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Abstract

We present a joint model for entity-level rela-
tion extraction from documents. In contrast
to other approaches – which focus on local
intra-sentence mention pairs and thus require
annotations on mention level – our model op-
erates on entity level. To do so, a multi-task
approach is followed that builds upon corefer-
ence resolution and gathers relevant signals via
multi-instance learning with multi-level repre-
sentations combining global entity and local
mention information. We achieve state-of-the-
art relation extraction results on the DocRED
dataset and report the first entity-level end-to-
end relation extraction results for future ref-
erence. Finally, our experimental results sug-
gest that a joint approach is on par with task-
specific learning, though more efficient due to
shared parameters and training steps.

1 Introduction

Information extraction addresses the inference of
formal knowledge (typically, entities and relations)
from text. The field has recently experienced a
significant boost due to the development of neural
approaches (Zeng et al., 2014; Zhang and Wang,
2015; Kumar, 2017). This has led to two shifts in
research: First, while earlier work has focused on
sentence level relation extraction (Hendrickx et al.,
2010; Han et al., 2018; Zhang et al., 2017), more re-
cent models extract facts from longer text passages
(document-level). This enables the detection of
inter-sentence relations that may only be implicitly
expressed and require reasoning across sentence
boundaries. Current models in this area do not rely
on mention-level annotations and aggregate signals
from multiple mentions of the same entity.

The second shift has been towards multi-task
learning: While earlier approaches tackle entity
mention detection and relation extraction with sepa-
rate models, recent joint models address these tasks

The Portland Golf Club is a private golf club
in the northwest United States, in suburban
Portland, Oregon. The PGC is located in
the unincorporated Raleigh Hills area of east-
ern Washington County, southwest of down-
town Portland and east of Beaverton. PGC
was established in the winter of 1914, when
a group of nine businessmen assembled to
form a new club after leaving their respective
clubs. The golf club hosted the Ryder Cup
matches of 1947, the first renewal in a decade,
due to World War II. The U.S. team defeated
Great Britain 11 to 1 in wet conditions in early
November.

Figure 1: Our goal is to perform end-to-end entity-level
relation extraction on whole documents. We extract
entity mentions (“PGC”), entity clusters ({Portland
Golf Club, PGC, golf club}), their types (ORG) and
relations to other entities in the document, such as
({Portland Golf Club, PGC, golf club}ORG, inception,
{1914}TIME), with a single, joint model. Note that
document-level relation extraction requires the aggre-
gation of relevant information from multiple sentences,
such as in ({Raleigh Hills}LOC , country, {United
States, U.S.})LOC). Other entities in the example doc-
ument are omitted for clarity.

at once (Bekoulis et al., 2018; Nguyen and Ver-
spoor, 2019; Wadden et al., 2019). This does not
only improve simplicity and efficiency, but is also
commonly motivated by the fact that tasks can ben-
efit from each other: For example, knowledge of
two entities’ types (such as person+organization)
can boost certain relations between them (such as
ceo of).

We follow this line of research, and present
JEREX1 (“Joint Entity-Level Relation Extractor”),

1The code for reproducing our results is available at
https://github.com/lavis-nlp/jerex.

https://github.com/lavis-nlp/jerex


a novel approach for joint information extraction.
JEREX is to our knowledge the first approach that
combines a multi-task model with entity-level re-
lation extraction: In contrast to previous work, our
model jointly learns relations and entities with-
out annotations on mention level, but extracts
document-level entity clusters and predicts rela-
tions between those clusters using a multi-instance
learning (MIL) (Dietterich et al., 1997; Riedel
et al., 2010; Surdeanu et al., 2012) approach. The
model is trained jointly on mention detection, coref-
erence resolution, entity classification and relation
extraction (Figure 1).

While we follow best practices for the first three
tasks, we propose a novel representation for rela-
tion extraction, which combines global entity-level
representations with localized mention-level ones.
We present experiments on the DocRED (Yao et al.,
2019) dataset for entity-level relation extraction.
Though it is arguably simpler compared to recent
graph propagation models (Nan et al., 2020) or
special pre-training (Ye et al., 2020), our approach
achieves state-of-the-art results.

We also report the first results for end-to-end
relation extraction on DocRED as a reference for
future work. In ablation studies we show that (1)
combining a global and local representations is
beneficial, and (2) that joint training appears to be
on par with separate per-task models.

2 Related Work

Relation extraction is one of the most studied nat-
ural language processing (NLP) problems to date.
Most approaches focus on classifying the rela-
tion between a given entity mention pair. Here
various neural network based models, such as
RNNs (Zhang and Wang, 2015), CNNs (Zeng
et al., 2014), recursive neural networks (Socher
et al., 2012) or Transformer-type architectures (Wu
and He, 2019) have been investigated. However,
these approaches are usually limited to local, intra-
sentence, relations and are not suited for document-
level, inter-sentence, classification. Since complex
relations require the aggregation of information dis-
tributed over multiple sentences, document-level
relation extraction has recently drawn attention (e.g.
Quirk and Poon 2017; Verga et al. 2018; Gupta
et al. 2019; Yao et al. 2019). Still, these models
rely on specific entity mentions to be given. While
progress in the joint detection of entity mentions
and intra-sentence relations has been made (Gupta

et al., 2016; Bekoulis et al., 2018; Luan et al., 2018),
the combination of coreference resolution with rela-
tion extraction for entity-level reasoning in a single,
jointly-trained, model is widely unexplored.

Document-level Relation Extraction Recent
work on document-level relation extraction directly
learns relations between entities (i.e. clusters of
mentions referring to the same entity) within a doc-
ument, requiring no relation annotations on men-
tion level. To gather relevant information across
sentence boundaries, multi-instance learning has
successfully been applied to this task. In multi-
instance learning, the goal is to assign labels to
bags (here, entity pairs), each containing multi-
ple instances (here, specific mention pairs). Verga
et al. (2018) apply multi-instance learning to detect
domain-specific relations in biological text. They
compute relation scores for each mention pair of
two entity clusters and aggregate these scores using
a smooth max-pooling operation. Christopoulou
et al. (2019) and Sahu et al. (2019) improve upon
Verga et al. (2018) by constructing document-level
graphs to model global interactions. While the
aforementioned models tackle very specific do-
mains with few relation types, the recently released
DocRED dataset (Yao et al., 2019) enables general-
domain research on a rich relation type set (96
types). Yao et al. (2019) provide several baseline ar-
chitectures, such as CNN-, LSTM- or Transformer-
based models, that operate on global, mention av-
eraged, entity representations. Wang et al. (2019)
use a two-step process by identifying related enti-
ties in a first step and classifying them in a second
step. Tang et al. (2020) employ a hierarchical in-
ference network, combining entity representations
with attention over individual sentences to form
the final decision. Nan et al. (2020) apply a graph
neural network (Kipf and Welling, 2017) to con-
struct a document-level graph of mention, entity
and meta-dependency nodes. The current state-
of-the-art constitutes the CorefRoBERTa model
proposed by Ye et al. (2020), a RoBERTa (Liu
et al., 2019) variant that is pre-trained on detect-
ing co-referring phrases. They show that replacing
RoBERTa with CorefRoBERTa improves perfor-
mance on DocRED.

All these models have in common that entities
and their mentions are both assumed to be given. In
contrast, our approach extracts mentions, clusters
them to entities, and classifies relations jointly.



Joint Entity Mention and Relation Extraction
Prior joint models focus on the extraction of
mention-level relations in sentences. Here, most
approaches detect mentions by BIO (or BILOU)
tagging and pair detected mentions for relation
classification, e.g. (Gupta et al., 2016; Zhou et al.,
2017; Zheng et al., 2017; Bekoulis et al., 2018;
Nguyen and Verspoor, 2019; Miwa and Bansal,
2016). However, these models are not able to detect
relations between overlapping entity mentions. Re-
cently, so-called span-based approaches (Lee et al.,
2017) were successfully applied to this task (Luan
et al., 2018; Eberts and Ulges, 2020): By enumer-
ating each token span of a sentence, these models
handle overlapping mentions by design. Sanh et al.
(2019) train a multi-task model on named entity
recognition, coreference resolution and relation ex-
traction. By adding coreference resolution as an
auxilary task, Luan et al. (2019) propagate infor-
mation through coreference chains. Still, these
models rely on mention-level annotations and only
detect intra-sentence relations between mentions,
whereas our model explicitly constructs clusters
of co-referring mentions and uses these clusters to
detect complex entity-level relations in long docu-
ments using multi-instance reasoning.

3 Approach

JEREX processes documents containing multiple
sentences and extracts entity mentions, clusters
them to entities, and outputs types and relations on
entity level. JEREX consists of four task-specific
components, which are based on the same encoder
and mention representations, and are trained in a
joint manner. An input document is first tokenized,
yielding a sequence of n byte-pair encoded (BPE)
(Sennrich et al., 2016) tokens. We then use the pre-
trained Transformer-type network BERT (Devlin
et al., 2019) to obtain a contextualized embedding
sequence (e1, e2, ...en) of the document. Since our
goal is to perform end-to-end relation extraction,
neither entities nor their corresponding mentions
in the document are known in inference.

3.1 Model Architecture

We suggest a multi-level model: First, we localize
all entity mentions in the document (a) by a span-
based approach (Lee et al., 2017). After this, de-
tected mentions are clustered into entities by coref-
erence resolution (b). We then classify the type
(such as person or company) of each entity cluster

by a fusion over local mention representations (en-
tity classification) (c). Finally, relations between
entities are extracted by a reasoning over mention
pairs (d). The full model architecture is illustrated
in Figure 2.

(a) Entity Mention Localization Here our
model performs a search over all document to-
ken subsequences (or spans). In contrast to
BIO/BILOU-based approaches for entity mention
localization, span-based approaches are able to de-
tect overlapping mentions. Let s := (ei, ei+1,
..., ei+k) denote an arbitrary candidate span. Fol-
lowing Eberts and Ulges (2020), we first obtain
a span representation by max-pooling the span’s
token embeddings:

e(s) := max-pool(ei, ei+1, ..., ei+k) (1)

Our mention classifier takes the span representation
e(s) as well as a span size embedding ws

k+1 (Lee
et al., 2017) as meta information. We perform
binary classification and use a sigmoid activation
to obtain a probability for s to constitute an entity
mention:

ŷs = σ
(

FFNNs(e(s) ◦ws
k+1)

)
(2)

where ◦ denotes concatenation and FFNNs is a
two-layer feedforward network with an inner ReLu
activation. Span classification is carried out on all
token spans up to a fixed length L. We apply a filter
threshold αs on the confidence scores, retaining all
spans with ŷs ≥ αs and leaving a set S of spans
supposedly constituting entity mentions.

(b) Coreference Resolution Entity mentions re-
ferring to the same entity (e.g. “Elizabeth II.” and
“the Queen”) can be scattered throughout the in-
put document. To later extract relations on en-
tity level, local mentions need to be grouped to
document-level entity clusters by coreference res-
olution. We use a simple mention-pair (Soon
et al., 2001) model: Our component classifies
pairs (s1, s2) ∈ S×S of detected entity men-
tions as coreferent or not, by combining the span
representations e(s1) and e(s2) with an edit dis-
tance embedding wc

d: We compute the Leven-
shtein distance (Levenshtein, 1966) between spans
d := D(s1, s2) and use a learned embedding wc

d.
A mention pair representation xc is constructed by
concatenation:

xc := e(s1) ◦ e(s2) ◦wc
d (3)
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Figure 2: Our approach combines entity mention localization (a), coreference resolution (b), entity classification
(c) and relation classification (d) within a joint multi-task model, which is trained jointly on entity-level relation
extraction. The sub-components share a single BERT encoder for document encoding. Each input document is only
encoded once (single-pass) to speed-up training/inference, with sub-components operating on the contextualized
embeddings. Both entity classification and relation classification use multi-instance learning to synthesize relevant
signals scattered throughout the input document.

Similar to span classification, we conduct binary
classification using a sigmoid activation, obtaining
a similarity score between the two mentions:

ŷc := σ
(

FFNNc(xc)
)

(4)

where FFNNc follows the same architecture as
FFNNs. We construct a similarity matrix C ∈
Rm×m (with m referring to the document’s over-
all number of mentions) containing the similarity
scores between every mention pair. By applying
a filter threshold αc, we cluster mentions using
complete linkage (Müllner, 2011), yielding a set
E containing clusters of entity mentions. We refer
to these clusters as entities or entity clusters in the
following.

(c) Entity Classification Next, we map each en-
tity to a type such as location or person: We first
fuse the mention representations of an entity cluster
{s1, s2, ..., st} ∈ E by max-pooling:

xe := max-pool(e(s1), e(s2), ..., e(st)) (5)

Entity classification is then carried out on the en-
tity representation xe, allowing the model to draw
information from mentions spread across different
parts of the document. xe is fed into a softmax
classifier, yielding a probability distribution over
the entity types:

ŷe := softmax
(

FFNNe(xe)
)

(6)

We assign the highest scored type to the entity.

(d) Relation Classification Our final component
assigns relation types to pairs of entities. Note that
the directionality, i.e. which entity constitutes the
head/tail of the relation, needs to be inferred, and
that the input document can express multiple rela-
tions between different mentions of the same entity
pair. Let R denote a set of pre-defined relation
types. The relation classifier processes each entity
pair (e1, e2) ∈ E×E , estimating which, if any, rela-
tions fromR are expressed between these entities.
To do so, we score every candidate triple (e1,ri,e2),
expressing that e1 (as head) is in relation ri with e2
(as tail). We design two types of relation classifiers:
A global relation classifier, serving as a baseline,
which consumes the entity cluster representations
xe, and a multi-instance classifier, which assumes
that certain entity mention pairs support specific
relations and synthesizes this information into an
entity-pair level representation.

Global Relation Classifier (GRC) The global
classifier builds upon the max-pooled entity cluster
representations xe

1 and xe
2 of an entity pair (e1, e2).

We further embed the corresponding entity types
(we

1 / we
2), which was shown to be beneficial in

prior work (Yao et al., 2019), and compute an
entity-pair representation by concatenation:

xp :=
(
xe
1 ◦we

1

)
◦
(
xe
2 ◦we

2

)
(7)

This representation is fed into a 2-layer FFNN
(similar to FFNNs), mapping it to the number of
relation types #R. The final layer features sigmoid
activations for multi-label classification and assigns



any relation type exceeding a threshold αr:

ŷr := σ
(

FFNNp(xp)
)

(8)

Multi-instance Relation Classifier (MRC) In
contrast to the global classifier (GRC), the multi-
instance relation classifier operates on mention
level: Since only entity-level labels are avail-
able, we treat entity mention pairs as latent vari-
ables and estimate relations by a fusion over these
mention pairs. For any pair of entity clusters
e1={s11, s12, ..., s1t1} and e2={s21, s22, ..., s2t2}, we
compute a mention-pair representation for any
(s1, s2)∈e1×e2. This representation is obtained by
concatenating the global entity embeddings (Equa-
tion (5)) with the mentions’ local span representa-
tions (Equation (1))

u(s1, s2) :=
(
e(s1) ◦ xe

1

)
◦
(
e(s2) ◦ xe

2

)
(9)

Further, as we expect close-by mentions to be
stronger indicators of relations, we add meta em-
beddings for the distances ds,dt between the two
mentions, both in sentences (ds) and in tokens (dt).
In addition, following Eberts and Ulges (2020),
the max-pooled context between the two mentions
(c(s1, s2)) is added. This localized context pro-
vides a more focused view on the document and
was found to be especially beneficial for long, and
therefore noisy, inputs:

u′(s1,s2):=u(s1,s2) ◦ c(s1,s2) ◦wr
ds ◦w

r′
dt (10)

This mention-pair representation is mapped by a
single feed-forward layer to the original token em-
bedding size (768):

u′′(s1, s2) := FFNNp(u′(s1, s2)) (11)

These focused representations are then combined
by max-pooling:

xr=max-pool({u′′(s1, s2)|s1∈e1,s2∈e2}) (12)

Akin to GRC, we concatenate xr with entity type
embeddings we

1/w
e
2 and apply a two-layer FFNN

(again, similar to FFNNs). Note that for both clas-
sifiers (GRC/MRC), we need to score both (s1, ri,
s2) and (s2, ri, s1) to infer the direction of asym-
metric relations.

3.2 Training
We perform a supervised multi-task training,
whereas each training document features ground

truth for all four subtasks (mention localization,
coreference resolution, as well as entity and rela-
tion classification). We optimize the joint loss of
all four components:

L := βs · Ls + βc · Lc + βe · Le + βr · Lr (13)

Ls, Lc and Lr denote the binary cross entropy
losses of the span, coreference and relation clas-
sifiers. We use a cross entropy loss (Le) for the
entity classifier. A batch is formed by drawing
positive and negative samples from a single docu-
ment for all components. We found such a single-
pass approach to offer significant speed-ups both
in learning and inference:

• Entity mention localization: We utilize all
ground truth entity mentions Sgt of a docu-
ment as positive training samples, and sample
a fixed number Ns of random non-mention
spans up to a pre-defined length Ls as neg-
ative samples. Note that we only train and
evaluate on the full tokens according to the
dataset’s tokenization, i.e. not on byte-pair
encoded tokens, to limit computational com-
plexity. Also, we only sample intra-sentence
spans as negative samples. Since we found
intra-mention spans to be especially challeng-
ing (“New York” versus “New York City”),
we sample up to Ns

2 intra-mention spans as
negative samples.

• Coreference resolution: The coreference clas-
sifier is trained on all span pairs drawn from
ground truth entity clusters Egt as positive
samples. We further sample a fixed number
Nc of pairs of random ground truth entity men-
tions that do not belong to the same cluster as
negative samples.

• Entity classification: Since the entity classifier
only receives clusters that supposedly consti-
tute an entity during inference, it is trained on
all ground truth entity clusters of a document.

• Relation classification: Here we use ground
truth relations between entity clusters as posi-
tive samples and Nr negative samples drawn
from Egt×Egt that are unrelated according to
the ground truth.

Each component’s loss is obtained by averaging
over all samples. We learn the weights and biases
of sub-component specific layers as well as the



Joint Model∗ Pipeline

Level Task Precision Recall F1 Precision Recall F1

(a) Mention Localization 93.29 92.70 92.99 92.87 92.46 92.66
(b) Coreference Resolution 82.52 83.06 82.79 82.11 82.66 82.39
(c) Entity Classification 79.84 80.36 80.10 79.00 79.52 79.26

(d)
Relation Classification 42.76 38.25 40.38 43.61 37.50 40.32
Relation Classification (GRC) 38.69 37.32 37.98 39.07 36.44 37.70

Table 1: Test set evaluation results of our multi-level end-to-end system JEREX on DocRED (using the end-to-end
split). We either train the model jointly on all four sub-components (left) or arrange separately trained models in a
pipeline (right) (∗ joint results are for MRC except for the last row).

meta embeddings during training. BERT is fine-
tuned in the process.

4 Experiments

We evaluate JEREX on the DocRED dataset (Yao
et al., 2019). DocRED ist the most diverse relation
extraction dataset to date (6 entity and 96 relation
types). It includes over 5,000 documents, each con-
sisting of multiple sentences. According to Yao
et al. (2019), DocRED requires multiple types of
reasoning, such as logical or common-sense rea-
soning, to infer relations.

Note that previous work only uses DocRED for
relation extraction (which equals our relation clas-
sifier component) and assumes entities to be given
(e.g. Wang et al. 2019; Nan et al. 2020). On the
other hand, DocRED is exhaustively annotated
with mentions, entities and entity-level relations,
making it suitable for end-to-end systems. There-
fore, we evaluate JEREX both as a relation classi-
fier (to compare it with the state-of-the-art) and as
a joint model (as reference for future work on joint
entity-level relation extraction).

While prior joint models focus on mention-level
relations (e.g. Gupta et al. 2016; Bekoulis et al.
2018; Chi et al. 2019), we extend the strict evalu-
ation setting to entity level: A mention is counted
as correct if its span matches a ground truth men-
tion span. An entity cluster is considered correct
if it matches the ground truth cluster exactly and
the corresponding mention spans are correct. Like-
wise, an entity is considered correct if the cluster
as well as the entity type matches a ground truth
entity. Lastly, we count a relation as correct if its
argument entities as well as the relation type are
correct. We measure precision, recall and micro-F1
for each sub-task and report micro-averaged scores.

Split #Doc. #Men. #Ent. #Rel.

Train 3,008 78,677 58,708 37,486
Dev 300 7,702 5,805 3,678
Test 700 17,988 13,594 8,787
Total 4,008 104,367 78,107 49,951

Table 2: DocRED dataset split used for end-to-end re-
lation extraction.

Dataset split The original DocRED dataset is
split into a train (3,053 documents), dev (1,000)
and test (1,000) set. However, test relation labels
are hidden and evaluation requires the submission
of results via Codalab. To evaluate end-to-end sys-
tems, we form a new split by merging train and dev.
We randomly sample a train (3,008 documents),
dev (300 documents) and test set (700 documents).
Note that we removed 45 documents since they con-
tained wrongly annotated entities with mentions of
different types. Table 2 contains statistics of our
end-to-end split2. We release the split as a refer-
ence for future work.

Hyperparameters We use BERTBASE (cased)3

for document encoding, an attention-based lan-
guage model pre-trained on English text (Devlin
et al., 2019). Hyperparameters were tuned on
the end-to-end dev set: We adopt several settings
from (Devlin et al., 2019), including the usage
of the Adam Optimizer with a linear warmup
and linear decay learning rate schedule, a peak
learning rate of 5e-54 and application of dropout
with a rate of 0.1 throughout the model. We

2Note that DocRED contains some duplicate annotations.
These are included in the statistics, but are filtered for evalua-
tion in the end-to-end setting.

3We use the implementation from (Wolf et al., 2019).
4We performed a grid search over [5e-6, 1e-5, 5e-5, 1e-4,

5e-4].



Model Ign F1 F1

CNN (Yao et al., 2019) 40.33 42.26
LSTM (Yao et al., 2019) 47.71 50.07
Ctx-Aware (Yao et al., 2019)∗ 48.40 50.70
BiLSTM (Yao et al., 2019) 48.78 51.06
Two-Step (Wang et al., 2019)∗ - 53.92
HIN (Tang et al., 2020)∗ 53.70 55.60
JEREX (GRC)∗ 53.76 55.91
LSR (Nan et al., 2020)∗ 56.97 59.05
CorefRo (Ye et al., 2020)∗ 57.90 60.25
JEREX (MRC)∗ 58.44 60.40

Table 3: Comparison of our relation classification com-
ponent (GRC/MRC) with the state-of-the-art on the Do-
cRED relation extraction task. We report test set results
on the original DocRED split. Ign F1 ignores relational
facts also present in the train set. Models marked with ∗
use a Transformer-type model for document encoding.

set the size of meta embeddings (ws, wc, we,
wr

ds
, wr′

dt
) to 25 and the number of epochs to

20. Performance is measured once per epoch
on the dev set, out of which the best performing
model is used for the final evaluation on the test
set. A grid search is performed for the mention,
coreference and relation filter threshold (αs=0.85,
αc=0.85, αr(GRC)=0.55, αr(MRC)=0.6) with
a step size of 0.05. The number of negative
samples (Ns=Nc=Nr=200) and sub-task loss
weights (βs=βc=βr=1, βe=0.25) are manually
tuned. Note that some documents in DocRED ex-
ceed the maximum context size of BERT (512 BPE
tokens). In this case we train the remaining position
embeddings from scratch.

4.1 End-to-End Relation Extraction

JEREX is trained and evaluated on the end-to-end
dataset split (see Table 2). We perform 5 runs for
each experiment and report the averaged results. To
study the effects of joint training, we experiment
with two approaches: (a) All four sub-components
are trained jointly in a single model as described in
Section 3.2 and (b) we construct a pipeline system
by training each task separately and not sharing the
document encoder.

Table 1 illustrates the results for the joint (left)
and pipeline (right) approach. As described in
Section 3, each sub-task builds on the results of
the previous component during inference. We ob-
serve the biggest performance drop for the relation
classification task, underlining the difficulty in de-

JM∗ SM

Task F1 F1

Mention Localization 92.99 92.66
Coreference Resolution 90.54 90.46
Entity Classification 95.66 95.29
Relation Classification 59.46 59.76
Relation Classification (GRC) 56.45 56.55

Table 4: Single-task performance of the joint model
(left) and separate models (right) on the end-to-end
split (∗ joint results are for MRC except for the last
row).

tecting document-level relations. Furthermore, the
multi-instance based relation classifier (MRC) out-
performs the global relation classifier (GRC) by
about 2.4% F1 score. We reason that the fusion
of local evidences by multi-instance learning helps
the model to focus on appropriate document sec-
tions and alleviates the impact of noise in long
documents. Moreover, we found the multi-instance
selection to offer good interpretability, usually se-
lecting the most relevant instances (see Figure 3 for
examples). Overall, we observe a comparable per-
formance by joint training versus using the pipeline
system.

This is also confirmed by the results reported in
Table 4, where we evaluate the four components in-
dependently, i.e. each component receives ground
truth samples from the previous step in the hier-
archy (e.g. ground truth mentions for coreference
resolution). Again, we observe the performance
difference between the joint and pipeline model to
be negligible. This shows that it is not necessary to
build separate models for each task, which would
result in training and inference overhead due to
multiple expensive BERT passes. Instead, a single
neural model is able to jointly learn all tasks neces-
sary for document-level relation extraction, there-
fore easing training, inference and maintenance.

4.2 Relation Extraction

We also compare our model with the state-of-the-
art on DocRED’s relation extraction task. Here,
entity clusters are assumed to be given. We train
and test our relation classification component on
the original DocRED dataset split. Since test set
labels are hidden, we submit the best out of 5 runs
on the development set via CodaLab to retrieve
the test set results. Table 3 includes previously re-



Queequeg is a fictional character in the 1851 novel Moby-Dick by American author Herman Melville . The son of
a South Sea chieftain who left home to explore the world, Queequeg is the first principal character encountered by the
narrator, Ishmael. The quick friendship and relationship of equality between the tattooed cannibal and the white sailor
shows Melville’s basic theme of shipboard democracy and racial diversity...

Shadowrun:Hong Kong is a turn-based tactical role-playing video game set in the Shadowrun universe. It was devel-
oped and published by Harebrained Schemes , who previously developed Shadowrun Returns and its standalone
expansion. It includes a new single - player campaign and also shipped with a level editor that lets players create their
own Shadowrun campaigns and share them with other players. In January 2015, Harebrained Schemes launched a
Kickstarter campaign in order to fund additional features and content they wanted to add to the game, but determined
would not have been possible with their current budget. The initial funding goal of US $ 100,000 was met in only a
few hours. The campaign ended the following month, receiving over $ 1.2 million. The game was developed with
an improved version of the engine used with Shadowrun Returns and Dragonfall. Harebrained Schemes decided to
develop the game only for Microsoft Windows, OS X, and Linux, ...

Figure 3: Two example documents of the DocRED dataset. Highlighted are relations “creator” between “Quee-
queg” and “Herman Melville” (top) and “developer” between “Shadowrun Returns” and “Harebrained Schemes”
(bottom). Bordered pairs are the top selections of the multi-instance relation classifier.

ported results from current state-of-the-art models.
Note that our global classifier (GRC) is similar to
the baseline by (Yao et al., 2019). However, we
replace mention span averaging with max-pooling
and also choose max-pooling to aggregate men-
tions into an entity representation, yielding con-
siderable improvement over the baseline. Using
the multi-instance classifier (MRC) instead further
improves performance by about 4.5%. Here our
model also outperforms complex methods based
on graph attention networks (Nan et al., 2020) or
specialized pre-training (Ye et al., 2020), achieving
a new state-of-the-art result on DocRED’s relation
extraction task.

4.3 Ablation Studies

We perform several ablation studies to evaluate the
contributions of our proposed multi-instance rela-
tion classifier enhancements: We remove either the
global entity representations xe

1,x
e
2 (Equation 5)

(a) or the localized context representation c(s1, s2)
(Equation 10) (b). The performance drops by about
0.66% F1 score when global entity representations
are omitted, indicating that multi-instance reason-
ing benefits from the incorporation of entity-level
context. When the localized context representation
is omitted, performance is reduced by about 0.90%,
confirming the importance of guiding the model
to relevant input sections. Finally, we limit the
model to fusing only intra-sentence mention pairs
(c). In case no such instance exists for an entity
pair, the closest (in token distance) mention pair
is selected. Obviously, this modification reduces
computational complexity and memory consump-
tion, especially for large documents. Nevertheless,
while we observe intra-sentence pairs to cover most

Model F1

Relation Classification (MRC) 59.76
- (a) Entity Representations 59.10
- (b) Localized Context 58.85
- (c) Exhaustive Pairing 59.09

Table 5: Ablation studies for the multi-level relation
classifier (MRC) using the end-to-end split. We either
remove global entity representations (a), the localized
context (b) or only use intra-sentence mention pairs (c).
The results are averaged over 5 runs.

relevant signals, exhaustively pairing all mentions
of an entity pair yields an improvement of 0.67%.

5 Conclusions

We have introduced JEREX, a novel multi-task
model for end-to-end relation extraction. In con-
trast to prior systems, JEREX combines entity men-
tion localization with coreference resolution to ex-
tract entity types and relations on an entity level.
We report first results for entity-level, end-to-end,
relation extraction as a reference for future work.
Furthermore, we achieve state-of-the-art results on
the DocRED relation extraction task by enhanc-
ing multi-instance reasoning with global entity rep-
resentations and a localized context, outperform-
ing several more complex solutions. We showed
that training a single model jointly on all sub-
tasks instead of using a pipeline approach performs
roughly on par, eliminating the need of training
separate models and accelerating inference. One
of the remaining shortcomings lies in the detection
of false positive relations, which may be expressed
according to the entities’ types but are actually not



expressed in the document. Exploring options to
reduce these false positive predictions seems to be
an interesting challenge for future work.
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