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Abstract

Although coherence modeling has come a long
way in developing novel models, their evalu-
ation on downstream applications for which
they are purportedly developed has largely
been neglected. With the advancements made
by neural approaches in applications such as
machine translation (MT), summarization and
dialog systems, the need for coherence evalu-
ation of these tasks is now more crucial than
ever. However, coherence models are typically
evaluated only on synthetic tasks, which may
not be representative of their performance in
downstream applications. To investigate how
representative the synthetic tasks are of down-
stream use cases, we conduct experiments on
benchmarking well-known traditional and neu-
ral coherence models on synthetic sentence or-
dering tasks, and contrast this with their perfor-
mance on three downstream applications: co-
herence evaluation for MT and summarization,
and next utterance prediction in retrieval-based
dialog. Our results demonstrate a weak cor-
relation between the model performances in
the synthetic tasks and the downstream appli-
cations, motivating alternate training and eval-
uation methods for coherence models.1

1 Introduction and Related Work

Coherence is an important aspect of discourse that
distinguishes a well-written text from a poorly-
written one that is difficult to comprehend (Halliday
and Hasan, 1976). Computational models that can
assess coherence have applications in text genera-
tion and ranking, such as summarization, machine
translation, essay scoring and dialog systems.

Researchers have proposed a number of formal
theories of discourse coherence, which have in-

∗*Equal contribution
1Code and data used for evaluation available at

https://ntunlpsg.github.io/project/
coherence/coh-eval/

spired the development of many coherence mod-
els – both traditional and neural ones. Inspired
by the Centering Theory (Grosz et al., 1995), the
entity based local models (Barzilay and Lapata,
2008; Elsner and Charniak, 2011b) formulate co-
herence in terms of syntactic roles (e.g., subject,
object) of entities in nearby sentences. Another
branch of models (Pitler and Nenkova, 2008; Lin
et al., 2011; Feng et al., 2014) use coherence re-
lations between adjacent sentences to model local
coherence, inspired by the discourse structure the-
ories of Mann and Thompson (1988) and Webber
(2004). Other traditional methods include word co-
occurrence based local models (Soricut and Marcu,
2006), topic based global models (Barzilay and Lee,
2004; Elsner et al., 2007), and syntax based local
and global models (Louis and Nenkova, 2012).

Despite continuous research efforts in develop-
ing novel coherence models, their usefulness in
downstream applications has largely been ignored.
They have been evaluated in mainly two ways. The
most common approach has been to evaluate them
on synthetic discrimination tasks that involve iden-
tifying the right order of the sentences at the lo-
cal and global levels (Barzilay and Lapata, 2008;
Elsner and Charniak, 2011b; Moon et al., 2019).
The other (rather infrequent) way has been to as-
sess the impact of coherence score as an additional
feature in downstream tasks like readability assess-
ment and essay scoring (Barzilay and Lapata, 2008;
Mesgar and Strube, 2018). But since the concept
of coherence goes beyond these constrained tasks
and domains, so should the models.

Given the recent advances in neural NLP meth-
ods, with claims of reaching human parity in ma-
chine translation (Hassan et al., 2018), fluency in
summarization (Liu et al., 2017; Celikyilmaz et al.,
2018), or context-consistent response generation
(Zhang et al., 2020; Hosseini-Asl et al., 2020), co-
herence modeling of machine-generated texts, par-

https://ntunlpsg.github.io/project/coherence/coh-eval/
https://ntunlpsg.github.io/project/coherence/coh-eval/
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ticularly at a document-level, is now more crucial
than ever (Läubli et al., 2018; Sharma et al., 2019).
Traditional task-specific evaluation methods (e.g.,
BLEU, ROUGE) may not be an accurate reflection
of their real-world performance in terms of read-
ability (Paulus et al., 2017; Reiter, 2018). How-
ever, it is unclear if existing coherence models are
capable of this task, since their performance on
downstream applications is rarely studied, even
though that is one of the main motivations for their
development.

Our main goal in this work is to assess the perfor-
mance of the existing coherence models not only
on standard, challenging synthetic tasks like global
and local discrimination, but more importantly on
real downstream text generation problems. Specifi-
cally, we investigate the performance of coherence
models in three different settings:

• Traditional synthetic tasks involving discrimina-
tion of real documents from their permutations.

• Coherence evaluation for machine translations
and system-generated extractive and abstractive
summaries, which are more representative of real-
world use cases for coherence models.

• Next utterance ranking for dialogs, which is a
downstream application similar to the synthetic
task of insertion, but uses conversational data
from DSTC 8 (Kim et al., 2019).

We show through experiments that there is only
a slight correlation between model performances
on synthetic tasks and the real-world use cases. Al-
though models perform strongly in the synthetic
tasks, they show poor performance and low correla-
tions with human judgments on distinguishing co-
herent machine translations and system-generated
summaries from incoherent ones. They also fail
to perform well on the next utterance ranking task,
which is similar to the synthetic task of insertion
(Elsner and Charniak, 2011b), even if re-trained
with task-specific data.

However, we show that re-training the coher-
ence models with task-specific data for machine
translation evaluation leads to improved results and
agreements with human judgments. This leads us
to conclude that there is a possible mismatch in
the task setting that is used to train coherence mod-
els. Models trained on traditional synthetic tasks
do not seem to be learning features that are useful
for downstream applications. We hope that our re-
sults will motivate the broadening of the standard

of coherence model evaluations to include more
downstream tasks, and also motivate the redesign-
ing of the training paradigm for coherence models.

2 Coherence Models

Advancements in deep learning have inspired re-
searchers to neuralize many of the traditional mod-
els. Li and Hovy (2014) model syntax and inter-
sentence relations using a recurrent sentence en-
coder followed by a fully-connected layer. In a
follow-up work, Li and Jurafsky (2017) use genera-
tive models to incorporate global topic information
with an encoder-decoder architecture. Mohiuddin
et al. (2018) propose a neural entity grid model
using convolutions over distributed representations
of entity transitions. Mesgar and Strube (2018)
model change patterns of salient semantic informa-
tion between sentences. Xu et al. (2019) propose
a local discriminative model that retains the ad-
vantages of generative models and uses a smaller
negative sampling space that can learn against in-
correct orderings. Moon et al. (2019) propose a
unified model that incorporates sentence syntax,
inter-sentence coherence relations, and global topic
structures in a single Siamese framework.

We benchmark the performance of five repre-
sentative coherence models on the tasks discussed
above. Our selected models comprise of both tra-
ditional and neural models. Moreover, two models
are currently the state-of-the-art at the time of sub-
mission (Transferable and Unified Neural Model).

Entity Grid (EGRID). Barzilay and Lapata (2005,
2008) introduced the popular entity-based model
for representing and assessing text coherence mo-
tivated by the Centering Theory (Grosz et al.,
1995). This model represents a text with a two-
dimensional array called an entity grid, that cap-
tures transitions of discourse entities across sen-
tences. These local entity transitions are used as
deciding patterns for text coherence; a local entity
transition of length k is a sequence of {S,O,X,–}k
representing grammatical roles (Subject, Object,
Other, and Absent, respectively) played by an en-
tity in k consecutive sentences. The salience of the
entities, quantified by the occurrence frequency, is
also incorporated to identify transitions of impor-
tant entities. Elsner and Charniak (2011b) improve
the basic entity grid by including non-head nouns
as entities (with the grammatical role X). Instead of
using a coreference resolver, they match the nouns
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to detect coreferent entities. In our work, we con-
sider this version of the entity grid model.

Neural Entity Grid (NEURALEGRID). A neural
version of the entity grid model was proposed by
Nguyen and Joty (2017). The grammatical roles in
the grid are converted into their distributed repre-
sentations, and the entity transitions are modeled in
the distributed space by performing convolutions
over it. The final coherence scores are computed
from convolved features that have gone through a
spatial max-pooling operation. A global, document-
level pairwise loss is used to train the model.

Lexicalized Neural Entity Grid. Mohiuddin
et al. (2018) propose an improvement of the neural
entity grid (LEXNEUEGRID) by lexicalizing
the entity transitions using off-the-shelf word
embeddings to achieve better generalization.

Transferable Neural Model (TRANSMODEL).
In order to generalize the coherence model across
domains, Xu et al. (2019) propose a transferable
neural model that considers coherence at a local
level, taking only adjoining sentences as input.
Coupled with pre-training of the sentence encoders
in a generative fashion, their model demonstrates
significant improvements in performance, despite
being a local coherence model.

Unified Neural Model (UNIFIEDMODEL).
Moon et al. (2019) propose a unified model
that captures syntax (as a proxy of intention),
discourse relations, entity attention and global
topic structures. The syntax is captured by
incorporating an explicit language model loss. A
bi-linear layer is used to capture the inter-sentential
discourse relations, while light-weight convolution
is used to capture the attention and topic structures.

3 Evaluation Tasks and Experiments

In this section, we present the performance of the
coherence models on standard synthetic tasks (i.e.,
Global/Local Discrimination), followed by the ex-
periments where we apply the coherence models
trained on the global discrimination task to three
downstream tasks (i.e.,, abstractive summarization,
extractive summarization, and machine translation).
We then present the results of the coherence models
re-trained on the next utterance ranking task.

For each of the coherence models, we conducted
experiments with publicly available codes from
the respective authors. The three recent methods

Sections # Doc. # Pairs

Train 00-13 1,378 26,422
Test 14-24 1,053 20,411

Table 1: Statistics of the WSJ news dataset used for the
Global discrimination task.

use word embeddings: LEXNEUEGRID, TRANS-
MODEL and UNIFIEDMODEL use Word2vec
(Mikolov et al., 2013), average GloVe (Pennington
et al., 2014), and ELMo (Peters et al., 2018) em-
beddings respectively. We use the default settings
and hyperparameters suggested by the authors.

3.1 Synthetic Tasks
Traditionally coherence models have been evalu-
ated mostly on synthetic tasks. For comparison
with previous work, we use two representative syn-
thetic tasks to compare the coherence models.

3.1.1 Global Discrimination.
Introduced by Barzilay and Lapata (2008), in this
task coherence models are asked to distinguish an
original (coherent) document from its incoherent
renderings generated by random permutations of
its sentences. We follow the same experimental set-
ting of the Wall Street Journal (WSJ) news dataset
as used in previous studies (Elsner and Charniak,
2011b; Moon et al., 2019; Xu et al., 2019). Sim-
ilar to them, we use 20 random permutations of
each document for both training and testing. Ad-
ditionally, we evaluate on inverse discrimination
(Mohiuddin et al., 2018), where the sentence order
is reversed to create the incoherent version.

Setup. We follow the same experimental settings
of the WSJ news dataset as used in previous works
(Xu et al., 2019; Mohiuddin et al., 2018; Elsner and
Charniak, 2011b; Feng et al., 2014). We use 20
random permutations of each document for both
training and testing, excluding the permutations
that match the original one. Table 1 summarizes
the data sets used in the global discrimination task.
We randomly select 10% of the training set for
development purposes.

Results. Table 2 presents the results in terms of
accuracy on the two global discrimination tasks –
the standard and the inverse order discrimination.
We see that UNIFIEDMODEL achieves the highest
accuracy on the standard order discrimination task
and TRANSMODEL performs the best on the In-
verse order discrimination task. The other three
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Model Emb. Standard Inverse

EGRID – 81.60 75.78
NEURALEGRID – 84.36 83.94
LEXNEUEGRID word2vec 88.51 88.13
TRANSMODEL Avg. Glove 91.77 99.62
UNIFIEDMODEL ELMo 93.19 96.78

Table 2: Results: Accuracies of the coherence models
in the Global Discrimination task.

Sections # Doc. # Pairs
Dw=1 Dw=2 Dw=3 Dw=1,2,3

Train 00-13 748 7,890 12,280 12,440 32,610
Test 14-24 618 6,568 9,936 9,906 26,410

Table 3: Statistics on the WSJ news dataset used for the
Local discrimination task. The w denotes the number
of permuted local windows in a document.

models use entity grids, hence they may lose the
sentence-level syntactic and semantic information.

3.1.2 Local Discrimination.
Local discrimination was proposed by Moon et al.
(2019). In this task, two documents differ only in a
local context (windows of 3 sentences). In this case,
the models need to be sensitive to local changes.
We use the same WSJ dataset as used by Moon
et al. (2019).

Setup. We use the same WSJ articles used in
the global discrimination task (Table 1) to create
our local discrimination datasets. We use the code
released by Moon et al. (2019) to generate these
datasets.2 Sentences within a local window of size
3 are re-ordered to form a locally incoherent text.
Only articles with more than 10 sentences are
included in the dataset. Table 3 summarizes the
datasets. We randomly select 10% of the training
set for development purposes.

Following Moon et al. (2019), we create four
datasets for our local discrimination task: Dw=1,
Dw=2, Dw=3 and Dw=1,2,3. Dw=1 contains the
documents where only one randomly selected win-
dow is permuted, Dw=2 contains the documents
where two randomly selected windows are per-
muted; Dw=3 is similarly created for 3 windows.
Dw=1,2,3 denotes the concatenated datasets.

Results. From Table 4, we see that the UNIFIED-
MODEL achieves the highest accuracy on all four
datasets. A possible reason could be the loss func-
tion it uses to train the model. Unlike other models,
UNIFIEDMODEL uses an adaptive pairwise ranking

2https://github.com/taasnim/unified-coherence-model

Model Dw=1,2,3 Dw=1 Dw=2 Dw=3

EGRID 59.78 53.89 60.43 63.04
NEURALEGRID 57.49 56.74 57.11 60.0
LEXNEUEGRID 56.65 58.21 58.95 58.42
TRANSMODEL 66.87 66.25 67.95 65.52
UNIFIEDMODEL 77.07 67.29 76.12 81.23

Table 4: Results: Accuracies of the models in the Local
Discrimination task.

loss which does not penalize the locally coherent
sentences. In the local discrimination task, the dif-
ference between positive and negative examples is
small; they differ only in 1-3 windows, while the
other parts are locally coherent. UNIFIEDMODEL’s
loss function can model this better.

3.2 Coherence Evaluation Tasks

We evaluate the coherence models trained on the
global discrimination task on two downstream
tasks: machine translation (MT) and summariza-
tion coherence evaluation. Note that both the MT
and summarization data are from the same domain
(news) as the original WSJ training data.

3.2.1 Machine Translation Evaluation
The outputs of neural machine translation (NMT)
systems have been shown to be more fluent than
their phrase-based predecessors (Castilho et al.,
2017). However, recent studies have shown that
there is a statistically strong preference for human
translations in terms of both adequacy and fluency
at a document level (Läubli et al., 2018; Popel et al.,
2020).

Smith et al. (2016) evaluated traditional (non-
neural) coherence models to see if they can distin-
guish a reference from a system translated docu-
ment, and reported very low accuracy. However,
the situation has changed with the advancements
of neural models; today’s coherence models are
claimed to be much more accurate.

Our goal therefore is to evaluate the coherence
models on how well they can judge the coherence
of MT outputs at the document level. To do this, we
use the system translations released by the annual
Workshop (now Conference) on Machine Transla-
tion (WMT) through the years 2017 and 2018. At
a document level, reference (human) translations
have been shown to be more coherent than MT out-
puts (Smith et al., 2015, 2016; Läubli et al., 2018).
Therefore, we evaluate the performance of the co-
herence models based on their accuracy of scoring

https://github.com/taasnim/unified-coherence-model
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Figure 1: User study interface for coherence ranking.

the reference (document) higher than the system
translation (document).

We also obtain rankings given by humans in a
user study. Fig. 1 shows the layout of the study,
where participants were shown four sentences from
three candidate translations of the same source text
and asked to rank them against each other. One
of the given translations is the reference, used as
a control, and to validate our assumption that the
reference is more coherent than the system transla-
tions. 3 participants annotated 100 such samples.

Participants chose the reference as more coher-
ent with an agreement of 0.84, confirming our as-
sumption.3 We evaluate the system translations by
producing a ranking between the different trans-
lations of the same source text. To do this, we
first obtain scores from the coherence models for
the reference and each of the corresponding sys-
tem translations. Then, we normalize the scores of
the system translations by subtracting them from
score of the reference. These normalized coher-
ence scores are used to rank the system translations,
which are then used to calculate agreements.

Setup. We use the reference and the system trans-
lations provided by WMT2017-2018 as our test
data, under the assumption that the reference trans-
lations are more coherent than the system transla-
tions. This results in a testset of 20,680 reference-
system translation document-pairs.

Results. We report the accuracy of the coher-
ence models trained on the global discrimination
task in distinguishing the more coherent reference
text from the less coherent system translations in
Table 5. We can see that most models perform

3Traditional correlation measures such as Cohen’s Kappa
are not robust to skewed distributions of annotations, which
was an issue here since the annotators were always more likely
to choose the reference as better. Thus, we report the more ap-
propriate Gwet’s AC1/gamma coefficient (Gwet, 2008), which
controls for this.

Model Acc. (%) AC1 Agr.

EGRID 51.75 0.80
NEURALEGRID 54.75 0.77
LEXNEUEGRID 49.34 0.76
TRANSMODEL 48.67 0.77
UNIFIEDMODEL 43.36 0.78

Table 5: Machine Translation setting results on
WMT2017-2018 data. Accuracies: % of times refer-
ence scored higher and AC1 agreements for system
translation rankings between annotators and models.

worse than a random baseline of 50%, showing
that their training on the global discrimination task
is not helpful in detecting coherence quality in MT
text. The difference in performance is particularly
glaring for the TRANSMODEL and the UNIFIED-
MODEL, both of which have over 90% accuracy on
the global discrimination tasks, but only manage
48.67% and 43.36% on this task respectively.

We also report the agreement with human rank-
ings on the study data in Table 5. Overall, only
EGRID has good agreement with human rankings,
with all other models doing similarly poorly.4

3.2.2 Abstractive Summarization

Generating coherent summaries has always been
a goal in summarization (Nenkova and McKeown,
2011). The widely used automatic evaluation met-
ric ROUGE (Lin, 2004) measures the n-gram over-
lap between the generated summaries and the ref-
erence summaries at a sentence level, and thus is
not sufficient for measuring coherence. Kryściński
et al. (2019) also recently found almost negligi-
ble correlation between ROUGE scores and human
judgments on summary coherence, especially for
abstractive summaries generated by recent neural
summarization models. We therefore propose to
evaluate the coherence of summaries using differ-
ent coherence models and measure their effective-
ness on this task.

For abstractive summarization, we use sum-
maries from popular neural abstractive summariza-
tion systems for CNN/DM dataset (Hermann et al.,
2015; Nallapati et al., 2016). Since abstractive sys-
tems vary in their architectures and loss functions,
they may produce very different summaries. We
run a human study to validate the rankings given
by the coherence models.

4Note that the study data is different from the test data, so
the accuracies and agreements may not correlate.
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Models Abs. Agr. Ext. Agr.

EGRID 0.71 0.52
NEURALEGRID 0.68 0.70
LEXNEUEGRID 0.71 0.57
TRANSMODEL 0.55 0.38
UNIFIEDMODEL 0.68 0.35

Table 6: Abstractive Agreement and Extractive
Agreement shows the AC1 agreements for the pair-
wise ranking of the generated abstractive summaries
and extractive summaries between two annotators and
the models, respectively.

Setup. We use the CNN/DM (Hermann et al.,
2015; Nallapati et al., 2016) for this task. We col-
lect the reference summaries from the CNN/DM
testset as well as the summaries generated by the
following four representative abstractive summa-
rization systems: (a) Pointer-Generator (PG) (See
et al., 2017), (b) BERTSUMEXTABS (BSEA) (Liu
and Lapata, 2019), (c) UniLM (Dong et al., 2019),
and (d) SENECA (Sharma et al., 2019).

As discussed, we directly use the coherence mod-
els trained on the WSJ dataset for the global dis-
crimination task. The coherence models predict
the scores for each system-generated summary in
the testset. The scores produced by the models are
then used to rank the system-generated summaries
of the same original article.

We conducted a user study to validate the effec-
tiveness of the rankings produced by the coherence
models. We randomly sampled 10 sets of sum-
maries from the dataset with each set containing
four generated summaries of the same article, thus
resulting in

(
4
2

)
× 10 = 60 pairs of system sum-

maries. Two annotators were asked to rank each
pair of the summaries in terms of coherence; see
Appendix for the human study interface.

Results. For the user study, the agreement be-
tween the two annotators was 0.78, which indicates
fairly reliable data. After we obtain the rankings
based on the coherence scores produced by the
models, we compute the agreements between the
systems and the two annotators. From the results in
Table 6, we see that EGRID and LEXNEUEGRID

show the highest agreement with human judge-
ments. However, despite strong performance in
synthetic tasks, models like UNIFIEDMODEL and
TRANSMODEL are unable to convert the high ac-
curacy into high human agreement, which demon-
strates the inefficiency of current synthetic tasks.

3.2.3 Extractive Summarization
For evaluating the coherence of extractive sum-
maries, we use the dataset prepared by Barzilay
and Lapata (2008) for their coherence model eval-
uation. The dataset comes with human ratings of
the summaries from the Document Understanding
Conference (DUC), 2003.

Setup. The dataset from Barzilay and Lapata
(2008) provides 16 sets of summaries where each
set corresponds to a multi-document cluster and
contains summaries generated by 5 systems and 1
human. The human ratings for these summaries
based on coherence are also available.5

We follow the same experimental setup as in ab-
stractive summarization. We use the coherence
models trained on the WSJ dataset to produce
scores that can be used to obtain the pairwise rank-
ing of generated summaries. Based on the ratings
provided by Barzilay and Lapata (2008), we can
generate the human pairwise rankings.

Results. We present the agreements between the
generated human ranking and the systems in Table
6. We observe the same problem as in abstrac-
tive summarization that high accuracy in synthetic
tasks does not lead to high human agreement in
evaluating downstream summarization systems.

3.3 Task-specific Training for Dialog
The global and local discrimination tasks are syn-
thetic, while the MT and summarization coherence
evaluation performance may be affected by the dif-
ference between the testing and training setup. To
control for this, we re-train and test the coherence
models on a task-specific setup for next utterance
ranking. This task has the advantage of being
non-synthetic while providing task specific training
data, but also being similar to the synthetic task of
insertion, helping us evaluate the generalizability
of the coherence model performance.

3.3.1 Next Utterance Ranking
The quality of a dialog depends on various conver-
sational aspects such as engagement, coherence,
coverage, conversational depth, and topical diver-
sity (See et al., 2019). Liu et al. (2016) show
that commonly used metrics such as BLEU and
ROUGE show very weak or no correlation with hu-
man judgements. They also suggest using metrics

5See Appendix for details. Rankings are avail-
able at http://homepages.inf.ed.ac.uk/mlap/
coherence/

http://homepages.inf.ed.ac.uk/mlap/coherence/
http://homepages.inf.ed.ac.uk/mlap/coherence/
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Train Dev Test

Advising dataset

# of conv. 50,535 500 269
# of coh.-incoh. pairs/conv. 20 99 99
# of total example pairs 10,10,700 49,500 26,631

Ubuntu dataset

# of conv. 49,387 500 1078
# of coh.-incoh. pairs/conv. 20 99 99
# of total example pairs 9,87,740 49,500 1,06,722

Table 7: Statistics of the refined Advising and Ubuntu
datasets for the utterance ranking task.

that take dialog context into account. This is partic-
ularly important as Sankar et al. (2019) empirically
show that current neural dialog systems rarely use
conversational history. We therefore propose to
evaluate the usefulness of coherence models in dia-
log systems.

We evaluate the models on the Noetic End-to-
End Response Selection Challenge II (NOESIS II),
a track in the Dialog System Technology Chal-
lenges 8 (DSTC 8) (Kim et al., 2019). In this
problem, each example consists of a conversational
context U = (u1, . . . , u|U |) and a set of potential
utterances (candidates) C = {c1, . . . , c|C|} that
may occur next in the dialog; the task is to select
the correct next-utterance r ∈ C.

This task is a nice fit for evaluating coherence
models, as a good model should rank a coherent
dialog higher than an incoherent one. The cor-
rect utterance along with the conversational context
forms the coherent example P = (u1, . . . , u|U |, r),
while other candidate utterances cj ∈ C with the
conversational context form the incoherent exam-
ples N = (u1, . . . , u|U |, cj). This is a considerably
harder task as the difference between coherent and
incoherent dialog is only the last utterance. We
train the coherence models with these coherent (P )
and incoherent (N ) examples. The trained models
give a score for each example based on its coher-
ence. We then use our aforementioned assumption
(coherence models should score P higher than N )
for the evaluation. This task resembles the (syn-
thetic) insertion task (Elsner and Charniak, 2011b)
in that the goal here is to find the next correct utter-
ance for the last position.

Setup. We evaluated the coherence models on
both datasets of the DSTC8 response selection
track, i.e., the Advising and Ubuntu datasets.6 The

6https://github.com/dstc8-track2/NOESIS-II/

R@1 R@5 R@10 MRR Acc.

Advising dataset

Official Evaluation
Best 0.564 0.81 0.88 0.68 X
Median 0.14 0.37 0.51 0.26 X
Worst 0.01 0.05 0.09 0.05 X

Coherence Model
EGRID 0.004 0.03 0.07 0.04 47.16
NEURALEGRID 0.057 0.17 0.23 0.13 56.15
LEXNEUEGRID 0.046 0.17 0.26 0.13 57.66
TRANSMODEL 0.067 0.20 0.30 0.14 66.62
UNIFIEDMODEL 0.022 0.06 0.19 0.11 54.33

Ubuntu dataset

Official Evaluation
Best 0.761 0.96 0.98 0.85 X
Median 0.55 0.86 0.93 0.68 X
Worst 0.24 0.38 0.46 0.32 X

Coherence Model
EGRID 0.007 0.05 0.09 0.05 47.48
NEURALEGRID 0.18 0.39 0.49 0.29 73.18
LEXNEUEGRID 0.15 0.31 0.39 0.24 74.39
TRANSMODEL 0.045 0.14 0.26 0.12 70.94
UNIFIEDMODEL 0.035 0.17 0.33 0.13 74.49

Table 8: Utterance ranking results for different coher-
ence models on Advising and Ubuntu datasets. R@k
indicates Recall@k, X indicates result not shared.

former contains two-party dialogs that simulate
a discussion between a student and an academic
advisor, while the latter consists of multi-party con-
versations extracted from the Ubuntu IRC channel
(Kummerfeld et al., 2019).

For a given conversational context, the goal is
to select the next utterance from a candidate pool
of 100 utterances, which may or may not contain
the correct next utterance. We filter the datasets
to suit the settings for coherence models. In our
refined datasets, we exclude the conversations that
have less than 7 or more than 50 utterances in the
context. To ensure that we have pairwise coherent
and incoherent examples, we only include the con-
versations that contain the correct next utterance in
the candidate pool. Table 7 shows the statistics of
our refined datasets for the utterance ranking task.

Results. Table 8 summarizes the results on the
refined datasets for the utterance ranking task. In
the last column, we report the accuracy for the
number of samples in which the coherence models
score the positive sample higher than the negative
one. All model performances are better than a
random baseline, with UNIFIEDMODEL reaching
74.49% on the Ubuntu dataset. Note, however, that
because there are 100 negative samples for every
positive sample, the accuracies are skewed and not
representative of actual task difficulty.

https://github.com/dstc8-track2/NOESIS-II/
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The DSTC8 challenge ranking considers the
average of Recall@1, Recall@5, Recall@10 and
Mean Reciprocal Rank (MRR). We report both the
official evaluation results and the coherence mod-
els’ performance even though the latter is tested
on the refined datasets. From the results, we see
that the overall performance of all the coherence
models is quite poor. Despite being re-trained on
task specific data, we find that coherence model
performance in this task is sub-par.

4 Task-specific Training for MT

As a special use case, we report the results of re-
training the coherence models using machine trans-
lation data for coherence evaluation. The aim is
to investigate whether changing the usual train-
ing setup, that uses negative documents which are
only small variations of the positive documents,
might help coherence models learn more useful
task-specific features.

Setup. Under the assumption that the reference
translations are more coherent at the document
level than the system translations, we train the co-
herence models with the reference text as the posi-
tive and the system translation as the negative doc-
ument, forming a positive-negative document pair.
We use the data from WMT-2011 to WMT-2015
for training (28,985 document-pairs), WMT-2016
for development (7,647 document-pairs) and the
same test data (WMT-2017 to WMT-2018; 20,680
document-pairs) and study data as used for the pre-
vious experiment (§3.2.1).

Results. Table 9 reports the accuracy of the re-
trained models and the results of the model rank-
ing comparison against human rankings. Many
of the models show improved performance, with
the agreements increasing correspondingly. The
UNIFIEDMODEL has the highest accuracy improve-
ment by far of 34%, improving from 43.36% to
77.35%. It also has the highest agreement with hu-
man rankings at 0.82. We surmise that the model’s
adaptive pairwise ranking loss along with its addi-
tional language model loss boosts its performance
on in-domain test data.

5 Discussion

Compared to the downstream tasks of coherence
evaluation in MT and extractive and abstractive
summarization, the traditional global discrimina-
tion task can be considered to be a simpler task

Model Acc. (%) AC1 Agr.

EGRID 48.74 0.797
NEURALEGRID 52.58 0.760
LEXNEUEGRID 56.84 0.795
TRANSMODEL 57.65 0.751
UNIFIEDMODEL 77.35 0.828

Table 9: Re-trained MT setting results on WMT2017-
2018 data. Accuracies: % of times reference scored
higher and AC1 agreements for system translation
rankings between annotators and models.

(Elsner and Charniak, 2011b), since the difference
between the positive and the negative document is a
permutation/re-ordering of the sentences. This may
be rendering the models unable to learn features
that are useful for downstream applications, which
are likely to have other, different kinds of errors.

On the next utterance ranking task, the models
fail to generalize and perform quite poorly despite
task-specific re-training. The best model perfor-
mance for the synthetic task of insertion, which
is similar, also barely reaches 26% (Elsner and
Charniak, 2011b; Nguyen and Joty, 2017). This
indicates that the training procedures may not be
providing the right setting to learn features that are
generic enough to apply to tasks in a harder setup.

In the synthetic tasks, the models’ self-
supervision comes from distinguishing an origi-
nal coherent document from its incoherent render-
ings generated by random permutations of its sen-
tences. This permutation-based self-supervision
tries to capture document-level language proper-
ties. However, it is quite likely that this is sim-
ply a poor approximation of real-world coherence
problems. Consider for example that MT systems
mostly translate at the sentence-level. Consecutive
sentences may lack coherence, but if two system
translations of a text are compared, the translations
themselves will be in the same order for both. The
coherence models are not trained for such (real-
world) settings.

Another possibility is that outputs from down-
stream tasks have different error distributions that
are captured to varying degrees by different mod-
els, since they are originally designed based on
synthetic tasks. That is, models that perform very
well on the permutation task might be overfitting
on this task, and therefore failing to find coherence
issues that are more subtle than shuffled text. Thus,
we conclude that the current self-supervision for
coherence modeling is not suitable for downstream
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coherence problems.
When re-trained on machine translation data,

most of the model performances improve, implying
that a different training setting may be required to
make the models applicable to actual downstream
tasks. This is not apparent from the evaluation
results that are usually reported, which show per-
formances crossing the 90% mark.

Elsner and Charniak (2011a) show a similar lack
of generalizability and applicability of coherence
models to the downstream task of chat disentan-
glement. Our results suggest that despite nearly a
decade of research since, the standard training and
testing paradigm for coherence modeling contin-
ues to be inadequate in its capability to generalize
to real-world use-cases and even to similar task
settings, and also fails in being indicative of real-
world task performance.

6 Conclusions

We benchmark the performance of representative
traditional and neural coherence models on stan-
dard synthetic discrimination tasks, and contrast
this with their performance on various downstream
application tasks in NLP. We show that higher accu-
racies on synthetic tasks do not translate into better
performance on downstream tasks. We demon-
strate this for real-world tasks like MT and summa-
rization coherence evaluation, and next utterance
ranking. Our results signal a need for change in
the way coherence models are typically trained and
evaluated.

Other downstream applications like coherence
evaluation of language model generated text and
tasks such as chat disentanglement are also good
candidates for testing coherence models. It would
be worthwhile to build a coherence testset that is
independent of the training tasks and similar to
downstream applications, which could be used by
the community to test the generalization ability of
their models. In future work, we also hope to inves-
tigate the possible training scenarios that will result
in more generalizable coherence models which can
be used for evaluating downstream tasks.
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Samuel Läubli, Rico Sennrich, and Martin Volk. 2018.
Has machine translation achieved human parity? a
case for document-level evaluation. In EMNLP.

Jiwei Li and Eduard Hovy. 2014. A model of co-
herence based on distributed sentence representa-
tion. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2039–2048, Doha, Qatar. Associa-
tion for Computational Linguistics.

Jiwei Li and Dan Jurafsky. 2017. Neural net models
of open-domain discourse coherence. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 198–209,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Proc. ACL workshop on
Text Summarization Branches Out, page 10.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2011.
Automatically evaluating text coherence using dis-
course relations. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies - Volume
1, HLT ’11, pages 997–1006, Portland, Oregon. As-
sociation for Computational Linguistics.

Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Nose-
worthy, Laurent Charlin, and Joelle Pineau. 2016.
How NOT to evaluate your dialogue system: An
empirical study of unsupervised evaluation metrics
for dialogue response generation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2122–2132, Austin,
Texas. Association for Computational Linguistics.

Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu,
and Hongyan Li. 2017. Generative adversarial net-
work for abstractive text summarization. ArXiv,
abs/1711.09357.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of the
2019 Conference on Empirical Methods in Natural
Language Processing, Hong Kong, China. Associa-
tion for Computational Linguistics.

Annie Louis and Ani Nenkova. 2012. A coherence
model based on syntactic patterns. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, EMNLP-CoNLL ’12,
pages 1157–1168, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

W. Mann and S. Thompson. 1988. Rhetorical Structure
Theory: Toward a Functional Theory of Text Orga-
nization. Text, 8(3):243–281.

Mohsen Mesgar and Michael Strube. 2018. A neu-
ral local coherence model for text quality assess-
ment. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 4328–4339, Brussels, Belgium. Association
for Computational Linguistics.

http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
http://arxiv.org/abs/2005.00796
http://arxiv.org/abs/2005.00796
http://arxiv.org/abs/1911.06394
http://arxiv.org/abs/1911.06394
http://www.aclweb.org/anthology/D14-1218
http://www.aclweb.org/anthology/D14-1218
http://www.aclweb.org/anthology/D14-1218
http://research.microsoft.com/~cyl/download/papers/WAS2004.pdf
http://research.microsoft.com/~cyl/download/papers/WAS2004.pdf
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
https://doi.org/10.18653/v1/D16-1230
http://dl.acm.org/citation.cfm?id=2390948.2391078
http://dl.acm.org/citation.cfm?id=2390948.2391078
https://www.aclweb.org/anthology/D18-1464
https://www.aclweb.org/anthology/D18-1464
https://www.aclweb.org/anthology/D18-1464


3538

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Muhammad Tasnim Mohiuddin, Shafiq Joty, and Dat
Tien Nguyen. 2018. Coherence modeling of asyn-
chronous conversations: A neural entity grid ap-
proach. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 558–568, Mel-
bourne, Australia. Association for Computational
Linguistics.

Han-Cheol Moon, Tasnim Mohiuddin, Shafiq Joty, and
Chi Xu. 2019. A unified neural coherence model.
In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP’19, pages xx—-xx, Hong Kong. ACL.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
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A Appendix

A.1 Human Study Interface for Abstractive
Summarization

We show the interface of human study for abstrac-
tive summarization in Figure 2.

A.2 Human Study for Extractive
Summarization

We briefly describe the human study for extractive
summarization. The human study was conducted
by Barzilay and Lapata (2008). Coherence ratings
for summaries were collected during an elicitation
study by 177 unpaid native speakers of English.
The annotators were asked to use a seven point-
scale to rate each summary based on how coherent
the summaries were without having seen the source
texts. The ratings (approximately 23 per summary)
given by the subjects were averaged to provide a fi-
nal rating score between 1 and 7 for each summary.

Figure 2: Human Study Interface for Abstractive Summarization
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