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Abstract

Knowledge Base Question Answering
(KBQA) is the problem of predicting an
answer for a factoid question over a given
knowledge base (KB). Answering questions
typically requires reasoning over multiple
links in the given KB. Humans tend to answer
questions by grouping different objects to
perform reasoning over acquired knowledge.
Hypergraphs provide a natural tool to model
group relationships. In this work, inspired
by typical human intelligence, we propose a
new method for KBQA based on hypergraphs.
Existing methods for KBQA, though effective,
do not explicitly incorporate the recursive
relational group structure in the given KB.
Our method, which we name RecHyperNet
(Recursive Hypergraph Network), exploits a
new way of modelling KBs through recursive
hypergraphs to organise such group relation-
ships in KBs. Experiments on multiple KBQA
benchmarks demonstrate the effectiveness of
the proposed RecHyperNet. We have released
the code.

1 Introduction

Knowledge Base Question Answering (KBQA)
(Xu et al., 2016)), a task that tests the ability of
a machine to understand knowledge like a human,
is a challenging, central, and popular task in natu-
ral language processing. KBQA is the problem of
predicting an answer for a factoid question over a
given knowledge base (KB) containing facts such
as (Inception, written by, Christopher Nolan). An-
swering questions typically requires reasoning over
multiple links in the given KB (Zhang et al., 2018).

When a typical human answers a question (e.g.
What are the genres of movies written by Christo-
pher Nolan?), they tend to group objects (e.g.
movies written by Christopher Nolan such as In-
ception, Interstellar, etc. are grouped together) over

their acquired knowledge. Hypergraphs are mathe-
matical tools that naturally encode group relation-
ships. Directed hypergraphs have been recently
used to model KBs for KBQA (Han et al., 2020)
but we argue that they fail to naturally model group
relationships without loss of information. Spcifi-
cally, two KB triples such as (Inception, written by,
Christopher Nolan) and (Person of Interest, writ-
ten by, Jonathan Nolan) would be modelled by a
directed hyperedge {Inception, Person of Interest}
-> {Christopher Nolan, Jonathan Nolan} clearly
resulting in loss of information (not clear who di-
rected which). Though objects of similar types are
grouped together and directions are encoded, di-
rected hypergraphs fail to model KBs without loss
of information.

We argue that recursive hypergraphs (Joslyn and
Nowak, 2017; Menezes and Roth, 2019) provide a
flexible way to model KBs without loss of informa-
tion. Specifically, all movies written by Christopher
Nolan are grouped together and those written by
Jonathan Nolan are separately grouped together. To
summarise, we make the following contributions

e We model KBs as recursive hypergraphs. To
the best of our knowledge, this is the first such
attempt for natural language processing.

o We propose RecHyperNet (Recursive Hyper-
graph Network), a novel graph neural network-
based model to exploit recursive hypergraphs
and apply it for KBQA.

e We show the effectiveness of RecHyperNet
on multiple KBQA benchmarks. We have
released the source code in the supplementary.

2 Related Work

Knowledge Base Question Answering (KBQA)
has been widely investigated especially through
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end-to-end deep neural networks since the re-
lease of popular datasets such as MetaQA (Zhang
et al., 2018). One of the first attempts at KBQA
was key-value memory network (KVMN) (Miller
et al., 2016) that maintained memory to store KB
facts and text as key-value pairs. Graphs of Re-
lations Among Facts and Text Networks (Graft-
Net) (Sun et al., 2018) uses a heterogeneous GCN-
based method to fuse information from heteroge-
neous sources (KBs and text). SubgraphReader
(SGReader) (Xiong et al., 2019) employs a graph
attention-based method to combine unstructured
text and structured KB. PullNet (Sun et al., 2019)
also uses a GCN to identify subgraph nodes that
should be retrieved (‘pull’) from text and KB. More
recently, EmbedKGQA (Saxena et al., 2020) uses
ideas from knoweldge graph embedding literature
to improve knowledge base question answering esp.
on sparser incomplete knowledge graphs. Two-
Phase Hypergraph Based Reasoning with Dynamic
Relations (2HR-DR) (Han et al., 2020) is a directed
hypergraph-based method for KBQA. The reader
is referred to a comprehensive literature review on
this topic (Fu et al., 2020).

Graph Neural Networks (GNNs): While deep
neural networks such as convolutional neural net-
works and recurrent neural networks are spe-
cially designed for grids and sequences respec-
tively, GNNs (Kipf and Welling, 2017; Hamil-
ton et al., 2017; Velickovié et al., 2018) are spe-
cially designed to learn representations from graph-
structured data. GNNs have been recently extended
to hypergraphs (Feng et al., 2019; Yadati et al.,
2019). The first published works of GNNs for NLP
investigated the tasks of semantic-role labelling
(Marcheggiani and Titov, 2017), and neural ma-
chine translation (Bastings et al., 2017). A recent
tutorial touches upon the recent advances of GNNs
in NLP (Vashishth et al., 2019).

GNNs for Question Answering (QA): A pop-
ular task closely related to question answering is
multi-hop reasoning across documents (context pas-
sages) where GNNs have been extensively used
(Qiu et al., 2019b; Ding et al., 2019; Tu et al., 2020).
Graph Attention Networks (Velickovi¢ et al., 2018)
have been shown to be effective for modelling the
multi-grained structure of documents for machine
reading comprehension (MRC) (Zheng et al., 2020).
GNN s have also recently been used on heteroge-
neous data sources for MRC (Kim et al., 2019; Tu
et al., 2019), knowledge graphs for QA (De Cao

et al., 2019; Cao et al., 2019; Lin et al., 2019; Qiu
et al., 2019a; Feng et al., 2020; Ji et al., 2020; Shao
et al., 2020), answer sentence selection (Tian et al.,
2020), and QA on tables (Zhang, 2020) and math
(Chen et al., 2020). In all these publications except
2HR-DR (Han et al., 2020), the input is a graph and
limited to modelling pairwise relationships. We ad-
dress this fundamental limitation by modelling a
knowledge graph as a recursive hypergraph 2HR-
DR models knowledge graphs through directed hy-
pergraphs but we argue that they are more naturally
represented by recursive hypergraphs.

3 Method

We describe the KBQA problem, and how recursive
hypergraphs (Menezes and Roth, 2019; Joslyn and
Nowak, 2017) can be used to model knowledge
bases. We then describe our method of exploiting
recursive hypergraphs for KBQA.

3.1 KBQA Problem

The KBQA problem considered in this work is
as follows. We are given a knowledge base K C
E X R x & with entity set £ and relation set R. We
are also given a natural language question ¢ with a
topic entity e € £. The task is to output an answer
a € & that correctly answers the question g.

3.2 Recursive Hypergraph

In this subsection, we precisely define a recursive
hypergraph by first defining the following.

Definition 1 (Depth k Powerset). Fora set S, let us
use S(S) to denote the powerset of S i.e. S(S) :=
{S: @ C S C S}. Then, the the depth k powerset
of S is

k
25k . — 8( U Si> (1)
1=0

i—1
where Sop = 5,5; =S| U S; |, for i > 1.
7=0
Note that 250 = S(S) i.e. 250 is powerset of S.
Definition 2 (k-Recursive Hypergraph). A pair
H = (V,E), where V is a set of n vertices, and
EC <2V’k — @) is a set of recursive hyperedges.

Note that a hypergraph in the traditional sense
is a O-recursive hypergraph. We call a hyperedge
e € F as a depth k hyperedge if e C 2V* but
e ¢ 2Vk,

449



3.3 Modelling knowledge Base as a Recursive
Hypergraph

One of our main contributions in this work is to
model a knowledge base as a 1-recursive hyper-
graph with V' = £ U R as the set of vertices. Each
head entity can be seen as a depth 1 hyperedge
connecting all its relations. Each relation can be
further seen as a depth 0 hyperedge connecting
all the tail entities. For example, if a knowledge
base contains the movie “Inception” as a head en-
tity with (relation, object) pairs as 1) (starred actors,
Leonardo DiCaprio), 2) (starred actors, Ellen Page),
3) (starred actors, Tom Hardy), 4) (genre, action),
5) (genre, adventure), and 6) (genre, science fic-
tion), and 7) (written by, Christopher Nolan) then
we can view them as a recursive hypergraph with
Inception as a depth 1 hyperedge connecting rela-
tion vertices starred actors, genre, and written by.
Each of these relation vertices is in turn a depth 0
hyperedge connecting object entities. For example,
the object entities Leonardo DiCaprio, Ellen Page,
and Tom Hardy are contained in a single hyperedge
(that represents the pair Inception, starred actors).

3.4 RecHyperNet for KBQA

In this section, we describe our proposed method-
ology for KBQA. The main ingredients/modules of
RecHyperNet are three modules: KB Embedding
Module, Topic and Question Embedding Module,
and Answer Retrieval Module.

1) KB Embedding Module uses knowledge base
embedding methods to initialise entity embeddings
of the input KB. We denote these initial embed-
dings by z.,e € £. Popular knowledge base em-
bedding methods include TransE (Bordes et al.,
2013), and ComplEX (Trouillon et al., 2016).

2) Topic and Question Embedding Module em-
beds the question ¢ to a fixed dimension vector g
of dimension d. We use a feed-forward neural net-
work that first represents ¢ using LSTM/ RoBERTa
(Liu et al., 2019). The topic entity e that is also
present in the question is embedded using a multi-
relational graph convolutional network on the KB
(Vashishth et al., 2020). The entity update rule for
Composition-based multi-relational graph convolu-
tional network (CompGCN) is as follows:

hy = f( > qu(a:u,zr)), )
(u,r)eN (v)

where x,, and z, are initial features of vertex u and
relation 7 respectively. ¢ is a composition function

that is dictated by the knowledge base embedding
method and f is a non-linear activation function
such as Rectified Linear Unit. N (v) is the (relation,
object) neighbourhood of the vertex v (for example,
the 7 pairs listed for “inception” movie entity in
the previous subsection).

Our key modification to CompGCN update
rule is motivated through the proposed recursive
hypergraph view of knowledge base. Specifically,
since each relation can be seen as a hyperedge con-
taining all object entities, we can modify the update
rule as follows

hv:f < ZrEN(v) Wd) < uEI./r\lf%fj(,r)(mU)’ZT> ) ’ (3)

where N (v) is the set of all relations in the neigh-
bourhood of v, and N (v, r) is the set of all object
entities connected by the (subject, relation) pair
(v, r). max is the element-wise maximum of a set
of vectors. We can replace max by other aggre-
gator functions such as mean, and sum but we ex-
perimentally observed that max gives the best per-
formance. We embed the topic head entity ¢ € £
using Equation 3 and obtain the hidden representa-
tion h. with the same dimension d. We finally pass
the concatenated representation h.||q to a 2-layer
feed-forward neural network to get the topic and
question representation.
3) Answer Selection Module Given a KB embed-
ding scoring function ® and a set of answer entities
A C &, we learn the topic and question representa-
tion h.||q so that ®(x., h||q, z,) >0, Va € A
and ®(x., hc||q, xz) > 0, Va ¢ A. We leartn the
model parameters by minimising the binary cross
entropy loss between the sigmoid of the scores and
the target labels (1 for correct, O for wrong).

During test time, we score the given (topic
head entity, question) pair against all possible
answers @’ € &£. So, the answer is given by
argmax ®(ze, hellg, zo/).

a’'e€

4 Experiments

We evaluate our proposed method on MetaQA
(Zhang et al., 2018) and WebQuestionsSP (Yih
et al., 2016) datasets. We closely follow the experi-
mental setup of a prior work (Saxena et al., 2020)
for the preprocessed versions of these datasets.
MetaQA consists of 400k questions (1 — hop, 2-
hop, and 3-hop), and a knowledge graph of 135k
triples, 43k entities, and 9 relations. WebQuestion-
sSP consists of 4700 questions and a knowledge
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Model MetaQA KG-Full MetaQA KG-50 WebQSP | WebQSP
1-hop | 2-hop | 3-hop | 1-hop | 2-hop | 3-hop | KG-Full | KG-50

KVMN (Miller et al., 2016) 96.2 | 82.7 | 48.9 | 75.7 | 48.4 | 37.6 46.7 32.7
VRN (Zhang et al., 2018) 97.5 | 89.9 | 62.5 — — — — —

GraftNet (Sun et al., 2018) 97.0 | 948 | 77.7 | 91.5 | 69.5 | 664 66.8 49.7
SGReader (Xiong et al., 2019) 96.7 | 80.7 | 68.6 | 79.2 | 77.1 | 63.5 — —

PullNet (Sun et al., 2019) 97.0 | 99.9 | 914 | 924 | 904 | 85.2 68.1 51.9
EmbedKGQA (Saxena et al., 2020) | 97.5 | 98.8 | 94.8 | 83.9 | 91.8 | 70.3 66.6 53.2
2HR-DR (Han et al., 2020) 98.8 | 93.7 | 91.4 | 80.8 | 89.3 | 65.1 67.0 52.2
RecHyperNet (ours) 99.1 | 99.2 | 95.0 | 844 | 923 | T71.1 68.4 53.7

Table 1: Results (higher is better) on MetaQA, WebQuestionsSP datasets. Baselines such as PullNet utilise

external corpus to answer questions (unrealistic as it is not always readily available) while our method does not.

Model 1-hop | 2-hop | 3-hop Model MetaQA | WebQSP
GraftNet 64.0 52.6 59.2 RecHyperNet 92.3 53.7
PullNet 65.1 52.1 59.7 replace Eq. 3 by Eq. 2 90.4 52.1

RecHyperNet | 84.4 | 92.3 | 71.1 use q in place of h.||q 85.6 50.7

Table 2: Results (higher is better) of baselines without
text corpus on MetaQA KG-50.

graph of 1.8 million entities, and 5.7 million triples.
Following prior work (Saxena et al., 2020), we
experimented on two different settings (for both
datasets) - KG Full (in which the KG is left un-
touched), and the more realistic KG-50 setting in
which 50% links are randomly removed. We com-
pared against 7 different baselines as shown in Ta-
ble 1. Please see Section 2 (subsection: Knowledge
Base Question Answering) for brief descriptions of
the baseline methods.

Model details Following prior work (Saxena
et al., 2020), we used a long short term memory
(LSTM) network to learn embeddings for words
in the questions with an embedding size of 256
for MetaQA and RoBERTa (768 dimensional em-
beddings) (Liu et al., 2019) for WebQuestionsSP
datasets. The hidden dimension size for graph con-
volutional network was also set to 256. A dropout
rate of 0.2 was used for all neural layers.. All mod-
els were implemented in PyTorch (Paszke et al.,
2019) and trained with ADAM as the optimiser
(Kingma and Ba, 2015), a learning rate of 5 X 1074,
weight decay of 1.0, a batch size of 128 trained for
100 epochs (with patience of 5).

Results. Table 1 shows the results. We evalu-
ated our proposed method and all baselines through
Hits@1 metric. As we can see in Table 1, exploit-
ing recursive hypergraphs through our proposed
method help. Methods such as PullNet and Graft-
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Table 3: Ablation study on MetaQA KG-50 (2-hop)
and WebQSP KG-50

Net utilise additional text corpus (unrealistic setting
as it is not always readily available) to answer ques-
tions while our method does not. We exploit only
the given knowledge base structure. Futhermore,
as shown in Table 2, baselines such as GraftNet
and PullNet perform poorly in the absence of text.

Ablation Analysis We conducted an ablation
study by removing essential components from
RecHyperNet. Specifically we replaced our pro-
posed Equation 3 to exploit recursive hypergraphs
by the exisdting Equation 2 of CompGCN. As
another basline, we removed the embedding of
topic head entity obtained through GCN and used
only the question representation while scoring. As
shown in Table 3, both these components are essen-
tial for our proposed RecHyperNet.

Conclusion and Future Work In this work, we
exploit recursive hypergraphs in NLP for the task
of KBQA. We have proposed a novel method based
on graph convolutional networks. We have demon-
strated the effectiveness of RecHyperNet on KBQA
benchmarks. In future, we exploit recursive struc-
tures for other tasks where graph neural nets are
effective such as question generation (Pan et al.,
2020), sentiment analysis (Wang et al., 2020), etc.
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