna et al., 2017), following the settings of An-
derson et al. (2018). We ensure the dimensionality
of input features for the SVM and Faster R-CNN
are the same (both are 1, 024), to remove this pos-
sible representational confound. Note that this is
the externally pre-trained image model across all
experiments, and that none of the text models in
this first set of experiments involve pre-training
on external resources (something we return to in
Section 4).

Results and Analysis We report F1 scores over
the test set in Table 2. The main finding is that
images improve performance in all settings, for all
languages and both image representations. S2V
and BERT both perform worse than the simple bag
of words, because of the limited training data in
each case. We would, of course, expect the models

https://dumps.wikimedia.org/other/kiwix/zim/wikipedia/wikipedia_en_all_maxi_2020-06.zim
https://dumps.wikimedia.org/other/kiwix/zim/wikipedia/wikipedia_en_all_maxi_2020-06.zim
https://dumps.wikimedia.org/other/kiwix/zim/wikipedia/wikipedia_en_all_maxi_2020-06.zim
https://github.com/openzim/libzim
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Text Image Language

ar en fi hi zh

BOW — 65.1 72.3 72.1 67.1 74.7
BOW SIFT+V 68.2 74.1 73.2 69.0 76.0
BOW R-CNN 67.1 73.0 72.7 68.7 75.3
S2V — 63.6 68.1 63.1 63.1 72.0
S2V SIFT+V 66.0 70.2 66.3 66.9 72.9
S2V R-CNN 65.4 69.0 65.0 65.2 72.3
BERT — 59.1 65.3 51.9 60.5 68.6
BERT SIFT+V 62.9 68.7 54.2 63.1 70.9
BERT R-CNN 61.4 67.3 52.7 62.9 70.0

Table 2: F1 score of the SVM models without external
pre-training of the textual models, across the five lan-
guages. “SIFT+V” refers to the combination of SIFT
and Visual Bag-of-Words features. “R-CNN” corre-
sponds to features extracted from Faster R-CNN.

Figure 1: VL-BERT architecture applied to the
SHINRA2020-ML task. The “opening text” segment
are additional textual data obtained from the documents
that are optional in our experimental setting.

to perform better with more extensive pre-training,
as we return to explore in Section 4, but the focus
here is on training of the textual models within the
bounds of the training dataset.

Strikingly, the SIFT + Visual Bag-of-Words rep-
resentation results in better performance than the
pre-trained Faster R-CNN. A potential explanation
is that Faster R-CNN is trained in a supervised way
using Visual Genome (unlike the self-supervised
setting of pre-trained BERT, for instance), over a
set of labels that is not particularly well aligned
with SHINRA (SHINRA includes many abstract
classes such as RELIGION, NATIONALITY, and
OFFENCE, whereas Visual Genome is focused
on physical objects and attributes, and relations
between objects; even among physical objects,
SHINRA distinguishes between MEDICAL INSTI-
TUTION, PUBLIC INSTITUTION, and RESEARCH

INSTITUTE, most of which are represented simply
as BUILDING in Visual Genome).

4 Adding a Pre-trained Textual Encoder

We next turn to a setting where we employ pre-
trained textual models. This not only better reflects
the state-of-the-art in text classification, but also
allows us to investigate the effect of images under
such conditions.

Model As the main backbone, we employ
VL-BERT (Su et al., 2020), which uses a trans-
former to combine textual inputs and image em-
beddings within a BERT-style transformer, and
has been shown to perform well on multimodal
tasks. The visual embeddings are obtained from
the combination of pre-trained Faster R-CNN and
ResNet-101 (He et al., 2016), as illustrated in Fig-
ure 1. For the text modality, the input consists of
two parts: the document title, and the opening text
of the Wikipedia page in the form of the first 300
tokens. The token embeddings are obtained from a
pre-trained BERT model, which is fine-tuned dur-
ing training.8 The full model is plugged into a one-
layer feed-forward neural network (FFNN) with
a 1,024d hidden layer, and training is performed
by minimizing the cross-entropy over the SHINRA
category labels. The model predict one label for
each page. For the case of multi-label inputs, we
choose one randomly as the “correct” label.

Results and Analysis Table 3 shows the perfor-
mance of VL-BERT with different combinations
of textual (document title = “T” and optionally the
document body = “B”) and image inputs, based on
pre-trained BERT (“BERTpre”).

The first thing to notice is that the image-only
model is well above the majority baseline, but well
below the best multimodal model without an exter-
nally pre-trained text encoder from Table 2. This
shows that images provide useful information for
document classification, consistent with the earlier
finding that images enhance the various text-only
models. However, when combined with the ex-
ternally pre-trained BERTpre (over either the title
only, or the title + document body), the utility of
images is marginal at best. That is, the large-scale
pre-training of BERTpre both boosts overall perfor-
mance, but much more surprisingly, removes any
advantage from including images.

8We use bert-large-uncased for English, and
bert-base-multilingual-uncased for the other
languages, as obtained from https://huggingface.
co/transformers/pretrained_models.html

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
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Text Image ar en fi hi zh

— X 50.6 50.1 53.9 46.1 44.1
T — 70.9 73.1 71.1 66.2 76.5
T X 70.8 73.2 71.2 66.7 76.7
T+B — 82.8 88.7 87.7 85.0 88.6
T+B X 82.6 88.8 88.0 84.8 88.0

Best non pre-trained 68.2 74.1 73.2 69.0 76.0
Majority class 21.5 22.2 28.1 19.1 21.7

Table 3: F1 scores for pre-trained VL-BERT. “T” =
document title, and “T+B” = document title + body. We
reproduce the best non-trained For comparison, we re-
state the result for the best non pre-trained model from
Table 2, along with the majority class baseline.

Influence of the size of training data One hy-
pothesis is that images are not useful due to the size
of the training data (24k instances), and in lower-
resource scenarios will improve performance. To
test this, we perform additional experiments vary-
ing the training data size, ranging from 4k to 24k
training instances, in steps of 4k.

Figure 2 plots the F1 performance as the training
set size increases. While we observe substantial
improvements for the image-only approach (the
bottom curve), the differences in the models with
textual data are modest, and even in small-data
settings, there is no real advantage in including
images. We also separated the test data in terms
of the number of images, and found no differences.
See the Supplementary Material for details.

Results on the full SHINRA dataset In the pre-
vious experiments, we fixed the dataset size for
all languages to control for training data volume.
However, the SHINRA dataset includes many more
documents for many of the languages. As a final
experiment, we apply the VL-BERT models to the
full dataset available for each language. The de-
velopment and test data are also different in this
configuration, so the results are not directly compa-
rable with Tables 2 and 3.

In Table 4, we present results for BERTpre, and
mostly corroborate our earlier findings: while we
do see improvements when including images in the
case of the titles only, their utility decreases when
we add the body of text for each document.

What caused the difference? Comparing the re-
sults from Sections 3 and 4, we see two main differ-
ences: the presence of external pre-training (BERT
vs. BERTpre), and the model architecture. To de-
termine whether the model architecture is a cause
of the performance difference, we train VL-BERT

Text Image ar en fi hi zh

— X 85.2 61.2 72.4 45.6 58.6
T — 84.4 77.4 75.5 66.6 78.5
T X 86.9 79.1 75.8 67.3 80.7
T+B — 94.7 90.3 91.7 85.8 89.8
T+B X 94.7 90.2 91.6 85.4 90.2

Table 4: Comparison of F1 scores over the full
SHINRA dataset for BERTpre.

Text Image ar en fi hi zh

T+B — 56.7 61.8 49.8 57.2 66.1
T+B X 58.6 63.2 52.4 60.1 68.7

Table 5: Comparison of F1 scores for VL-BERT with-
out external pre-training of BERT.

from scratch, using only text and images from the
24k training set used in Section 3.

The results in Table 5 shows that even for
VL-BERT, a neural-based model that is much
more complex than the linear-kernel SVM, when
BERTpre is not used, images provide a gain in per-
formance. Hence, having an externally pre-trained
text encoder is the predominant determinant of
whether visual content has utility in NLP tasks.

5 Discussion and Conclusion

We investigated the utility of images as a supple-
mentary input for a text classification task, and
found that although images have empirical utility
in traditional supervised learning, when externally
pre-trained language models are utilised, any ad-
vantage from the visual modality disappears. The
results were remarkably consistent across different
languages and different volumes of training data.

It is important to distinguish between “inher-
ently multi-modal tasks” (e.g. VQA) and “po-
tentially multi-modal tasks” (e.g. text classifica-
tion) in drawing any broader conclusions about the
(in)effectiveness of images. Here, a “potentially
multi-modal task” in NLP means that the primary
modality is text and the task is defined based on
that single data modality, but there is potentially the
option to include extra modalities such as images.

There remain a lot of open questions in more
fully determining the (in)effectiveness of images
for NLP tasks, even for text classification, such as:

• Due to the seeming redundancy between tex-
tual and visual representations of Wikipedia
pages, is there any utility in multi-modal in-
puts for simple NLP tasks such as text clas-
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(e) Chinese

Figure 2: Model performance with different sizes of training corpus, with and without images (±I) and with and
without text (in the form of the title [“T”] and optionally document body [“B”]).

sification in the era of large-scale pre-trained
language models such as BERT and GPT-3
(Brown et al., 2020)?

• What performances do humans achieve in the
single-modal setting and multi-modal setting?
Can we get some insights by comparing the
(potentially) different performances between
humans and computers?

• Apart from images, what other modalities and
forms of input (e.g. audio) could be effective
in building better NLP models?

• Although pre-trained image models (e.g.
Faster R-CNN) contribute a lot for vision

tasks (e.g. object detection) and multi-modal
tasks (e.g. VQA), for “pure” NLP tasks (e.g.
text classification), they appear to work no
better than traditional image representation
feature extractors (e.g. SIFT). Why?

• In our experiments, we use at most 4 images
for each page. Could instance selection en-
hance image utility?

• We focused on the text classification task,
in classifying Wikipedia pages into differ-
ent entities. Are our observations NLP task-
independent?
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