
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 3703–3714
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

3703

Towards More Fine-grained and Reliable NLP Performance Prediction

Zihuiwen Ye, Pengfei Liu, Jinlan Fu†, Graham Neubig
Carnegie Mellon University, † Fudan University

{zihuiwey,pliu3,gneubig}@andrew.cmu.edu,
fujl16@fudan.edu.cn

Abstract

Performance prediction, the task of estimating
a system’s performance without performing
experiments, allows us to reduce the experi-
mental burden caused by the combinatorial ex-
plosion of different datasets, languages, tasks,
and models. In this paper, we make two contri-
butions to improving performance prediction
for NLP tasks. First, we examine performance
predictors not only for holistic measures of ac-
curacy like F1 or BLEU, but also fine-grained
performance measures such as accuracy over
individual classes of examples. Second, we
propose methods to understand the reliabil-
ity of a performance prediction model from
two angles: confidence intervals and calibra-
tion. We perform an analysis of four types of
NLP tasks, and both demonstrate the feasibil-
ity of fine-grained performance prediction and
the necessity to perform reliability analysis for
performance prediction methods in the future.
We make our code publicly available: https:
//github.com/neulab/Reliable-NLPPP

1 Introduction

Performance prediction (P2) aims to predict a ma-
chine learning system’s performance based on fea-
tures of the underlying problem, dataset, or learn-
ing algorithm. While this topic is still relatively
unexplored in the NLP context, there are a few ex-
amples of predicting performance as: (i) a func-
tion of training or model parameters for determin-
ing the number of training iterations (Kolachina
et al., 2012) or value of hyperparameters (Rosen-
feld et al., 2019) and identifying and terminat-
ing bad training runs (Domhan et al., 2015). (ii)
a function of dataset characteristics to illustrate
which factors are significant predictors of sys-
tem performance (Birch et al., 2008; Turchi et al.,
2008), or find a subset of representative experi-
ments to run in order to obtain plausible predic-
tions (Xia et al., 2020). In this paper, we ask two

(0, 1] (1, 2] (2, 3] (3, 6]
Entity Length Interval

0.6

0.7

0.8

0.9

1.0F1

3206 1631

192

49

Figure 1: Breakdown of performance over different entity
lengths of an NER system. Actual F1 (gray point) is cal-
culated from actual results while predicted F1 (red point) is
estimated by a performance prediction model. Gray and red
lines represent corresponding confidence intervals. Numbers
in each bar indicate the number of test samples in each length
bucket.

research questions with respect to performance
prediction: can we predict performance on a more
fine-grained level, and can we quantify the relia-
bility of performance predictions?

With respect to the first contribution, previous
P2 methods have almost entirely focused on pre-
dicting holistic measures of accuracy such as en-
tity F1 (Ratinov and Roth, 2009) or BLEU score
(Papineni et al., 2002) over the entire dataset
(§2.2). However, from a perspective of under-
standing the workings of our models, work on
model analysis has demonstrated the need for
more fine-grained analysis over a wide variety of
tasks (Kummerfeld et al., 2012; Kummerfeld and
Klein, 2013; Karpathy et al., 2015; Neubig et al.,
2019; Fu et al., 2020a,b,c). These methods calcu-
late separate accuracy scores for different types of
examples (e.g. accuracies for entity recognition by
entity length). Our first contribution is to exam-
ine experimental settings where we predict these
fine-grained evaluation scores (§2.3), and also pro-
pose performance prediction methods particularly
suited to this fine-grained evaluation setting (§3).

Our second contribution is the development of
methods for estimating the reliability of perfor-
mance predictions. While allowing estimation

https://github.com/neulab/Reliable-NLPPP
https://github.com/neulab/Reliable-NLPPP

3704

of experimental results without actually having
to run the corresponding experiments may im-
prove efficiency, if the performance predictor is
wrong it may lead to missing results of a po-
tentially important experiment. This particularly
becomes an issue when developing methods for
fine-grained performance prediction, as the num-
ber of data points which can be used to predict
each performance number decreases as we sub-
divide datasets into finer-grained categories. Thus,
we make methodological steps towards answering
two specific questions: (i) how can we define and
calculate a confidence interval over performance
predictions? (ii) how well does the confidence in-
terval of prediction performance calibrate with the
true probability of an experimental result? Fig. 1
is an example of performance prediction and relia-
bility analysis over fine-grained performance esti-
mates (F1 scores over different entity length buck-
ets) of an NER system are obtained in two ways:
(i) calculated based on results from the NER sys-
tem itself (in gray); (ii) estimated based on a per-
formance prediction model, without running an
actual experiment (in red). We can observe that:
(1) with fewer test samples (e.g. 49), confidence
intervals of both actual and predicted F1 become
much wider, suggesting larger uncertainty. (2) in
the last bucket, the predicted F1 (red point) is far
from the actual F1 (gray point), but with a confi-
dence interval of predicted performance (red bar),
the actual F1 still falls within it, indicating the im-
portance of knowing the level of confidence.

In experiments, we investigate the efficacy of
different performance prediction models on four
typical NLP tasks under both holistic and fine-
grained settings, then explore methods for the re-
liability analysis of these performance prediction
models. Major experimental results show: 1)
there is no one-size-fits-all model: best-scoring
performance prediction systems in different sce-
narios are diverse. In particular, one of our pro-
posed models achieved the best results on the Part-
of-Speech task (§6.1). 2) a better performance
prediction model doesn’t imply better calibration
(§6.2). 3) all four performance prediction mod-
els (including previous top-scoring ones) produce
confidence intervals over-confidently (§6.2).

2 Performance Prediction: Formulation
and Applicable Scenarios

In this section, we will mathematically define
performance prediction and its application in the

holistic and fine-grained evaluation.

2.1 Formulation
Given a machine learning model M, which is
trained over a training set Dtr based on a specific
training strategy S, we then test the datasetDts un-
der evaluation setting E and the test result y can be
formulated as a function of the following inputs:

y = f(M,Dtr,Dts,S, E), (1)

This we will refer to as the actual performance
(e.g., F1 score), which requires us to run an actual
experiment.

Alternatively, to calculate y, instead of perform-
ing a full training and evaluation cycle, one can
directly estimate it by extracting features of M,
Dtr, Dts, S , and running them through a predic-
tion function

ŷ = g(ΦM,ΦDtr ,ΦDts ,ΦS , E ; Θ), (2)

where Φ(·) represents features of the input, and Θ
denotes learnable parameters. We will refer to this
as our predicted performance. As long as Eq. 2 is
fast to calculate and a relatively accurate approx-
imation of Eq. 1, it allows us to get a reasonable
idea of expected experimental results much more
efficiently than if we had to actually experiment.

In a real scenario, not all inputs in Eq. 2 need to
be taken into account, and researchers can adopt
different inputs for a particular use. For exam-
ple, Domhan et al. (2015) define ŷ as a function of
training strategy S (e.g., different hyper-parameter
settings) so that they can know which training
setting can lead to bad performance without run-
ning. Dodge et al. (2020) estimate validation per-
formance as a function of computation budget to
conduct more robust model comparisons.

Why Performance Prediction matters for NLP
tasks Firstly, for some NLP tasks with few re-
sources, it is challenging to build and test systems
for all languages or domains. For example, the
task of Machine Translation (MT) for low resource
languages is hard due to the lack of the large paral-
lel corpora, preventing us from measuring system
performance in these scenarios (Xia et al., 2019,
2020). Therefore, performance prediction is use-
ful in that it can efficiently and comprehensively
give insights about the workings of models over
a wide variety of task settings. Secondly, perfor-
mance prediction can be used to alleviate the data

3705

sparsity problem in fine-grained evaluation, which
plays an important role in current NLP task evalu-
ation (Fu et al., 2020a).

In this paper, we consider two performance pre-
diction scenarios, a holistic evaluation setting that
most previous works have explored, and a novel
setting of predicting fine-grained evaluation met-
rics. Below, we briefly describe them.

2.2 Holistic Evaluation
Performance prediction in holistic evaluation aims
to estimate an overall score (e.g., BLEU) based on
dataset characteristics, specifically,

ŷ = gholistic(ΦDtr ,ΦDts ; Θ), (3)

where Φ(·) represents features of input and Θ de-
notes learnable parameters.

Featurization In practice, we choose a machine
translation (MT) task and a Part-of-Speech task
(POS) task in this setting. We use the same set of
dataset features as (Xia et al., 2020), including the
language features and the source and the target, or
transfer language.

2.3 Fine-grained Evaluation
In contrast, fine-grained evaluation aims to break
down the overall score into different interpretable
parts, allowing us to identify the strengths and
weakness of learning systems. For example, the
accuracy of an NER system with an overall F1
score 90 (%) can be partitioned into four buckets
based on different entity lengths l (e.g., [l = 1, 1 <
l ≤ 3, 3 < l ≤ 5, l > 5]) of test entities, thereby
obtaining fine-grained F1 scores: [93, 91, 89, 75],
identifying that the model struggles on longer en-
tities (l > 5).

Although fine-grained evaluation is advanta-
geous in interpreting systems’ performance, it fre-
quently suffers from the data sparsity problem—
a few or no test samples may be included within
certain buckets. For example, in the above case
it’s difficult to calculate the F1 score for entities
whose lengths satisfy l > 7 since few entities can
be found in the whole test set.

With the above dilemma in mind, we define
a performance prediction problem in fine-grained
evaluation where the paucity of test samples in
some buckets leads to an inability to compute per-
formance accurately.

ŷ = gfine(ΦM ,ΦDtr ,ΦDts ; Θ), (4)

where Φ(·) represents features of input and Θ de-
notes learnable parameters.

Featurization Performing fine-grained evalua-
tion involves two major steps: (i) partition the test
set into different buckets based on a certain as-
pect (e.g., entity length), (ii) and calculate
performance (e.g., F1 score) for each bucket.
Therefore, data-wise (ΦDts), the input of perfor-
mance prediction function in Eq. 4 (gfine(·)) can
be featurized as different types of (i) buckets (ii)
aspects (iii) datasets. Additionally, we take (iv)
different types of models as input. We present
brief descriptions of the above four types of fea-
tures.
1. Models: We choose 12 models for the
NER task and 8 models for the Chinese Word
Segmentation (CWS) task. The models are
built by choosing the different character encoder
(e.g., ELMo (Peters et al., 2018) and Flair (Ak-
bik et al., 2018; Akbik et al.)), word embed-
ding (e.g., GloVe (Pennington et al., 2014) and
Word2Vec (Mikolov et al., 2013b)), sentence-level
encoder (e.g., LSTM (Hochreiter and Schmidhu-
ber, 1997) and CNN (Kalchbrenner et al., 2014)),
and decoder (e.g., MLP and CRF (Lample et al.,
2016; Collobert et al., 2011)).
2. Datasets: We consider 6 (5) datasets for the
NER (CWS) task, detailed in appendix.
3. Attributes: We consider the interpretable evalu-
ation aspects proposed in works (Fu et al., 2020a).
We consider 9 attributes for the NER task and 8 at-
tributes for the CWS task in this paper (e.g, entity
length and sentence length).
4. Buckets: The test entities (words) of the NER
(CWS) task are partitioned into four buckets ac-
cording to their attribute value. We compute the
F1 score for the entities.

3 Parameterized Regression Functions

The performance prediction model takes in a set
of features that characterize an experiment’s pecu-
liarities and predict performances based on differ-
ent parameterized regressors g(·) in Eq. 2. We first
describe methods explored by previous works and
then present a tensor regression-based approach
that is particularly well-suited for fine-grained per-
formance prediction.

3.1 Gradient Boosting Methods
Previous work on performance prediction has used
gradient boosted decision tree models (Ganjisaf-

3706

Missing F1

Datasets: 1, · · · , 5 A
tt
ri
bu
te
s:

1,
· · ·

, 3

B
u
ck

e
ts
:

1
,·
··
,4

Figure 2: Illustration of performance tensor in the fine-
grained evaluation scenario. Colored entries represent miss-
ing performances that would be predicted.

far et al., 2011; Chen and Guestrin, 2016), which
demonstrate robust performance on the relatively
low-data scenarios we often encounter in perfor-
mance prediction tasks. We specifically explore
the following two models:
XGBoost (Chen and Guestrin, 2016) is a tree
boosting system widely used to solve problems
such as ranking, classification, and regression. We
use the same experimental setting as described in
(Xia et al., 2020).
LightGBM (Ke et al., 2017) is a gradient boosting
framework. Compared with XGBoost, which uti-
lizes a level-wise tree growth in the decision tree,
LightGBM uses a leaf-wise splitting method.

3.2 Tensor Regression
Besides gradient boosted trees, we also present
tensor regression-based performance prediction
models. Tensors are multidimensional arrays that
can concisely depict the structure of the data. The
order of a tensor is its number of dimensions. For
example, in the NER task, the four feature dimen-
sions of a tensor are model, dataset, attribute and
bucket, with each slice representing one underly-
ing relationship between the two dimensions. Ap-
plying tensor factorization algorithms in the per-
formance prediction setting allows us to determine
the interdependencies between multiple aspects of
the tasks simultaneously.

Performance Prediction as Tensor Completion
To formulate the performance prediction task as
a tensor regression problem: (i) we first define a
performance tensor that each entry stores a perfor-
mance value under a specific setting determined
by input features (described in §2.3); (ii) miss-
ing entries in performance tensor can be predicted
based on different tensor completion techniques.

Specifically, taking fine-grained evaluation for
example, we define a fine-grained performance
tensor as Y ∈ RI1×I2×I3×I4 , where Yijkt denotes

the performance (e.g. F1 score) of the i-th model
(e.g. BERT-based Tagger) on the j-th bucket
(e.g. 2nd) that is obtained by partitioning the k-
th dataset (e.g. CoNLL03) based on the t-th at-
tribute (e.g. entity length). I1, I2, I3, I4 de-
note the number of models, buckets, datasets, at-
tributes. Fig. 2 elaborates on this, in which three
dimensions (buckets, datasets, and attributes) are
considered for the sake of presentation.
CP Decomposition The CP decomposition
(Hitchcock, 1927) expresses a tensor Y as a sum
of lower rank tensors. For example, an order 4
tensor can be decomposed as the sum of R rank-1
tensors, each being the outer product of four
vectors in each dimension.
Robust PCA Robust PCA is a modification
of principal component analysis (PCA) (Candès
et al., 2009). If a tensor can be conceived as a su-
perposition of low-rank components and a sparse
component, Robust PCA attempts to recover the
low-rank and sparse components. The sparse com-
ponents can be considered as the gross, but sparse
noise in the dataset.

4 Statistical Preliminaries

Before going into our second contribution to es-
tablishing reliability of performance prediction,
we describe two relevant concepts from statistics.

4.1 Confidence Interval (CI)

The confidence interval (CI) is a range of possible
values for an unknown parameter associated with
a confidence level of γ (Nakagawa and Cuthill,
2007; Dror et al., 2018) that the actual parameter
can fall into the suggested range. Specifically, sup-
pose that we are interested in estimating the un-
derlying true parameter of ω. Given an observed
parameter estimate of ω̂, obtained from the data,
we aim to compute an interval with a confidence
level γ that ω lies in an interval CI.

Commonly, there are two approaches to calcu-
late confidence intervals, depending on our knowl-
edge about the distribution of the statistics of in-
terest. When an analytical form exists and we
have reasonable assumptions on the distribution,
we can employ the normal theory or use Student’s
t-distribution to construct a confidence interval.

Regarding data drawn from a completely un-
known distribution, a CI can be calculated by
a bootstrapping method (Efron, 1992; Johnson,
2001). The main idea behind the bootstrapping

3707

method is to simulate the real distribution by sam-
pling with replacement from a distribution that ap-
proximates it, thereby allowing us to make infer-
ences about the statistics of interest and construct
confidence intervals. Common methods to con-
struct the CI with bootstrap include the percentile
method, where after specifying a confidence level
γ, we take the range of points that cover the mid-
dle γ proportion of bootstrap sampling distribution
Ŷ as the desired confidence interval, represented
by (QŶ ((1−γ)/2), QŶ ((1+γ)/2)), where Q denotes
the quantile. Works on establishing confidence for
results in NLP tasks using this bootstrap method
include Koehn (2004) and Li et al. (2017).

4.2 Model Calibration (MC)

Calibration (Gleser, 1996), also known as relia-
bility, refers to the ability of a model to make
good probabilistic predictions. For a discrete dis-
tribution over events, a model is said to be well-
calibrated if for those events that the model assigns
a probability of p, the long-run proportion that the
event actually occurs turns out to be p. For exam-
ple, if a weather forecast model predicts that there
is a 0.1 probability of rain at 7 a.m., then when
observed on a large number of random trials at 7
a.m., the model is well-calibrated if 0.1 of them
actually do result in rain. Similarly, for a classi-
fication model matching the probability a model
assigns to a predicted label (i.e., confidence) and
the correctness measure of the prediction (i.e., ac-
curacy) (Wang et al., 2020) is desired.

Nonetheless, it is common that a model could
have a high predictive accuracy, but poor cal-
ibration if the model systematically over- or
under-estimates its confidence in the predictions
it makes. One way to quantify miscalibration
is to use Expected Calibration Error (ECE; Nae
(2015)), which aims to quantitatively characterize
the difference in expectation between confidence
and accuracy. To calculate ECE, the predictions
should first be partitioned into M buckets based
on the confidence of the predictions, whereN rep-
resents the total number of prediction samples and
|Bm| is the number of samples in the m-th bucket.
Given these buckets, ECE can be defined as,

ECE =
M∑
m=1

|Bm|
N
|acc(Bm)− conf(Bm)|, (5)

where acc(Bm) denotes the accuracy of Bm,

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), (6)

where ŷ and y represent predicted and ground
truth labels respectively. conf(Bm) represents the
average confidence of bucket Bm,

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i. (7)

where p̂ represents the prediction confidence of
sample i.

5 On Reliability of P 2 Models

Now we discuss our methodology for predicting
the reliability of performance prediction models
through confidence intervals and the calibration of
those confidence intervals.

5.1 CIs of Predicted Performance

We refer to y ∼ Y as an actual observed perfor-
mance as in Eq. 1 for a specific task (e.g., NER). y
is the output of an NLP system learned on a dataset
D = (Dtr,Dts). We refer to ŷ ∼ Ŷ as a predicted
performance estimated as Eq. 2. ŷ is the output
of a performance prediction model learned from
a dataset Φ(D) = (Φ(Dtr),Φ(Dts)), where Φ(·)
represents the input dataset features. Our goal is
to compute a confidence interval w.r.t a predicted
performance ŷ, to make inference about Y .

Bootstrap for CI of Predicted Performance
One potential challenge is that we cannot make
plausible assumptions about the distribution of
predicted performances Ŷ , which prevents us from
using popular parametric methods (as mentioned
in § 4.1) to calculate the confidence interval. In-
stead, we resort to a bootstrap resampling method
as adopted in (Efron, 1992), to simulate Ŷ .

To achieve this, we first (i) sample differ-
ent training sets for the performance prediction
model Φ(D)tr1 ,Φ(D)tr2 , · · · ,Φ(D)trK ∼ Φ(D)tr,
and then (ii) train K performance prediction mod-
els using Eq. 2 on each of the K partitions, and
(iii) evaluateK models on Φ(D)ts, thereby obtain-
ing a prediction distribution Ŷ . From this resam-
pling distribution, we use the percentile method,
taking the top (1− γ)/2 and the bottom (1 + γ)/2
of the distribution as higher and lower bounds for
the confidence interval.

3708

5.2 Calibration of CI

Because we calculate confidence intervals of the
predicted performance ŷ, drawn from the distri-
bution of Ŷ , rather than the actual y from Y , it’s
still unclear if our predicted CI is reliable enough
to cover the actual performance. In other words,
“from an infinite number of independent trials,
does the true value actually lie within the intervals
approximately 95% of the times?”

To answer this question, we establish a method
to measure calibration for the confidence inter-
val of predicted performance. To check (i) if y
could be generally contained in the prediction in-
tervals reasonably well, and (ii) if a prediction
model produces predictions that are not over or
under-confident, we empirically examine the pre-
diction distributions and establish the reliability of
the confidence intervals.

To this end, we extend the definition of calibra-
tion in classification setting to our regression prob-
lem. Specifically, we formulate confidence level γ
as prediction confidence conf defined in Eq. 7, and
then the original definition of different M buckets
can be instantiated as different confidence levels
here: γ1, · · · , γM . The accuracy at each confi-
dence level γb defined as follows:

acc(γb) =

∑N
i=1 1(A < yi < B)

N
, (8)

where i ∈ [1, N], b ∈ [1,M]. N represents the
number of test samples. yi denotes the actual per-
formance for the test sample i. A = (QŶ ((1−γb)/2)
and B = QŶ ((1+γb)/2)

).
Intuitively, acc(γb) represents the relative fre-

quency of the actual value y falling into the pre-
dicted confidence interval w.r.t. ŷ. Fig. 3 illustrates
how acc(γb) is calculated: given three samples
whose performances are to be predicted, the de-
nominator of acc(γb = 0.8) is 3 while the numer-
ator tallies how many times (2 in this case) the ac-
tual performances (i.e., y1, y2, y3) of three samples
fall into the confidence interval (with γb = 0.8) of
corresponding bootstrapped distributions.

Based on Eq. 8, we can re-write a calibration
error CE as:

CE =
M∑
b=1

| acc(γb)− γb | (9)

=

M∑
b=1

|
∑N

i=1 1(A < yi < B)

N
− γb | (10)

Freq

y1 y2 y3

γ = 0.8

acc(γ) = 2
3

1

Figure 3: Illustration of calibration on confidence inter-
vals (γb = 0.8) w.r.t. the predicted performance. Solid
lines represent actual performances (y) while dashed lines
denote resampled predicted performances using bootstrap.
Boundaries of shaded areas indicate confidence interval
(QŶ ((1−γb)/2), QŶ ((1+γb)/2)

). Intuitively, y1 and y2 fall
into confidence intervals of corresponding bootstrapped dis-
tributions Ŷ1 and Ŷ2.

6 Experiments

In this section, we break down our experimental
results into answering two research questions sec-
tions: (1) how well do our underlying performance
predictors work, particularly the newly proposed
tensor-based predictors and on the newly proposed
task of fine-grained performance prediction? (2)
how well can we estimate the reliability of our per-
formance predictions?

Models Besides the four performance predic-
tion models (CP, PCA, XGBoost, LGBM) that we
have introduced in §3, following Xia et al. (2020),
we additionally use a simple mean value baseline
model which predicts an average of scores s from
the training folds for all test entries in the left-out
evaluation fold:

ŝ
(i)
mean =

1

|D \ D(i)|
∑

s∈D\D(i)

s; i ∈ 1, ...k, (11)

where D(i) is the left-out data used to evaluate the
model performance.

Hyper-parameters Detailed information about
the hyper-parameters used in training the perfor-
mance prediction models in various tasks is pro-
vided in the appendix.

Tasks We explore performance prediction on
four tasks: (1) Machine Translation (MT)
(Schwenk et al., 2019), (2) Part-of-Speech tagging
(POS), (3) Named Entity Recognition (NER), (4)
Chinese Word Segmentation (CWS). To compare
the performance of tensor-based models and gradi-
ent boosting models on the same dataset, we con-
vert the datasets used in different prediction tasks

3709

to tensors. Statistics of the tensor data are shown
in the appendix.

6.1 Evaluation of Performance Prediction
Setup To investigate the effectiveness of the per-
formance prediction models across different tasks,
we conduct k-fold cross-validation for evaluation.
Specifically, we randomly partition the entire ex-
perimental data D into k = 5 folds, use 4 folds
for training, and test the model’s performance on
the remaining fold. To evaluate the result, we cal-
culate the average root mean square error (RMSE)
between the predicted scores and the true scores.

Results The RMSE scores of different perfor-
mance tasks are shown in Tab. 1. Notably, RMSE
scores across different tasks should not be com-
pared directly, because the scales of the evaluation
metrics are different. We observed that:

(1) Overall, all four models we investigated out-
perform the baseline by a large margin, indicat-
ing their effectiveness on these four performance
prediction tasks. (2) Comparing two tensor-based
models, PCA consistently outperforms CP. No-
tably, our proposed tensor regression model (PCA)
has surpassed the previous best-performing sys-
tem (XGBoost (Xia et al., 2020)) on the POS
dataset and achieved comparable result on the
MT dataset despite the relatively high sparsity
of the tensor (0.346). (3) We observe that CP
achieves much worse performance on the POS
dataset. One potential reason is that: CP is sen-
sitive to datasets (like POS) that exhibit large vari-
ance along some feature dimensions, which can
not be alleviated by feature scaling. (4) There is
no one-size-fits-all model: on different datasets,
the corresponding best-scoring performance pre-
diction models are diverse, suggesting that we
should take dataset’s characteristics into account
when selecting a model for a specific performance
prediction scenario.

Prediction Error Analysis In §1 and Fig. 1, we
reveal how entities with different lengths influence
the performance prediction, a result of the under-
lying paucity of data. Here we perform a more de-
tailed error analysis to understand the factors that
influence the performance of performance predic-
tion models. Specifically, we perform a case study
on the NER task using XGBoost and look for fea-
ture combinations on which performance predic-
tions show poor results. We use XGBoost to pre-
dict F1 scores on all possible combinations of four

Model
Fine-grained Holistic

NER CWS MT POS

Baseline 0.209 0.137 6.388 29.09
XGBoost 0.055 0.021 2.463 7.319
LGBM 0.059 0.041 2.389 7.673
CP 0.068 0.043 4.065 24.70
PCA 0.057 0.029 2.920 5.860

Table 1: Results (RMSE, lower scores indicate better perfor-
mances) of different performance prediction models on four
tasks. The lowest value of each column is bold.

feature dimensions (models, datasets, attributes,
and buckets) to obtain ŷijkt using the combined
test sets from 5-fold cross-validation. For each
prediction, we calculate a square residual (ŷ−y)2.
Then, we group the square residuals by 2 of the
4 dimensions1 and take their mean value aggre-
gated over the other 2 dimensions. Fig. 4 shows
the aggregated mean square residual (MSR) fixed
on the model and dataset dimensions, and Fig. 5
shows the result fixed on the attribute and bucket
dimensions. In both figures, a high MSR (dark
grid) means a poor performance prediction. In
Fig. 4, we notice that (1) dataset-wise: WB and
WNUT, and (2) model-wise: CcnnWgloveLstmMlp
and CnoneWrandLstmCrf show poor results. We
observe that (1) WB is generated from weblogs and
WNUT is generated from Twitter, both of which
are noisy. (2) CcnnWgloveLstmMlp does not use
a CRF-decoder, and CnoneWrandLstmCrf does
not encode character-level features, both of which
are important characteristics in building an NER
model. It is plausible that the systems have an
unstable performance in those experimental set-
tings and thus make them harder to predict. In
Fig. 5, we notice that (1) a lower bucket value
along the attributes entity consistency, token con-
sistency, and entity density, (2) a higher bucket
value along the attributes token frequency or entity
length lead to poor performance prediction results.
In other words, the performance prediction model
finds it hard to predict when there is a low label
consistency of token or entity, a low entity den-
sity, and when token frequency is high and entity
is long.

6.2 Evaluation of Reliability

Setup As described in §5.1, we use non-
parametric bootstrap to produce confidence inter-
vals for ŷ. For the holistic evaluation setting, we

1Readers can refer to this work (Fu et al., 2020a) to get
more details.

3710

CoNLL BN MZ BC WB WNUT

CflairWgloveLstmCrf

CelmoWgloveLstmCrf

CelmoWnoneLstmCrf

CbertWnonSnonMlp

CcnnWgloveLstmCrf

CcnnWgloveCnnCrf

CflairWnoneLstmCrf

CcnnWgloveLstmMlp

CcnnWrandLstmCrf

CnoneWrandLstmCrf

CcnnWnoneLstmCrf

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Figure 4: Each grid in the heatmap denotes the mean
square residual fixed on the corresponding model (y-axis)
and dataset (x-axis) aggregated over all attributes and buck-
ets. The colorbar on the right denotes the value of the mean
square residual. Readers can refer to this work (Fu et al.,
2020a) to get more details about the information of models
and attributes.

1 2 3 4

Entity consistency

Token consistency

Entity frequency

Token frequency

Entity length

Sentence length

Entity density

OOV density 0.001

0.002

0.003

0.004

0.005

Figure 5: Each grid denotes the mean square residual fixed
on the corresponding attribute (y-axis) and bucket (x-axis)
aggregated over all models and datasets. Buckets 1 to 4 are
ordered in increasing attribute value.

do not include tensor-based models since the prop-
erty, “with replacement”, of the bootstrap makes
it difficult to construct resampled tensors in the
holistic evaluation setting.

When calculating a calibration error as defined
in Eq. 10, we set M = 20, choosing a range
of 20 increasing confidence levels, (i.e. γ1 =
0.05, γ2 = 0.10 · · · , γ20 = 1.00), to evaluate
the correctness of the confidence intervals given
by prediction models. Besides using a reliability
diagram and a calibration error, to compare the
calibration performances of different models more
comprehensively, we additionally use the follow-
ing quantitative metrics: (1) average width is the
mean range of all the prediction distributions, for-
mally, the difference between the maximum and
minimum: 1

N

∑
i∈[1,N] max(Ŷi) − min(Ŷi). (2)

coverage is the value of accb evaluated at γ = 1.
(i.e. proportion of y ŷ that fall into the distribu-
tions Ŷ , out of all the N prediction entries).

Results The reliability diagram of different
models and their corresponding metrics on four
tasks are illustrated in Fig. 6 and Tab. 2 respec-

Model
CE Wid. Cov. CE Wid. Cov.

NER CWS

Baseline 10.47 0.006 0.01 10.50 0.003 0.01
XGBoost 4.60 0.093 0.75 4.38 0.045 0.77
LGBM 6.78 0.093 0.50 7.41 0.029 0.46
CP 6.33 0.110 0.68 5.22 0.099 0.85
PCA 8.76 0.051 0.31 9.87 0.015 0.12

Model MT POS

Baseline 9.98 1.46 0.08 10.30 3.96 0.03
XGBoost 3.75 5.55 0.81 3.96 17.61 0.82
LGBM 7.23 3.01 0.44 8.02 12.90 0.34

Table 2: Calibration errors (CE), average width (Wid.), cov-
erage (Cov.) of different models over four tasks. (NER, CWS
for fine-grained evaluation setting and MT, POS for holistic
evaluation setting)

tively. Intuitively, the smaller the CE (calibration
error) value is, the more closely the black dotted
line becomes diagonal. Ideally, a perfectly cali-
brated model should have a CE of 0.

From these two tables, we see that: (1) Over-
all, in both holistic (MT and POS) and fine-grained
settings (NER and CWS), we see that XGBoost
achieves the lowest calibration error together with
a higher coverage, especially in the holistic set-
ting. (2) We observe that all of the plots indi-
cate that the intervals produced by the models are
over-confident, as the dots lie under the identity
function. In other words, given a confidence level
γ, the actual accuracy is lower than γ. (3) In
Tab. 1, we find that LGBM achieves the lowest
RMSE (2.389) in task MT, but its calibration er-
ror (7.23) is worse than XGBoost (3.75), implying
that a model that predicts accurately is not nec-
essarily well calibrated. This could be explained
by the observation that the predicted distribution
Ŷ of LGBM has a narrower width (3.01). Given
a large number of trials predicted by LGBM, we
cannot be confident that the true y is contained in
the range of values predicted.

Case Analysis To get a better understanding of
how calibration analysis is conducted on different
performance models, we perform a case study on
NER task. Fig. 7(a-b) illustrates two plots that arti-
ficially simulate two common relations following
Diebold et al. (1997) between actual and predicted
distribution: (i) Bias (ii) Over-confidence. From
Tab. 2, we see that XGBoost is better calibrated
than LGBM in NER task. To interpret this gap,
we (i) first randomly select test samples from NER
dataset and then (ii) use two performance predic-
tion models XGBoost and LGBM to produce blue

3711

0.0
0.2
0.4
0.6
0.8
1.0 Error: 6.33

CP

Ac
c.

Error: 4.60
XGBoost

Error: 5.22
CP

Error: 4.38
XGBoost

Error: 3.75
XGBoost

Error: 3.96
XGBoost

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0 Error: 8.76

PCA

Conf.

Ac
c.

0.0 0.2 0.4 0.6 0.8 1.0

Error: 6.78
LGBM

Conf.
0.0 0.2 0.4 0.6 0.8 1.0

Error: 9.87
PCA

Conf.
0.0 0.2 0.4 0.6 0.8 1.0

Error: 7.41
LGBM

Conf.
0.0 0.2 0.4 0.6 0.8 1.0

Error: 7.23
LGBM

Conf.
0.0 0.2 0.4 0.6 0.8 1.0

Error: 8.02
LGBM

Conf.
(a) NER (b) CWS (c) MT (d) POS

Figure 6: Calibration of different performance prediction models on four tasks (NER, CWS for fine-grained evaluation setting
and MT, POS for holistic evaluation setting).

distributions in Fig. 7(c-d) using the bootstrap (as
§5.1). A perfectly calibrated model will show a
histogram shape that resembles the actual one. We
can see that the histogram shape of (d) signifies an
over-confidence problem, in which the predicted
distribution (in blue) is covered by the actual dis-
tribution (in red). By contrast, in (c) the histogram
of XGBoost in blue shifts to the left compared
with the actual observed distribution, indicating
that the prediction on this bucket is biased.

1

(a) Bias

Predicted
Actual

1

(b) Over-Confident

0.63 0.68 0.73 0.78
F1

0

0.1

0.2

0.3

0.4

De
ns

ity

XGB
Actual

(c) Bias

0.63 0.68 0.73 0.78
F1

0

0.1

0.2

0.3

0.4 LGBM
Actual

(d) Over-Confident
Figure 7: The first row of two plots (a,b) artificially simulate
two typical relations between actual and predicted distribu-
tions. The second row of two plots (c,d) show two real-world
distributions of predicted performance w.r.t one test sample
from NER task against corresponding actual distributions.

7 Implications and Future Directions

In this work, we not only widen the applicabil-
ity of performance prediction, extending it to fine-
grained evaluation scenarios, but also establish a
set of reliability analysis mechanisms to improve
its practicality. In closing, we highlight some po-
tential future directions:

Confidence over confidence: Our work provides
an idea for reliability analysis of the predicted con-
fidence interval, which could also be explored on
other scenarios, e.g., density forecasting (Diebold
et al., 1997). Another potentially valuable re-
search topic is to build connections with the prob-
ability integral transform (Angus, 1994), which is
a typical method of calibration evaluation in finan-
cial risks, and our proposed calibration method.
Calibration for automated evaluation metrics:
From a broader point of view, the role of exist-
ing learnable automatic evaluation metrics for text
generation, such as BLEURT (Sellam et al., 2020)
and COMET (Rei et al., 2020), is similar to a per-
formance prediction model (i.e., both take features
of input data as input and then output an evaluation
score). Reliability analysis of these metrics is also
an important topic since they determine the direc-
tion of model optimization.

Acknowledgements

We sincerely thank all reviewers for their insight-
ful comments and suggestions. We also thank
Mengzhou Xia for discussions on details of per-
formance prediction for different NLP tasks. This
work was supported in part by a grant under the
Northrop Grumman SOTERIA project and the Air
Force Research Laboratory under agreement num-
ber FA8750-19-2-0200. The U.S. Government
is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclu-
sions contained herein are those of the authors and
should not be interpreted as necessarily represent-
ing the official policies or endorsements, either ex-
pressed or implied, of the Air Force Research Lab-
oratory or the U.S. Government.

3712

References
2015. Obtaining well calibrated probabilities using

Bayesian Binning. Proceedings of the National
Conference on Artificial Intelligence, 4:2901–2907.

Alan Akbik, Tanja Bergmann, and Roland Vollgraf.
Pooled contextualized embeddings for named entity
recognition.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
1638–1649.

John E Angus. 1994. The probability integral trans-
form and related results. SIAM review, 36(4):652–
654.

Alexandra Birch, Miles Osborne, and Philipp Koehn.
2008. Predicting success in machine translation.
In Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing, pages
745–754, Honolulu, Hawaii. Association for Com-
putational Linguistics.

Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John
Wright. 2009. Robust principal component analy-
sis? CoRR, abs/0912.3599.

Hui Chen, Zijia Lin, Guiguang Ding, Jianguang Lou,
Yusen Zhang, and Borje Karlsson. 2019. Grn: Gated
relation network to enhance convolutional neural
network for named entity recognition. 33(01):6236–
6243.

Tianqi Chen and Carlos Guestrin. 2016. Xg-
boost: A scalable tree boosting system. CoRR,
abs/1603.02754.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 12:2493–2537.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Francis X Diebold, Todd A Gunther, and Anthony S
Tay. 1997. Evaluating Density Forecasts. Interna-
tional Economic Review, 39:863–883.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2020. Show your
work: Improved reporting of experimental results.
EMNLP-IJCNLP 2019 - 2019 Conference on Empir-
ical Methods in Natural Language Processing and
9th International Joint Conference on Natural Lan-
guage Processing, Proceedings of the Conference,
(2):2185–2194.

Tobias Domhan, Jost Tobias Springenberg, and Frank
Hutter. 2015. Speeding up automatic hyperparame-
ter optimization of deep neural networks by extrap-
olation of learning curves. In Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-
tical significance in natural language processing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Bradley Efron. 1992. Bootstrap methods: another
look at the jackknife. In Breakthroughs in statistics,
pages 569–593. Springer.

Jinlan Fu, Pengfei Liu, and Graham Neubig. 2020a.
Interpretable multi-dataset evaluation for named en-
tity recognition. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Jinlan Fu, Pengfei Liu, Qi Zhang, and Xuan-Jing
Huang. 2020b. Is chinese word segmentation a
solved task? rethinking neural chinese word seg-
mentation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 5676–5686.

Jinlan Fu, Pengfei Liu, Qi Zhang, and Xuanjing Huang.
2020c. Rethinking generalization of neural models:
A named entity recognition case study. In AAAI,
pages 7732–7739.

Yasser Ganjisaffar, Rich Caruana, and Cristina Videira
Lopes. 2011. Bagging gradient-boosted trees for
high precision, low variance ranking models. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in Infor-
mation Retrieval, pages 85–94.

Leon Jay Gleser. 1996. Measurement, regression, and
calibration.

Frank L. Hitchcock. 1927. The expression of a tensor
or a polyadic as a sum of products. Journal of Math-
ematics and Physics, 6(1-4):164–189.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Roger W Johnson. 2001. An introduction to the boot-
strap. Teaching statistics, 23(2):49–54.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of ACL.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

https://www.aclweb.org/anthology/D08-1078
http://arxiv.org/abs/0912.3599
http://arxiv.org/abs/0912.3599
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
https://doi.org/10.18653/v1/d19-1224
https://doi.org/10.18653/v1/d19-1224
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.1002/sapm192761164
https://doi.org/10.1002/sapm192761164

3713

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie Yan Liu.
2017. LightGBM: A highly efficient gradient boost-
ing decision tree. Advances in Neural Information
Processing Systems, 2017-December(Nips):3147–
3155.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing, 4:388–395.

Prasanth Kolachina, Nicola Cancedda, Marc Dymet-
man, and Sriram Venkatapathy. 2012. Prediction of
learning curves in machine translation. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 22–30, Jeju Island, Korea. Association
for Computational Linguistics.

Jonathan K. Kummerfeld, David Hall, James R. Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of error
types in parser output. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, pages 1048–1059, Jeju Island,
Korea. Association for Computational Linguistics.

Jonathan K. Kummerfeld and Dan Klein. 2013. Error-
driven analysis of challenges in coreference resolu-
tion. In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing,
pages 265–277, Seattle, Washington, USA. Associ-
ation for Computational Linguistics.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL-HLT, pages 260–270.

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min
Zhang, and Guodong Zhou. 2017. Modeling source
syntax for neural machine translation.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Shinichi Nakagawa and Innes C Cuthill. 2007. Effect
size, confidence interval and statistical significance:
a practical guide for biologists. Biological reviews,
82(4):591–605.

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel,
Danish Pruthi, and Xinyi Wang. 2019. compare-mt:
A tool for holistic comparison of language genera-
tion systems. arXiv preprint arXiv:1903.07926.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Conference
of NAACL, volume 1, pages 2227–2237.

Lev Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recog-
nition. In Proceedings of the Thirteenth Confer-
ence on Computational Natural Language Learning
(CoNLL-2009), pages 147–155.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. Comet: A neural framework for mt
evaluation. arXiv preprint arXiv:2009.09025.

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Be-
linkov, and Nir Shavit. 2019. A constructive predic-
tion of the generalization error across scales. arXiv
preprint arXiv:1909.12673.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2019.
Wikimatrix: Mining 135m parallel sentences in
1620 language pairs from wikipedia. CoRR,
abs/1907.05791.

Thibault Sellam, Dipanjan Das, and Ankur Parikh.
2020. BLEURT: Learning robust metrics for text
generation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7881–7892, Online. Association for
Computational Linguistics.

Marco Turchi, Tijl De Bie, and Nello Cristianini. 2008.
Learning performance of a machine translation sys-
tem: a statistical and computational analysis. In
Proceedings of the Third Workshop on Statistical
Machine Translation, pages 35–43.

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu.
2020. On the inference calibration of neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3070–3079, Online. Association for
Computational Linguistics.

Mengzhou Xia, Antonios Anastasopoulos, Ruochen
Xu, Yiming Yang, and Graham Neubig. 2020. Pre-
dicting performance for natural language processing
tasks. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,

https://doi.org/10.1145/2063576.2063688
https://doi.org/10.1145/2063576.2063688
https://www.aclweb.org/anthology/P12-1003
https://www.aclweb.org/anthology/P12-1003
https://www.aclweb.org/anthology/D12-1096
https://www.aclweb.org/anthology/D12-1096
https://www.aclweb.org/anthology/D12-1096
https://www.aclweb.org/anthology/D13-1027
https://www.aclweb.org/anthology/D13-1027
https://www.aclweb.org/anthology/D13-1027
http://arxiv.org/abs/1705.01020
http://arxiv.org/abs/1705.01020
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1907.05791
http://arxiv.org/abs/1907.05791
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.764
https://doi.org/10.18653/v1/2020.acl-main.764
https://doi.org/10.18653/v1/2020.acl-main.764

3714

pages 8625–8646, Online. Association for Compu-
tational Linguistics.

Mengzhou Xia, Xiang Kong, Antonios Anastasopou-
los, and Graham Neubig. 2019. Generalized data
augmentation for low-resource translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5786–
5796, Florence, Italy. Association for Computa-
tional Linguistics.

A Datasets

Named Entity Recognition (NER) We
choose two well-established benchmark datasets:
CoNLL-2003 2 and OntoNotes 5.0. 3 CoNLL-
2003 is drawn from Reuters news. OntoNotes
5.0 is collected from newsgroups (NW), broadcast
news (BN), broadcast conversation (BC), weblogs
(WB), magazine genre (MZ), and telephone speech
(TC), in which the first five genres of text are used
in this paper.

Chinese Word Segmentation (CWS) We con-
sider five mainstream datasets: CKIP, CTB,
MSR, NCC, and SXU, from SIGHAN2005 4 and
SIGHAN2008 5. The traditional Chinese char-
acters in CKIP are mapped to simplified Chinese
characters in our experiment.

B Models

Our NER (CWS) models can be decomposed into
four aspects: 1) character/subword encoders; 2)
word (bigram) embeddings; 3) sentence-level en-
coders; 4) decoders.

The four aspects of NER can be summarized as:
1) character/subword encoder: ELMo (Peters et al.,
2018), Flair (Akbik et al., 2018; Akbik et al.),
BERT 6 (Peters et al., 2018; Devlin et al., 2018);
2) additional word embeddings: GloVe (Pen-
nington et al., 2014); 3) sentence-level encoders:
LSTM (Hochreiter and Schmidhuber, 1997), CNN
(Kalchbrenner et al., 2014; Chen et al., 2019); 4)
decoders: MLP or CRF (Lample et al., 2016; Col-
lobert et al., 2011).

The four aspects’ setting of CWS: 1) charac-
ter/subword encoder: ELMo, BERT; 2) bigram em-
beddings: Word2Vec (Mikolov et al., 2013a), av-
eraging the embedding of two contiguous charac-

2https://www.clips.uantwerpen.be/conll2003/ner/
3https://catalog.ldc.upenn.edu/LDC2013T19
4http://sighan.cs.uchicago.edu/bakeoff2005/
5https://www.aclweb.org/mirror/ijcnlp08/sighan6/chinesebakeoff.htm
6BERT is grouped into the subword encoder because we

use it to obtain the representation of subwords.

Feature NER CWS MT POS

Sparisity 0.0 0.0 0.346 0.019
Shape (11,6,9,4) (5,8,8,4) (39,39,22) (26,60,14)

Table 3: Statistics of performance tensors for four tasks.
Sparsity denotes the percentage of missing values in the ten-
sor

ters; the settings of 3) the sentence-level encoders
and 4) decoders are equal to NER.

We can also do bootstrap for predictions us-
ing regression models. If we consider recovering
missing data with CP decomposition as a predic-
tion method, we can construct a CI on the pre-
dicted values too.

C Hyper-parameters

For XGBoost, we use squared error as the objec-
tive function for regression and set the learning
rate as 0.1. We allow the maximum tree depth to
be 10, the number of trees to be 100, and use the
default regularization terms to prevent the model
from overfitting. For LGBM, we set the objective
as regression for LGBMRegressor, the number of
boosted trees and maximum tree leaves to be 100,
adopt a learning rate of 0.1, and use the default
regularization terms. For the Robust PCA model,
we scale all the datasets, adopt the default regular-
ization parameter of 1 for both the low rank and
the sparse tensor, and set the learning rate as 1.1.
For CP Decomposition, we do not standardize the
features in CWS and NER, but do so for WMT
and POS. We adopt a rank r = 5 in training and
performance prediction, expressing the recovered
tensor used for prediction to be a sum of 5 rank-1
tensors.

Statistics of Tensor Tab. 3, where sparsity de-
notes the percentage of missing values in the ten-
sor.

https://doi.org/10.18653/v1/P19-1579
https://doi.org/10.18653/v1/P19-1579

