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Abstract

Current models for Word Sense Disambigua-
tion (WSD) struggle to disambiguate rare
senses, despite reaching human performance
on global WSD metrics. This stems from a
lack of data for both modeling and evaluating
rare senses in existing WSD datasets. In this
paper, we introduce FEWS (Few-shot Exam-
ples of Word Senses), a new low-shot WSD
dataset automatically extracted from example
sentences in Wiktionary. FEWS has high
sense coverage across different natural lan-
guage domains and provides: (1) a large train-
ing set that covers many more senses than pre-
vious datasets and (2) a comprehensive eval-
uation set containing few- and zero-shot ex-
amples of a wide variety of senses. We es-
tablish baselines on FEWS with knowledge-
based and neural WSD approaches and present
transfer learning experiments demonstrating
that models additionally trained with FEWS
better capture rare senses in existing WSD
datasets. Finally, we find humans outperform
the best baseline models on FEWS, indicating
that FEWS will support significant future work
on low-shot WSD.

1 Introduction

Word Sense Disambiguation (WSD) is the task of
identifying the sense, or meaning, that an ambigu-
ous word takes in a specific context. Recent WSD
models (Huang et al., 2019; Blevins and Zettle-
moyer, 2020; Bevilacqua and Navigli, 2020) have
made large gains on the task, surpassing the esti-
mated 80% F1 human performance upper bound on
WordNet annotated corpora (Navigli, 2009). De-
spite this breakthrough, the task remains far from
solved: performance on rare and zero-shot senses
is still low, and in general, current WSD models
struggle to learn senses with few training exam-
ples (Kumar et al., 2019; Blevins and Zettlemoyer,

C: I liked my friend’s last status...
S1: to enjoy... [or] be in favor of.

X S2: To show support for, or approval of,
something on the Internet by marking it
with a vote.

C: A transistor-diode matrix is composed of
vertical and horizontal wires with a transistor
at each intersection.
X S1: A grid-like arrangement of electronic

components, especially one intended for
information coding, decoding or storage.
S2: A rectangular arrangement of
numbers or terms having various uses
[in mathematics].

Figure 1: Sample contexts (C) from FEWS with am-
biguous words and a subset of candidate sense defini-
tions (S). FEWS covers a wide range of senses, includ-
ing new senses and domain-specific senses.

2020). This performance gap stems from limited
data for rare senses in current WSD datasets, which
are annotated on natural language documents that
contain a Zipfian distribution of senses (Postma
et al., 2016).

More generally, since each word has a different
set of candidate senses and new senses are regularly
coined, it is almost impossible to gather a large
number of examples for each sense in a language.
This makes the few-shot learning setting partic-
ularly important for WSD. We introduce FEWS
(Few-shot Examples of Word Senses), a dataset
built to comprehensively train and evaluate WSD
models in few- and zero-shot settings. Overall, the
contributions of FEWS are two-fold: as training
data, it exposes models a broad array of senses in a
low-shot setting, and the large evaluation set allows
for more robust evaluation of rare senses.

FEWS achieves high coverage of rare senses by
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Data Split # Examples # Tokens # Annot. # Sense Types # Word Types Ambiguity
Overall 121,459 3,259,240 131,278 71,391 35,416 5.62
Train 87,329 2,551,358 96,023 52,928 30,450 4.98
Ext. Train 101,459 2,683,345 111,278 61,391 31,937 5.71
Dev 10,000 287,673 10,000 10,000 8,682 5.09

Few-shot 5,000 149,791 5,000 5,000 4,417 4.77
Zero-shot 5,000 137,882 5,000 5,000 4,661 5.41

Test 10,000 288,222 10,000 10,000 8,709 5.10
Few-shot 5,000 149,384 5,000 5,000 4,449 4.71
Zero-shot 5,000 138,838 5,000 5,000 4,666 5.49

Table 1: FEWS data statistics. The development and test sets are balanced across senses and split evenly between
few-shot examples (with support in the training set) and zero-shot examples. The extended training set (Ext. Train)
adds short examples written by Wiktionary editors as additional training data.

automatically extracting example sentences from
Wiktionary definitions. Wiktionary is an apt data
source for this purpose, containing examples for
over 71,000 senses (Table 1). Not only is this sense
coverage higher than existing datasets (e.g., Sem-
Cor, the largest manually annotated WSD dataset,
only covers approximately 33,000 senses (Miller
et al., 1993)), it also extends to senses related to
new domains (Figure 1).

We establish performance baselines on FEWS
with both knowledge-based approaches and a re-
cent neural biencoder model for WSD (Blevins and
Zettlemoyer, 2020). We find that the biencoder,
despite being the strongest baseline on FEWS, still
underperforms human annotators, particularly on
zero-shot senses where the biencoder trails by more
than 10%. We also present transfer learning experi-
ments and find adding FEWS as additional training
data improves performance on all but the most fre-
quent senses (MFS) in the WSD Evaluation Frame-
work (Raganato et al., 2017); this suggests that
future improvements on FEWS could generalize
other WSD benchmarks. FEWS is available at
https://nlp.cs.washington.edu/fews.

2 Related Work

WSD is a long-standing NLP task and is the focus
of many datasets. The current de facto benchmark
for modeling English WSD is the WSD Evaluation
Framework (Raganato et al., 2017), which includes
the SemCor dataset (Miller et al., 1993) as train-
ing data and consolidates a number of evaluation
sets (Pradhan et al., 2007a; Palmer et al., 2001;
Snyder and Palmer, 2004; Navigli et al., 2013;
Moro and Navigli, 2015) into a standardized evalu-
ation suite. These datasets are annotated with the
senses (known as synsets) from Wordnet, a man-
ually constructed ontology of semantic relations

(Miller et al., 1993).
Most existing datasets for WSD, including those

in the WSD Evaluation framework and others like
Pradhan et al. (2007b), are annotated on natural lan-
guage documents that contain a Zipfian distribution
of word senses (Kilgarriff, 2004). This data source
causes these datasets to have low coverage of rare
senses, leading to worse performance on these less
common senses (Postma et al., 2016; Kumar et al.,
2019). In contrast, we use examples sentences
from Wiktionary as an alternative source of text
for WSD data with FEWS. This means that FEWS
has a more uniform sense distribution, providing
more balanced coverage across different senses of
words.

Wiktionary has previously been used as a re-
source for WSD research. Most work has investi-
gated mapping Wiktionary senses onto WordNet
synsets (Meyer and Gurevych, 2011; Matuschek
and Gurevych, 2013); other work has learned sim-
ilar mappings for Wikipedia articles (Mihalcea
(2007); Navigli and Ponzetto (2012); inter alia).
More similar to our work, Henrich et al. (2012)
and Segonne et al. (2019) mine WSD examples
from Wiktionary to augment labeled WSD data for
non-English languages. However, FEWS is the
first dataset specifically designed to evaluate zero
and few-shot learning with the balanced dictionary
sense distribution.

3 FEWS: Low-shot Learning for WSD

FEWS (Few-shot Examples of Word Senses) is a
new dataset for learning to do low-shot WSD.1 It
is created with example contexts drawn from Wik-
tionary, an online collaborative dictionary.2 Since

1We use the term low-shot as an umbrella term for few-
and zero-shot learning.

2https://en.wiktionary.org/

https://nlp.cs.washington.edu/fews
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Figure 2: Comparison of sense coverage for five words in the Semcor and FEWS training corpuses.

Wiktionary is curated by volunteers, the data is
manually annotated and high quality, and there is
no additional annotation cost to construct FEWS.
Furthermore, using example contexts from a dic-
tionary allows FEWS to cover many senses under-
represented in existing WSD datasets, such as rare
senses of words or senses pertaining to specific
domains. However, we note that due to the crowd-
sourced nature of the examples in Wiktionary and
the subjectivity of fine-grained sense distinctions,
inconsistencies in the underlying data may intro-
duce some annotation errors into FEWS.

Examples of the data in FEWS are shown in Fig-
ure 1. In FEWS, each example context contains
one or more instances of the ambiguous target word
and is labeled with the sense (and corresponding
definition) that describes that word as used in the
context; this is in contrast to all-words WSD, where
many of the content words in the context are anno-
tated.

3.1 Dataset Creation
To create FEWS, we extracted all of the definitions
for content words (nouns, verbs, adjectives, and ad-
verbs) and example contexts associated with those
definitions from a checkpointed version of English
Wiktionary.3 While processing the Wiktionary data,
we collected two types of contexts: (1) quotations
(93% of extracted examples), which are quotations
of natural language text found by Wiktionary con-
tributors that contain the target word used with the
relevant sense, and (2) illustrations (7%), which
are short sentences or fragments written by contrib-
utors to illustrate the word sense in context. The
target words in each context are marked by the Wik-

3We focus English senses and filter out definitions for
words in other languages; however, this data collection process
could be expanded to other languages in Wiktionary.

tionary formatting metadata; examples where no
words are marked or the marked word differs too
much from the base form of the dictionary entry
are discarded.4 We additionally filter out examples
that are too short to provide a meaningful context
for the marked word.

We then labeled the target words in each ex-
tracted context with the sense ID generated for
the definition associated with that sentence; this
gave us 254,506 annotated WSD example contexts
covering 148,333 senses. Finally, we filtered out
examples with monosemous words since predicting
the sense in these cases is a trivial task. However,
Loureiro and Camacho-Collados (2020) recently
found that unambiguous examples can improve
WSD performance; therefore, we include the un-
ambiguous cases as an additional file in the FEWS
dataset. After filtering these unambiguous exam-
ples from the main dataset, FEWS in total contains
121,459 examples covering 71,391 sense types.

Finally, we split the data into training and evalu-
ation sets. The majority of the data are quotations,
which we use to populate the train, development,
and test sets as they more closely resemble natu-
rally occurring text than the illustrations. To create
the development and test sets, we randomly select
10,000 examples for each evaluation set and ensure
that each of these evaluation examples pertains to a
different sense. We verify that half of those exam-
ples were labeled with senses that only occurred
once in the unsplit data to create a zero-shot subset
of each evaluation set, and the other half of the
evaluation senses comprise the few-shot evaluation
subsets. The remaining quotations that were not

4We define a marked word as too different from the base
form if the longest common subsequence between them is
< 50% of the length of the marked word.
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Eval Split FEWS WSD Fr.
Dev 10,000 375

Few-shot† 4,529 67
Zero-shot 5,000 50

Test 10,000 3,669
Few-shot† 4,603 761
Zero-shot 5,000 796

Table 2: The number of senses covered in the FEWS
and WSD Framework evaluation sets. † To fairly com-
pare against the WSD Framework, we only count few-
shot examples as those have three or fewer supporting
examples in their respective train set.

used for the development or test set are included as
the training data. Finally, we remove the illustra-
tions for senses in the zero-shot evaluation subsets
and add the remaining illustrations to the training
data; this addition makes the extended train set.

3.2 Dataset Analysis

We present a comprehensive analysis of FEWS to
demonstrate that the dataset provides high coverage
of many diverse words senses in a low-shot manner.

High Coverage of Words and Senses The
FEWS dataset covers 35,416 polysemous words
and 71,391 senses (Table 1). The complete dataset
covers 53.21% of the senses for words that appear
in it (out of their Wiktionary sense inventories).
Figure 2 shows this high coverage of senses for
five different words compared to the coverage of
the same words in SemCor (Miller et al., 1993).
We see that while SemCor tends to have more ex-
amples for these common words, most examples
correspond to a single sense of the word. However,
the FEWS train set covers many more senses per
word, albeit with fewer total examples.

This high coverage of senses is particularly im-
portant for the evaluation sets provided in FEWS
(Table 2). Each evaluation set (development and
test) covers 10,000 different senses; half of these
examples are few-shot and occur in the training
set, and the other half of the evaluation senses are
zero-shot. In comparison, the current benchmark
for WSD evaluation (Raganato et al., 2017) only
contains 796 unique zero-shot and 761 unique few-
shot senses (where the sense is seen three or fewer
times in the SemCor (Miller et al., 1993) training
set) across development and test evaluation sets.
This much larger sample of few- and zero-shot
evaluation examples means that FEWS provides a
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Figure 3: Histogram of sense frequencies in the FEWS
training data.

robust setting to evaluate model performance on
less common senses.

Low-Shot Learning Because the data in FEWS
come from example sentences for definitions in
Wiktionary, each sense occurs in only a few labeled
examples. This low-shot nature of the data is shown
for five common words in Figure 2: each sense of
these words occurs only one to four times in the
training data. Figure 3 shows a histogram of the
number of examples per sense in the full training
set; we see that the majority of senses seen during
training (60%) only occur once and that there are
on average 1.65 examples per sense.

This set up also means that all evaluations on
FEWS are low-shot (or zero-shot): senses in the
few-shot development split have on average 2.06
supporting examples in the training set, with a max-
imum of 12 examples (these counts increase to 2.13
and 13, respectively, with the extended training
data).

Figure 4: Word cloud of the 300 most common tags in
the FEWS senses. For clarity, we manually filter out
syntactic and uninformative tags.
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Domains in FEWS Definitions in Wiktionary
are tagged with keywords, which we include as
metadata for their respective senses in the dataset.
These keywords indicate that the senses in FEWS
pertain to topics ranging from literature and archaic
English to sports and the sciences and come from
various English dialects (Figure 4). FEWS also
covers many new domains not covered in existing
WSD corpora, with six keywords corresponding to
internet culture.

We also find that a number of the senses (<1%
in FEWS) are indicated to be toxic or offensive
language: our analysis contains tags such as ethnic
slurs, offensive, vulgar, and derogatory that corre-
spond to examples of toxic language. For many of
these examples, the meaning of the target word is
only toxic due to the context in which it appears.
These examples provide an opportunity for improv-
ing models for hate speech detection and related
tasks, but we leave this exploration to future work.

4 Baselines for FEWS

We run a series of baseline approaches on FEWS
to demonstrate how current methods for WSD per-
form on this dataset. We consider a number of
knowledge-based approaches (Lesk, Lesk+emb,
and MFS) and two neural models that build on pre-
trained encoders (ProbeBERT and BEMBERT ).
We also ascertain how well humans perform on
FEWS as a potential upper bound for model perfor-
mance.

4.1 Knowledge-based Baselines
Most Frequent Sense (MFS) The MFS baseline
assigns each target word in the evaluation with their
candidate sense that is most frequently observed
as the correct sense of that word in the training set.
The MFS heuristic is known to be a particularly
strong baseline in WSD datasets labeled on natural
language documents (Kilgarriff, 2004); however,
we expect this to be a weaker baseline on FEWS
since the distribution of senses is much more bal-
anced (and half of the evaluation senses are com-
pletely unseen during training).

Lesk The simplified Lesk algorithm assigns to
each ambiguous target word the sense whose
gloss has the highest word overlap with the con-
text surrounding that target word (Kilgarriff and
Rosenzweig, 2000). We specifically use the Lesk-
definitions baseline from this work, meaning that
we do not include words from example sentences

in the set compared against the context – since
these example sentences are used as the contexts in
FEWS.

Lesk+emb This baseline is an extension of the
above approach that incorporates word embeddings
(Basile et al., 2014). A vector representation is
built for the context around an ambiguous word
(vc) and the glosses of each sense of that word
(vg), where vc and vg are the element-wise sums
of the word vectors for words in the context and
gloss, respectively. The sense that corresponds to
the vg with the highest cosine similarity to vc is
chosen as the label for the target word. We use
Glove embeddings (Pennington et al., 2014) for
our implementation of this baseline.

4.2 Neural Baselines

ProbeBERT This baseline is a linear classifier
trained on contextualized representations output by
the final layer of a frozen pretrained model; we
use BERT as our pretrained encoder (Devlin et al.,
2019). We train this classifier by performing a soft-
max over all of the senses in the Wiktionary sense
inventory and mask out any senses not relevant to
the target word.

BEM Our other neural baseline is the biencoder
model (BEM) for WSD introduced by Blevins and
Zettlemoyer (2020). The BEM has two indepen-
dent encoders, a context encoder that processes the
context sentence (including the target word) and a
gloss encoder that encodes the glosses of senses
into a sense representation. The BEM takes the dot
product of the target word representation from the
context encoder and sense representations from the
gloss encoder, and it labels the target word with the
sense that has the highest dot product score. We
train BEMBERT by initializing each encoder with
BERT and training on the FEWS train set.

4.3 Human Performance

Finally, we calculate the estimated human perfor-
mance on the FEWS development set. The three
human annotators were native English speakers,
who each completed the same randomly chosen
300 example subset of the development set. The
examples were sampled such that half (150) of
these examples came from the few-shot split and
the other half came from the zero-shot split. Similar
to the modeling baselines, we evaluate each anno-
tator’s performance by scoring them against the



460

Dev Test
Full Set Few-shot Zero-shot Full Set Few-shot Zero-shot

Knowledge-based baselines
MFS 26.39 52.78 0.00 25.73 51.46 0.00
Lesk 39.24 42.54 35.94 39.07 40.94 37.20
Lesk+emb 42.54 44.94 40.14 41.53 44.08 38.98
Human† 80.11 80.44 79.87 – – –
Neural baselines
ProbeBERT 36.17 72.34 0.00 36.07 72.14 0.00
BEMBERT 73.81 79.28 68.34 72.77 79.06 66.48
BEMSemCor 74.36 79.72 69.00 72.98 78.88 67.08
BEMzero−shot‡ 58.05 58.38 57.72 57.39 57.94 56.84

Table 3: Accuracy (%) of our baselines (Section 4) and transfer learning models (Section 6) on the FEWS eval-
uation sets. Human performance (†) is calculated on a subset of the development set and acts as an estimated
upper bound on performance. ProbeBERT and BEMBERT are baselines trained on FEWS; BEMSemCor is a
transfer learning model finetuned on SemCor before training on FEWS. BEMzero−shot (‡) is a zero-shot transfer
experiment in which the BEM trained on SemCor is evaluated on FEWS without finetuning on the FEWS train set.

sense associated with that example in Wiktionary
(which we assume to be gold labels).

5 Baseline Experiments

5.1 Experimental Setup
Data All baselines for the FEWS dataset are
trained on the train set unless specifically stated
to have been trained on the extended train set. All
models for FEWS are tuned using the development
set and then evaluated on the held-out test set.

Experimental Details Our probe and BEM base-
lines are in implemented in PyTorch5 and opti-
mized with Adam (Kingma and Ba, 2015). For
the BEM, we use the implementation provided by
Blevins and Zettlemoyer (2020).6 We obtain the
bert-base-uncased encoder from Wolf et al. (2019)
to get the BERT output representations for the
probe and to initialize the BEM models. Further
hyperparameter details are given in Appendix A.

5.2 Modeling Results
Table 3 shows the results of our baseline experi-
ments on FEWS. We find that the MFS baseline is
weak overall, primarily because it is unable to pre-
dict anything about the held-out, zero-shot senses;
the Lesk algorithms both outperform this baseline
in the overall setting, with the Lesk+emb approach
scoring slightly better than the original Lesk ap-
proach by 1.78-4.2% across the different evalua-

5https://pytorch.org/
6https://github.com/facebookresearch/wsd-biencoders

tion subsets. However, on the few-shot examples
in both the development and test sets, we see that
the MFS baseline outperforms both of the Lesk
baselines. This shows that, for the few-shot ex-
amples, the MFS heuristic remains a reasonably
strong baseline even with the more uniform sense
distribution of FEWS (and indicates that the distri-
bution of examples drawn from the dictionary is
less uniform than expected).

The neural baselines we run generally outper-
form the knowledge-based ones. The ProbeBERT

model does fairly well on the few-shot examples,
outperforming the MFS baseline by about 20 accu-
racy points; however, it is unable to disambiguate
words in the zero-shot splits correctly since the
probe can not generalize to unseen senses. In com-
parison, BEMBERT performs well across the en-
tire evaluation set. In particular, the BEM achieves
much better zero-shot performance than other base-
lines, though performance on this subset still lags
behind few-shot performance. Finally, we see that
humans perform better than all of the considered
baselines, particularly on zero-shot senses where
humans outperform the BEM by 11.53 points.
More details about the human evaluation are given
below (Section 5.3).

Additionally, we find that training on the ex-
tended train set has little effect on these base-
lines: the MFS and ProbeBERT baselines perform
slightly worse (with deltas of -0.08% and -0.21%
on the test set, respectively), and BEMBERT per-
forms 1.05% better. Appendix B presents full re-
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Dev Subset
Full Set Few-shot Zero-shot

Knowledge-based baselines
MFS 23.66 47.33 0.00
Lesk 38.33 41.33 35.33
Lesk+emb 46.00 48.67 43.33
Human 80.11 80.44 79.87
Neural baselines
ProbeBERT 33.67 67.33 0.00
BEMBERT 73.00 80.66 65.33

Table 4: Accuracy (%) of our baselines on the subset
of the development set manually scored by human an-
notators.

sults for the extended train baselines.

5.3 Human Evaluation Results

The human annotators achieved an average ac-
curacy of 80.11% (with each annotator getting
84.67%, 78.67%, and 77.00% accuracy) and an
average inter-annotator agreement of κ = 0.802.
We find that humans perform slightly better on the
examples that correspond to few-shot examples for
the dataset than those corresponding to zero-shot
examples despite not using the training data, with
an average of 80.44% and 79.87% accuracy on
those two subsets, respectively.

We also report the performance of the baselines
for FEWS on the same subset of the development
set that was manually completed by humans (Table
4). We find that the baselines perform similarly
on this subset, with a small decrease in perfor-
mance compared to the full development set (with
decreases in accuracy ranging between 0.81% and
3.46% when compared to the development set).

6 Transfer Learning with FEWS

Next, we investigate how useful FEWS is at improv-
ing WSD performance on existing benchmarks. We
perform transfer learning experiments by iteratively
finetuning models on FEWS and the WSD Evalua-
tion Framework (Raganato et al., 2017), with one
acting as the intermediate dataset and evaluating
performance on the other, target dataset. We find
that on global metrics, this approach performs simi-
larly to finetuning only on the training data for each
benchmark; however, transferring from FEWS to
the WSD Framework improves performance on
less-frequent and zero-shot senses. This suggests

that FEWS provides valuable WSD information
not covered in SemCor.

6.1 Experimental Setup
We apply the supplementary training approach pre-
sented in Phang et al. (2018) to perform our transfer
learning experiments. We initialize a BEM with the
best model developed on the intermediate dataset
and evaluate on the target dataset in two ways: first,
by evaluating this BEM on the target dataset in a
zero-shot manner, without additional finetuning;
and second by finetuning the BEM on the target
training data before performing the target evalua-
tion. We refer to these models as BEMzero−shot

and BEMintermediate, respectively. As a baseline,
we also compare against the best BEM trained only
on the target dataset (with no exposure to the in-
termediate dataset), BEMBERT .7 The model im-
plementation details are identical to those for the
baseline experiments on FEWS (Section 5.1).

6.2 Data
Models that are finetuned for the WSD Evalu-
ation Framework are trained using SemCor, a
large dataset annotated with WordNet synsets and
commonly used for training WSD models (Miller
et al., 1993). Following previous work, we use
SemEval-2007 as a validation set (SE07; (Prad-
han et al., 2007a)) and hold out the other eval-
uations sets in the Framework (Senseval2 (SE2;
(Palmer et al., 2001)), Senseval-3 (SE3; (Snyder
and Palmer, 2004)), SemEval-2013 (SE13; (Nav-
igli et al., 2013)), and SemEval-2015 (SE15; (Moro
and Navigli, 2015)) as test sets. Similarly to the
baseline experiments, models that are trained on
FEWS use the train set (note that we do not use the
extended train set in these experiments), are vali-
dated on the development set, and finally evaluated
on the held out test set.

6.3 Results
FEWS Results We first consider the setting
where SemCor acts as the intermediate dataset
and FEWS as the target (Table 3). We find that
BEMSemCor performs similarly to training only
on FEWS (with an improvement of 0.21% on the
test set). BEMzero−shot, which is not finetuned on

7We note that this is a naive approach to transferring be-
tween Wiktionary senses and WordNet synsets, and that it is
possible that better transfer learning could occur with a more
complicated multitask approach or by mapping between the
two lexical resources with approaches such as Navigli and
Ponzetto (2012) or Miller and Gurevych (2014).
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Dev Test Datasets Concatenation of all Datasets
SE07 SE2 SE3 SE13 SE15 Nouns Verbs Adj. Adv. ALL

MFS (in train data) 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
BEMBERT 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0
BEMFEWS 73.6 79.1 77.9 79.1 81.6 81.2 68.9 81.8 88.2 78.8
BEMzero−shot 53.0 66.6 62.3 69.1 74.9 70.7 51.2 72.0 69.7 66.4

Table 5: F1-score on the English all-words WSD in the WSD Evaluation Framework (Raganato et al., 2017). We
compare the best model from Blevins and Zettlemoyer (2020) (BEMBERT ) against (1) a model first trained on
FEWS and then trained on SemCor (BEMFEWS) and (2) a model trained on FEWS and evaluated on this task
without further finetuning (BEMzero−shot).

MFS LFS Zero-shot
Words Senses

WordNet S1 100.0 0.0 84.9 53.9
BEMBERT 94.1 52.6 91.2 68.9
BEMFEWS 93.7 52.9 92.2 74.8
BEMzero−shot 72.6 55.5 92.7 80.5

Table 6: F1-score on the MFS, LFS, and zero-shot sub-
sets of the ALL evaluation set from the WSD Evalua-
tion Framework. Zero-shot examples are the words and
senses (respectively) from the evaluation suite that do
not occur in SemCor.

the FEWS train set, unsurprisingly performs worse
than any of the BEMs that saw the FEWS training
data but outperforms the Lesk baselines.

WSD Evaluation Framework Results We then
consider the opposite setting, where FEWS is
the intermediate dataset and the WSD Evaluation
Framework acts as the target evaluation (Table 5).
On the overall evaluation set, we again see that
BEMFEWS performs similarly to the BEMBERT

baseline on the overall ALL metric, and that the
zero-shot BEM model underperforms the other bi-
encoders.

We then break down performance on the target
evaluation set by sense frequencies: we evaluate
performance on the most frequent sense (MFS) of
each word in the evaluation (i.e., the sense each
word takes most frequently in the SemCor training
set); the less frequent senses (LFS) of words, or
any sense a words takes besides its MFS; zero-shot
words that are not seen during training on SemCor;
and zero-shot senses, also not seen during training
(Table 6). We find that both transfer learning mod-
els perform better on LFS and zero-shot examples
than BEMBERT .8

8For the models trained on FEWS, it is possible they have

In particular, the zero-shot transfer model does
well on these subsets, demonstrating that a fair
amount of WSD knowledge about uncommon
senses can be transferred in a zero-shot manner be-
tween these datasets (albeit at the expense of higher
performance on the MFS subset). This result also
shows how much the MFS group dominates ex-
isting WSD metrics and highlights the need for
focused evaluations of other types of word senses.
Finally, we see that even without exposure to the
natural sense distribution in natural language texts,
the zero-shot model still performs significantly bet-
ter on the MFS of words than the LFS, with a 17.1
F1 point difference between the two subsets; this
is likely because the BERT encoder is exposed to
the sense distribution of English natural language
documents during pretraining.

7 Conclusion

We establish baseline performance on FEWS with
both knowledge-based approaches and recently
published neural WSD models. Unsurprisingly,
neural models based on pretrained encoders per-
form best on FEWS; however, the human evalu-
ation shows there is still room for improvement,
particularly for zero-shot senses. Finally, we also
present results on transferring word sense knowl-
edge from FEWS onto existing WSD datasets with
staged finetuning. While our naive approach for
transferring knowledge from FEWS does not im-
prove performance on the global WSD metric,
adding FEWS as an additional training signal im-
proves performance on uncommon senses in exist-
ing evaluation sets.

We hope that FEWS will inspire future work fo-

seen closely related senses to those in the zero-shot subsets of
from the Wiktionary sense inventory; however, these are repre-
sented differently in each dataset and correspond to different
definitions to be encoded by the biencoder.
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cusing on better methods for capturing rare senses
in WSD and better modeling of word sense in niche
domains like internet culture or technical writing.
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Dev Test
Full Set Few-shot Zero-shot Full Set Few-shot Zero-shot

MFS
Ext. Train 26.13 52.26 0.00 25.65 51.30 0.00

Train 26.39 52.78 0.00 25.73 51.46 0.00
∆ -0.26 -0.52 – -0.08 -0.16 –

ProbeBERT

Ext. Train 36.03 72.06 0.00 35.86 71.72 0.00
Train 36.17 72.34 0.00 36.07 72.14 0.00

∆ -0.14 -0.28 – -0.21 -0.42 –

BEMBERT

Ext. Train 74.12 79.38 68.86 73.82 79.70 67.94
Train 73.81 79.28 68.34 72.77 79.06 66.48

∆ 0.31 0.10 0.52 1.05 0.64 1.46

Table 7: Accuracy of the FEWS baselines trained on the extended train set. In each group of rows, we report (1)
the extended train baseline, (2) the comparable baseline trained on the standard train set, and (3) the performance
delta between the two (where a positive delta indicates the extended train baseline performs better).

A Model Hyperparameters

Each model reported in this paper was tuned on
a single hyperparameter sweep over the reported
ranges and chosen based on the appropriate devel-
opment set metric (accuracy on FEWS, F1 perfor-
mance on the Unified WSD Framework).

ProbeBERT The linear layer in the BERT probe
baseline is trained for 100 epochs. It is tuned over a
range learning rates ([5e−6, 1e−5, 5e−5, 1e−4],
with a final learning rate of 1e−4). We use a batch
size of 128 to train this probe.

BEM For the biencoder model (BEM), we use
the codebase provided by (Blevins and Zettlemoyer,
2020). Following this work, we train the BEM for
20 epochs with a warmup phase of 10,000 steps;
we use a context batch size of 4 and a gloss batch
size of 256. Each BEM is tuned over the following
learning rates: [1e− 6, 5e− 6, 1e− 5, 5e− 5]. The
BEMBERT and BEMSemCor had a final learning
rate of 5e− 6, and the BEMFEWS , of 1e− 6.

B Extended Train Baselines

The extended train set in FEWS contains all of the
quotation-based examples from the train set as well
as the additional, shorter example illustrations that
are written by Wiktionary editors to exemplify a
particular sense of a word. We retrain the MFS,
ProbeBERT , and BEMBERT baselines on this ex-
tended training set; the other baselines we consider
(Lesk and Lesk+emb) are calculated without using
either of the training sets.

Table 7 compare the extended train baselines
against those trained on the standard train set. For

the MFS and ProbeBERT baselines, we find that
adding the extra, stylistically different illustrations
in extended train slightly hurts performance. How-
ever, the stronger BEMBERT is able to better use
this data and achieves somewhat stronger perfor-
mance with additional training data. Notably, most
of this improvement in the BEMBERT comes from
the zero-shot evaluation setting, even though the
extended train set does not contain any of these
zero-shot senses.


