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Abstract

This paper explores how the Distantly Super-
vised Relation Extraction (DS-RE) can bene-
fit from the use of a Universal Graph (UG),
the combination of a Knowledge Graph (KG)
and a large-scale text collection. A straight-
forward extension of a current state-of-the-art
neural model for DS-RE with a UG may lead
to degradation in performance. We first report
that this degradation is associated with the dif-
ficulty in learning a UG and then propose two
training strategies: (1) Path Type Adaptive Pre-
training, which sequentially trains the model
with different types of UG paths so as to pre-
vent the reliance on a single type of UG path;
and (2) Complexity Ranking Guided Attention
mechanism, which restricts the attention span
according to the complexity of a UG path so as
to force the model to extract features not only
from simple UG paths but also from complex
ones. Experimental results on both biomedi-
cal and NYT10 datasets prove the robustness
of our methods and achieve a new state-of-
the-art result on the NYT10 dataset. The
code and datasets used in this paper are avail-
able at https://github.com/baodaiqgin/
UGDSRE.

1 Introduction

Relation Extraction (RE) is an important task in
Natural Language Processing (NLP). RE aims to
turn unstructured texts into structured Knowledge
Graph (KG), which is typically stored as (eq, r, €2)
triplets, where e; is a head entity, r is a relation
and es is a tail entity, such as (aspirin, may_treat,
pain) and (Guy Maddin, place_lived, Winnpeg). RE
can be formulated as a classification task to pre-
dict a predefined relation r from entity pair (eq, e2)
annotated evidences.

One obstacle that is encountered when building
a RE system is the generation of a large amount of
manually annotated training instances, which is ex-

pensive and time-consuming. For coping with this
difficulty, Mintz et al. (2009) propose Distant Su-
pervision (DS) to automatically generate training
samples via linking KGs to texts. They assume that
if (e1, r, €2) is in a KG, then all sentences that con-
tain (e, e2) (hereafter, sentence evidences) express
the relation . It is well known that the DS as-
sumption is too strong and inevitably accompanies
the wrong labeling problem, such as the sentence
evidences (1b and 2) below, which fail to express
may_treat and place_lived relation respectively.

(1) a. Aspirin., is widely used for short-term
treatment of pain..,, fever or colds.

b. The tumor was remarkably large in size,
and pain., unrelieved by aspirin.,.

(2) He is now finishing a documentary about
Winnipeg.,, the final installment of a per-
sonal trilogy that began with “Cowards Bend
the Knee” (a 2003 film that also featured a
hapless hero named Guy Maddin., ).

Recently, neural network models with attention
mechanism have been proposed to alleviate the
wrong labeling problem and attend informative sen-
tence evidences such as (1a) (Lin et al., 2016; Ji
et al., 2017; Du et al., 2018; Jat et al., 2018; Han
et al.,, 2018a,b). However, there can be a large
portion of entity pairs that lack such informative
sentence evidences that explicitly express their re-
lation. This makes Distantly Supervised Relation
Extraction (DS-RE) further challenging (Sun et al.,
2019).

For compensating the lack of informative sen-
tence evidences, Dai et al. (2019) utilize multi-
hop paths connecting a target entity pair (hereafter,
path) over a KG as extra evidences for DS-RE. An
example of such multi-hop KG path can be seen
in Figure 1, where p; depicts a multi-hop KG path
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Figure 1: Overview of our UG-based framework, where Colesevelam HCI and Type 2 Diabetes are the target
entities, COLESEVELAM ..., Colestipol and hyperglyceridemia are intermediate entities, each UG path consists
of multiple hops and each hop represents a KG relation (such as “Colestipol may treat hyperglyceridemia’) or Text
(or Textual) relation (such as TR1 and TR2), which is the sentence containing two (target or intermediate) entities.

of the form of e; component,of es may_treat es.

The model of Dai et al. (2019) uses such multi-hop
paths as additional features for predicting the re-
lation between a given target entity pair (e1, e2),
which is reported effective for performance im-
provement. However, KGs are often highly in-
complete (Min et al., 2013) and may be too sparse
to provide enough informative paths in practice,
which may hamper the effectiveness of multi-hop
paths.

Given this background, in this study, we take one
step further, aiming for inducing maximal signals
of distant supervision from both a KG and a large
text collection (hereafter, Text). For this purpose,
we consider using multi-hop paths over a Univer-
sal Graph (UG) as extra features for DS-RE. Here,
we define a UG as a joint graph representation of
both KG and Text, where each node represents an
entity from KG or Text, and each edge indicates a
KG relation or Textual relation, as shown in Fig-
ure 1. The path p, in the figure is an example of
UG path, comprising a textual edge TR1, a KG
edge may_treat, and another textual edge TR2. By
augmenting the original KG with textual edges,

one can expect far more chances to find informa-
tive path evidences between any given target entity
pairs, because the number of such textual edges is
likely to be much larger than the number of KG
edges (Note that one can collect as many textual
edges as needed from a raw text corpus with an
entity linker). Extending a KG to a UG, therefore,
may allow a DS-RE model to learn richer distant
supervision signals.

The idea of using multi-hop paths over a UG
is not necessarily new on its own. For exam-
ple, Toutanova et al. (2015) propose to use a UG
for knowledge graph completion, and Das et al.
(2017b) propose a model trained to reason over a
UG for question answering. However, there is no
prior study that has explored the effective way to
use a UG for the task of DS-RE from text. In fact,
finding an effective way of using a UG for DS-RE
is not as simple as it may seem. As we report in
this paper, a straightforward extension of the Dai
et al. (2019) model to the UG setting may result in
performance degradation.

Motivated by this, in this paper, we address how
one can make effective use of UG for DS-RE. We
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first report our observation that a straightforward
extension of the Dai et al. (2019) model to the UG
setting tends to allocate the majority of attention
to only a limited set of UG paths such as short
KG paths and miss out the learning from a wide
range of UG paths (§4.1), which hinders perfor-
mance gain. In order to alleviate the negative ef-
fect of the attention bias and realize the potential
of UG paths, we propose two training (or debias-
ing) strategies: (1) Path Type Adaptive Pretraining
(§4.2), which aims to improve the adaptability of
the model to various UG paths; and (2) Complex-
ity Ranking Guided Attention mechanism (§4.3),
which enables the model to learn from both simple
and complex UG paths. Experimental results on
both biomedical and NYT10 (Riedel et al., 2010)
datasets prove that: (1) UG paths have the potential
to bring performance gain for DS-RE as compared
with KG paths; (2) the proposed training methods
are effective to fully exploit the potential of UG
paths for DS-RE because the proposed methods
significantly and consistently outperform several
baselines on both datasets and especially achieve a
new state-of-the-art result on the NYT10 dataset.

2 Related Work

To improve the performance of a DS-RE model,
recently, researchers introduce various attention
mechanisms. Lin et al. (2016) propose a relation
vector based attention mechanism. Jat et al. (2018);
Du et al. (2018) propose multi-level (e.g., word-
level and sentence-level) structured attention mech-
anism. Ye and Ling (2019) apply both intra-bag and
inter-bag attention for DS-RE. Han et al. (2018b)
propose a relation hierarchy based attention mecha-
nism. Han et al. (2018a) propose a joint model that
adopts a KG embeddings based attention mecha-
nism. Jia et al. (2019) propose an attention regular-
ization framework to select informative sentence
evidences for DS-RE. However, these models rely
only on noisy sentence evidences from DS, neglect-
ing the rich UG paths for DS-RE.

Besides the sentence evidences from DS, re-
searchers also leverage external evidences for DS-
RE. Ji et al. (2017) apply entity descriptions gen-
erated from Freebase and Wikipedia as extra evi-
dences, Lin et al. (2017) utilize multilingual text
as extra evidences and Vashishth et al. (2018) use
multiple extra evidences including entity types, de-
pendency and relation alias information for DS-RE.
Alt et al. (2019) utilize pretrained language model

as background information for DS-RE. Sun et al.
(2019) apply relational table extracted from Web
as supplementary evidences for DS-RE.

To apply DS-RE beyond sentence boundary,
Quirk and Poon (2017) utilize syntactic informa-
tion to extract relation from neighboring sentences.
Zeng et al. (2017) apply two-hop KG paths identi-
fied from two-hop textual paths as extra evidences
for DS-RE. Different from this work, we directly
use the rich UG paths as extra evidences. Dai
et al. (2019) extend the framework of Han et al.
(2018a) by introducing multiple KG paths as extra
evidences for DS-RE. Neelakantan et al. (2015);
Das et al. (2017a) use multiple reasoning paths over
Text and KG for relation prediction in the paradigm
of Knowledge Graph Completion. Our work differs
from the ones mentioned above in two ways: (i) We
utilize the UG paths as extra evidences for the task
of DS-RE from text, (i1) We take into account the
factor of attention bias while encoding UG paths
and propose two effective debiasing methods to
exploit the potential of UG paths for DS-RE.

3 Base Model

We select the DS-RE model proposed by Dai
et al. (2019) as our base model and extend it
into our UG setting. Given a target entity pair
(e1, e2), a bag of corresponding sentence evidences
S, = {s1,...,s,} and a bag of UG paths P, =
{p1, ..., Pm}, the base model aims to measure the
probability of (e, e2) having a predefined rela-
tion 7 (including the empty relation NA). The base
model consists of four main modules: KG Encoder,
Sentence Evidence Encoder, Path Evidence En-
coder and Relation Classification Layer, as shown
in Figure 2.

3.1 KG Encoder

Suppose we have a KG containing a set of fact
triplets O = {(e1,r,e2),...}, where each fact
triplet consists of two entities e, eo € £ and their
relation r € R. Here £ and R stand for the set of
entities and relations respectively.

The KG Encoder then encodes e¢1, ey € £ and
their relation » € R into low-dimensional vec-
tors h, t € R% and r € R? respectively, where
d is the dimensionality of the embedding space.
The KG Encoder adopts TransE (Bordes et al.,
2013) to score a given triplet. Specifically, given a
triplet (eq, r, e2), TransE evaluates its plausibility
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Figure 2: Overview of the base model and our pro-
posed Complexity Ranking Guided Attention mecha-
nism (§4.3). The base model takes the sentence evi-
dences (e.g., s1, ...) containing a target entity pair and
the UG paths (e.g., p1, ...) connecting the entity pair
as input for predicting their relation. The KG embed-
dings of the entity pair (i.e., h and t) are used for cal-
culating the attention over these sentences and paths.
The Complexity Ranking Guided Attention mechanism
is proposed to force the model to attend both simple
UG paths (e.g., p1 ~ p;) and complex ones (e.g.,
Pm—j+1 ~ Pm)-

via Equation 1:

fr(er,e2) =b—[lrp — ], (1)
e =t—h, @)

where b is a bias constant and r;; is a latent relation
embedding for (ej, e2). The conditional probabil-
ity can be formalized over all fact triplets O as
follows:

exp(fr(e1,€2))
ZT’GR exp(fr’(eh 62))
3)

P(elvra 62’057 QR) =

where f¢ and 0 are parameters for entities and
relations respectively.

3.2 Sentence Evidence Encoder

Given a bag of sentence evidences S, =
{s1,...,sn}, the Sentence Evidence Encoder ap-
plies CNN-Max (see Appendix §A.1) on each sen-
tence, namely s; = CNN-Max(s;), to derive the
sentence representations {si, ..., s,, }. The encoder
then calculates the bag-level vector representation

Sa1 via Equation 4:

n
Sall = ) iSi, )
=1

exp((rhe, X;))
> he1 ©XP((Tht; Xk))’
x; = tanh(Ws; + b)

a; =

where ry; is from Equation 2, W is the weight
matrix, b is the bias vector, a; is the weight for the
i-th sentence in .5,..

3.3 Path Evidence Encoder

Given a bag of UG paths P, = {p1,...,pm} con-
necting an entity pair of interest (e1, e2), the Path
Evidence Encoder encodes them into a bag-level
vector representation p,j. Since we represent a
path as a sequence of words (or a long sentence),
as shown in Figure 1, analogously to the Sentence
Evidence Encoder, we apply a CNN-Max (see
Appendix §A.1) to encode each path p;, namely
pi; = CNN-Max(p;). The bag-level path represen-
tation p,y for P, is then calculated via Equation 5:

m
Pall = Z a;pi, &)

L exp({n X))
C ke exp((ean X))
x'; = tanh(Wp; + b)

a

where a} is the weight for the i-th path in P,.

3.4 Relation Classification Layer

The conditional probability of (e1,es) having a
relation r is formulated via Equation 6:

exp([o];)

S exp(fol.)
(6)

where 0 = M]s,y; pan] + d, 0g, Op are the pa-
rameters in Sentence Evidence Encoder and Path
Evidence Encoder, M is the representation matrix
of relations, d is a bias vector, o is the output vector
containing the prediction scores of all predefined
relations, [0].. is the prediction score for the relation
¢, and n, is the total number of relations.

Given a training dataset consisting of triplets
O = {(el,rt,ed), (e2,72,e2),...}, we minimize
the objective function as follows:

P(@l,?", 62|ST‘5PT,9579P) -

10

1
ZlogP (eb, 7 eb|0s,0r)

101 &
+ log P(el’ TZ’ 612|S7’2

10) = (7)

7‘17957913)
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The base model is optimized with Stochastic
Gradient Descent (SGD). Following (Han et al.,
2018a), we optimize P(e},r% eb|0c,0%) and
P(el, 7t eb|S;, P;,0s,0p) in parallel.

4 Proposed Training Method

4.1 Problem of Attention Bias

While extending the base model into our UG set-
ting, we observe that the base model tends to al-
locate more attention to KG or linguistically sim-
ple paths as compared to Textual paths (i.e., the
path comes form Text), Hybrid paths (i.e., the
path comes from both Text and KG), or linguis-
tically complex ones, as shown in Figure 3a and
Figure 3b. We consider that this would be because
paths including Textual relations (i.e., Textual and
Hybrid paths) or complex paths are comparatively
noisier than KG or simple paths, but which does
not necessarily mean the former is not useful.
For instance, in Figure 1, the complex Hybrid
path po is useful for predicting (Colesevelam_HCI,
may_treat, Type_2 Diabetes), because ps implies
a plausible line of reasoning *“ Colesevelam _HCI
alternatwe,tg Colestipol may _treat hyperglyc-
eridemia strong_link_to Type _2_Diabetes”. How-

ever, due to the attention bias mentioned above,
the base model allocates low attention (a} =~
8.0 x 10736) on the informative path, and thus fails
to learn from such complex but useful evidences.

To reduce the negative effect of the attention bi-
ases and make full use of the UG path, we propose
the following two training (or debiasing) strategies:
Path Type Adaptive Pretraining (§4.2) and Com-
plexity Ranking Guided Attention (§4.3).

4.2 Path Type Adaptive Pretraining

As shown in Figure 3a, the base model tends to
bias toward KG paths. This indicates that the base
model mainly relies on KG paths so that it is inca-
pable of capturing informative features from Tex-
tual and Hybrid paths. This bias will decrease the
flexibility and adaptability of the base model to
different types of paths.

To address this issue, we propose a debiasing
strategy called Path Type Adaptive Pretraining. In
this strategy, we pretrain the base model sequen-
tially using Textual, Hybrid, and KG Paths as path
evidences, and then finetune it with all types of
paths as illustrated in Figure 4. We hypothesize
that this strategy can prevent the reliance on a sin-
gle type of UG path and improve the capacity of

extracting features from the entire UG paths, and
thereby increase the performance.

4.3 Complexity Ranking Guided Attention

Similar to the bias towards KG paths, the base
model also focuses on linguistically simple paths,
as shown in Figure 3b, even though complex ones
are informative (e.g. po in Figure 1). We hypothe-
size that restricting the attention span to the com-
plex (simple) paths can force the model to pay
attention to the complex (simple) paths, thereby
effectively utilize them. Under this hypothesis, we
propose a Complexity Ranking Guided Attention
mechanism, as illustrated in Figure 2.

Specifically, given a bag of paths P, =
{p1, .., pm }, we rank them according to their com-
plexity scores (x), which are calculated via k =
A1T1 + A97o + ..., where 7 denotes the feature for
capturing linguistic complexity (e.g., path length)
and A is a corresponding weight, which is a hy-
perparameter. Sentence length (i.e., the number of
tokens in a sentence) and lexical richness (i.e., the
number of token types) are commonly used fea-
tures for evaluating sentence complexity (Brunato
et al., 2018). Therefore, this work adopts them to
calculate the complexity for a given path.

Then, we group top j most and least complex
paths into a set of complex and simple paths respec-
tively, where j is a hyperparameter’. The set level
representation is calculated via the Equation 8.

Pcomplex or simple = E
i€top_j ori€last_j

/ .
a;P; (8)

o — exp({rpt, X's))
' Zketop,j or k€last_j exp((rht, X/k>) ’
x'; = tanh(Wp; + b)

Finally, we concatenate the resulting represen-
tation Sgnal, Pfinals Psimple and Pcomplex a8 the
input to the relation classification layer. The
conditional probability P(ey,r, e2|Sy, P, 0s,0p)
is formulated via Equation 9, where o =
M[Sall; Pall; Pcomplex; psimple] +d.

exp([o])

2 ey exp([o]e)
©)

P(elar> 62|S7“aPT’,9579P) =

'Tn our experiments, we set j as 30 for NYT10 dataset and
50 for Biomedical dataset.
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S Experiments

5.1 Data

We evaluate our proposed framework on a biomedi-
cal dataset and NYT10 dataset (Riedel et al., 2010).
The statistics of both datasets is summarized in
Table 1. We will detail both datasets as follows.
Biomedical Dataset. This datatset is created by
linking biomedical KG with biomedical Text. We
choose UMLS? and Medline corpus as the biomed-
ical KG and Text respectively. UMLS is a fre-
quently used biomedical knowledge base, while
Medline corpus is a large collection of biomedi-
cal abstracts, both are developed and maintained
by the U.S. National Library of Medicine?. For
identifying UMLS entity mentions in the Medline
corpus, we use a state-of-the-art UMLS Named En-

Mttps://www.nlm.nih.gov/research/
umls/
https://www.nlm.nih.gov/

tity Recognizer (NER), ScispaCy (Neumann et al.,
2019). The NER identifies UMLS concepts and
annotates them by their corresponding UMLS Con-
cept Unique Identifier (CUI) and entity types.

From the UMLS KG and the entity linked Med-
line corpus, we extract fact triplets (i.e., (e, 7, €2))
and corresponding sentence evidences containing
(e1, e2) under the restriction that: (1) each entity
pair should be connected by a RO (RO stands
for “has Relationship Other than synonymous, nar-
rower, or broader”) relationship; (2) each entity
should belong to the following entity types: Protein,
Gene, Disease or Syndrome, Enzyme, Chemical,
Sign or Symptom and Pharmacologic Substance.
Then we divide the collected triplets and sentence
evidences into training and testing set according
to the year when the source abstract of sentence
evidence was published. The former is aligned to
the years until 2008 and the latter to the years 2009
~ 2018, ensuring the testing set only contains the
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[#R ]| #EP | #Related EP [ #Sentence | #UG Path

Biomedical | 40 100,549 / 10,936 / 165,692/ | 12,854,696 /
21,081 1,804 28,912 2,346,007

281,270/ 18,252/ 522,611/ | 8,967,153/
NYTIO 33 96,678 1,950 172,448 2,984,611

Table 1: Statistics of datasets in this work, where R and
EP stand for the target Relation and Entity Pair, #1/#2
represent the number of training and testing data respec-
tively.

unobserved triplets.

To simulate the noise in the real world, besides
the “related” triplets, we also extract the “unrelated”
triplets and sentence evidences based on a closed
world assumption: pairs of entities not listed in a
KG are regarded to have NA relation and sentences
containing them are considered to be the NA sen-
tence evidences. We divide the NA triplets and
NA sentence evidences in the same way mentioned
above. We use a subset of UMLS (see Appendix
§A.3) and the Medline abstracts published until
2008 as the KG and Text respectively to create the
UG for path retrieval. In addition, we use the same
subset of UMLS triplets mentioned above to train
the KG Encoder introduced in §3.

NYT10. The dataset is created by aligning Free-
base relational facts with the New York Times Cor-
pus. Sentence evidences from the year 2005 ~
2006 are used for training and the evidences from
2007 are used for testing. NYT10 dataset has been
widely used by (Lin et al., 2016; Ji et al., 2017;
Du et al., 2018; Jat et al., 2018; Du et al., 2018;
Han et al., 2018a,b; Vashishth et al., 2018; Ye and
Ling, 2019; Altet al., 2019). We use Freebase* and
ClueWeb12 with Freebase entity mention annota-
tions (Gabrilovich et al., 2013) as the KG and Text
to create the UG for path searching. In addition,
following (Han et al., 2018a), we use FB60K for
training the KG Encoder.

UG path search. Given an entity pair (e, €3),
the UG path set P, is obtained by performing ran-
dom walks over the UG from e till e; with maxi-
mum step’.

5.2 Settings

We follow (Lin et al., 2016) and conduct the held-
out evaluation, in which the model for DS-RE is
evaluated by comparing the fact triplets identified
from evidences (i.e., the bag of sentence evidences

“From the entire Freebase, we only collect the triplets with
the relations that are mentioned in NYT10 dataset for UG
creation, ensuring not to overlap with testing set.

>We manually set the maximum step as 3.

S, and the bag of UG path evidences FP,) with
those in KG. Following the evaluation of previous
works, we draw Precision-Recall curves and report
the Area Under Curve (AUC) and Precision@N
(P@N) metrics, which gives the percentage of cor-
rect triplets among top N ranked candidates. The
parameter settings of our experiments are detailed
in Appendix §A.2.

To demonstrate the effectiveness of our frame-
work, we choose the model proposed by Dai
et al. (2019) as the baseline model, because this is
the closest model in terms of incorporating mul-
tiple paths for DS-RE. Henceforth, “Sent+KG”
is the baseline model, which uses both sen-
tence evidences and KG paths. “Sent+UG” rep-
resents the base model in §3 which takes UG
paths instead of KG paths as path evidences.
“Sent+UG+Pretrain” and “Sent+UG+Ranking” de-
note the base model trained with Path Type Adap-
tive Pretraining strategy and the base model with
Complexity Ranking Guided Attention mechanism,
respectively. “Sent+UG+Ranking+Pretrain” means
the base model trained with both strategies.

5.3 Results and Discussion

Precision-Recall Curves. The Precision-Recall
(PR) curves of each model on the biomedical and
NYTI10 datasets are shown in Figure 5 and Fig-
ure 6, respectively. The results show that: (1)
“Sent+UG” does not have obvious advantages than
“Sent+KG”, illustrating that due to the biases dis-
cussed in §4.1, simply applying UG paths on the
base model has limited effect on improving the
performance of DS-RE. (2) “Sent+UG+Pretrain”
and “Sent+UG+Ranking” achieve better overall
performance than “Sent+KG” on both datasets, es-
pecially when the recall is greater than 0.3, demon-
strating that UG has the potential to enhance the
performance and the two proposed debiasing strate-
gies are effective for exploiting the potential of
UG for DS-RE. (3) “Sent+UG+Ranking+Pretrain”
achieves the highest precision over the (almost) en-
tire recall range on both datasets, proving that the
two proposed strategies have a mutual complemen-
tary relationship on exploiting UG for DS-RE. This
is understandable because the two proposed strate-
gies deal with different types of biases, in addition,
“Pretrain” helps the base model adapt to UG paths
by effectively tuning its weights, while “Ranking”
enhances the base model by adjusting its attention
mechanism. (4) The consistent improvement on
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Figure 5: PR curves on Biomedical dataset. Figure 6: PR curves on NYT10 dataset.
Biomedical dataset NYT10 dataset
Model AUC P@0.5k P@lk P@1.5k P@2k AUC P@0.1k P@02k P@0.3k P@0.5k P@lk P@2k
Sent 9.6 30.0 20.8 18.7 16.3 36.6 81.0 73.5 68.3 62.0 53.8 40.2
Sent+KG  62.6 91.4 86.1 74.2 58.5 50.2 80.0 82.0 81.3 77.2 67.9 50.3
Sent+UG  61.0 87.6 834 73.8 58.5 48.4 74.0 76.0 74.7 74.0 66.7 50.3
Sent+U.G 70.1 954 89.7 76.3 60.4 52.7 83.0 82.0 80.3 78.6 70.4 52.6
+Pretrain
SBHH—[.JG 74.2 95.2 92.2 81.1 622 521 77.0 80.0 79.3 77.4 70.3 54.4
+Ranking
Sent+UG
+Ranking 77.5 954 93.1 83.9 644 55.0 86.0 84.0 83.3 80.4 71.9 54.5
+Pretrain
Table 2: P@N and AUC on Biomedical and NYT10 dataset (k=1000).
L0 PR curves. We also observe that the effectiveness
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Figure 7: PR curves of previous state-of-the-art meth-
ods and our proposed model on NYT10 dataset.

two datasets from different domains further proves
the validity of our proposed methods.

AUC and P@N Evaluation. Table 2 further
presents the results in terms of AUC and P@N.
From them, we have similar observation to the

of UG paths is more pronounced on Biomedical
dataset than on NYT10 dataset. We speculate that
compared to the generic NYT10 dataset, further
Background Knowledge (BK) is needed to identify
relations from Biomedical dataset, and UG paths
could be utilized as the BK to facilitate the scien-
tific DS-RE.

Comparison with State-of-the-art Baselines
on NYT10. To demonstrate the effectiveness of our
proposed model, we also compare it against the fol-
lowing baselines on NYT10 dataset: Mintz (Mintz
et al., 2009), MultiR (Hoffmann et al., 2011),
MIMLRE (Surdeanu et al., 2012), PCNN (Zeng
et al., 2015), PCNN+ATT (Lin et al., 2016),
BGWA (Jat et al., 2018), PCNN+HATT (Han et al.,
2018b), RESIDE (Vashishth et al., 2018), DIS-
TRE (Alt et al., 2019) and Sent+KG (Dai et al.,
2019). The results shown in Figure 7 and Ta-
ble 3 indicate that: (1) our selected base model,
“Sent+KG”, is a strong baseline because it signif-
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System AUC P@0.1k P@02k P@03k P@05k P@lk P@2k
Mintzf 10.7 523 50.2 45.0 39.7 33.6 23.4
PCNN+ATTT  34.1 73.0 68.0 67.3 63.6 533 40.0
RESIDE{ 41.5 81.8 754 74.3 69.7 59.3 45.0
PCNN+HATT; 42.0 81.0 79.5 75.7 68.0 58.6 421
DISTRE{ 422 68.0 67.0 65.3 65.0 60.2 479
Sent+KG 50.2 80.0 82.0 81.3 717.2 67.9 50.3
Our Model 55.0 86.0 84.0 83.3 80.4 71.9 54.5

Table 3: P@N and AUC from previous state-of-the-art DS-RE models and our proposed model on NYT10 dataset,
where frepresents that these results are quoted from (Alt et al., 2019) and findicates the results using the pretrained

model from (Han et al., 2018b).

icantly outperforms other state-of-the-art models;
and (2) our model can effectively take advantage of
the rich UG paths for DS-RE because it beats the
strong baseline and achieves a new state-of-the-art
result on the commonly used DS-RE dataset.

Base  Prop. Biomedical Triplet
X v/ ( Beta-2...Gene , gene_associated_with_disease, Asthma)i
Multi-hop Path
hopy: “The human Beta-2...Gene is responsible for
. the binding of endogenous Catecholamine and their ...”

Low High B . . . .,
hopy: “ Catecholamine chemical structure of Epinephrine
hops: “ Epinephrine may treat Asthma ”.

Base  Prop. NYT10 Triplet

X v/ ( San_Francisco , /location/contains, Noe_Valley )
Multi-hop Path
hopy: “ San_Francisco /location/contains Fort_Point ”
. hopa: “Surf spots and surfing regions include Northern CA,

Low High the Bay Area, San Francisco, Ocean Beach and Fort Point "
hops: “ Bay Area /location/contains Noe Valley ”

Table 4: Some examples of attention distri-

bution over paths from “Sent+UG” (Base) and
“Sent+UG+Ranking+Pretrain” (Prop.), where v (or X)
represents the correct (or incorrect) prediction of the
target relation.

Case Study. Table 4 shows the UG path
examples that are scored with highest (“High™)
or lowest (or lower than 1.0 x 1073) (“Low”)
attention by the base model and our proposed
framework. The paths in the table generally

mean “ Beta-2... Gene  is_responsible_for

Catecholamine is_the_chemical_class_of

Epinephrine may_treat Asthma”  and
e

“ San_Francisco contaz’n§ Fort_Point

equal_status Bay_Area contain§ Noe_Valley ”,
-

and thus can be seen as the useful path evidences
for identifying gene_associated_with_disease and
/location/contains relation respectively. These
examples indicate that our proposed training

strategies could help the base model attend such
informative UG paths so that it can correctly
identify the target relation.

6 Conclusion and Future Work

We have introduced UG paths as extra evidences
for the task of DS-RE from text. In order to fully
take advantage of the rich UG paths, we have
proposed two training (or debiasing) strategies:
Path Type Adaptive Pretraining and Complexity
Ranking Guided Attention mechanism. We have
conducted experiments on both biomedical and
NYTI10 datasets. The results show that the two
proposed methods are effective for exploiting the
potential of UG paths for improving the perfor-
mance of DS-RE.

In the future, we plan to carry out the following
steps: (1) we further investigate how the proposed
training methods influence the performance via
manual analysis so as to better the efficiency; and
(2) instead of random walk, we may collect UG
paths by adopting more sophisticated mechanisms
such as training a path searching agent via rein-
forcement learning to prevent redundant and noisy
paths.
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A Appendix
A.1 CNN-Max

Convolutional Neural Network with Max pooling
layer (CNN-Max) is adopted to derive the sentence
representation s and path representation p. Specif-
ically, vector representation vy for each word w;
is calculated via Equation 10, where W[ . is a
word embedding projection matrix (Mikolov et al.,
2013), WP "is a word position embedding pro-
Jjection matrix (Zeng et al., 2014), x}” is a one-hot
word representation and x;” is a one-hot word po-
sition representation, which indicates the relative
distance between the current word and the target
entity pair.

[ wpl | wp2]
)

ve = [viiv, vy (10)

Wembxt ’

1 1
Vil = WP P

wp2 wp2
=WV embxt

The sentence representation s and path representa-
tion p are formulated via the Equation 11, where
Wsent (or WPath) s the convolution kernal, bse"
(or bP®") is the corresponding bias vector, v
(or vV athy is the vector for each word wy in a sen-
tence (or path), [vec]; is the i-th value of vec, v is
the dimensionality of s and p, and % is the convo-
lutional window size.

[s)s = maxc{[bi!];}, Wi = 1,...,v

11
) =m0, Vi = Lo

hfent — tanh(wsentzfent 4 bsent)’
hpath _ tanh(Wpach%?ath + bpath)7

sent __ sent . <,sent

z;"" = [v} (k—1)/25 > Vit (k— 1)/2]7
path [ path path ]
Ze = WVi—(k-1)/20 0 Vi (k—1)/2

A.2 Parameter Settings

All of the hyperparameters used in our experiments
are listed in Table 5. Most of them follow the
hyperparameter setting in (Dai et al., 2019) and
(Han et al., 2018a). We use a Word2Vec model®
to train the word embeddings on the UMLS entity
linked corpus for the biomedical dataset, and adopt
the word embeddings released by (Lin et al., 2016)
for NYT10 dataset. We apply Stochastic Gradient
Descent (SGD) to optimize the proposed DS-RE
model.

8Gensim  word2vec  implementation:

//radimrehurek.com/gensim/models/
word2vec.html

https:

Hyperparameter Biomedical | NYT10
word embedding dimension 50 50
KG embedding dimension 50 50
position embedding dimension 5 5
CNN window size 3 3
CNN filter number 100 230
dropout rate 0.5 0.5
learning rate

(for sentences and paths) 0.02 0.05
learning rate (for KG) 0.05 0.001
batch size 50 160

Table 5: Hyperparameters used in our experiments.

Selected Entity Types
Antibiotic, Biologically Active Substance,
Bacterium, Organ, Cell Component,

Cell Function, Cell, Clinical Drug, Ion,
Eukaryote, Food, Genetic Function
Hazardous or Poisonous Substance,
Hormone, Immunologic Factor,
Inorganic Chemical, Organic Chemical,
Pathologic Function, Receptor,

Steroid, Virus and Vitamin.

Table 6: List of selected UMLS entity types.

A.3 Subset of UMLS

Besides the 7 entity types mentioned above, we
also use other 22 entity types, as listed in Table 6,
to collect the UMLS triplets that are connected by
RO relationship, ensuring all testing triplets are
removed. The main reasons to manually restrict
the entity type is because (1) we observe that most
of the Medline abstracts discuss the relationship
among these entity types; (2) these concrete entities
could prevent semantic drift while searching UG
paths.
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