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2Department of General Linguistics, University of Tübingen
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Abstract

The distributions of orthographic word types
are very different across languages due to ty-
pological characteristics, different writing tra-
ditions, and other factors. The wide range of
cross-linguistic diversity is still a major chal-
lenge for NLP, and for the study of language
more generally. We use BPE and information-
theoretic measures to investigate if distribu-
tions become more similar under specific lev-
els of subword tokenization. We perform a
cross-linguistic comparison, following incre-
mental BPE merges (we go from characters
to words) for 47 diverse languages. We show
that text entropy values (a feature of probabil-
ity distributions) converge at specific subword
levels: relatively few BPE merges (around 200
for our corpus) lead to the most similar dis-
tributions across languages. Additionally, we
analyze the interaction between subword and
word-level distributions and show that our find-
ings can be interpreted in light of the ongoing
discussion about different morphological com-
plexity types.1

1 Introduction

In NLP, one of the predominant methods for ob-
taining subword units is Byte-Pair Encoding (BPE).
These subwords have proven to be useful for im-
proving several NLP tasks, most likely because
they capture morphological patterns to some extent
(and also phonological and orthographic ones).

BPE is based on a compression algorithm which
finds frequently ocurring patterns in a text by
means of incrementally merging adjacent symbols
into longer strings (Gage, 1994; Sennrich et al.,
2015). The granularity of the subword units is con-
trolled by the number of merge operations applied
to the text (few merges lead to a text tokenization
closer to the character level, while more merges
lead to a tokenization closer to the word level).

1Data and code available at https://github.com/

ximenina/theturningpoint

Usually the number of BPE merges is chosen arbi-
trarily depending on the application.

It is rarely analyzed how the distribution of these
subwords changes across different merge opera-
tions. Our goal is to investigate if languages get
‘closer’ in terms of their subword distributions un-
der specific levels of tokenization. We quantify
this cross-linguistic variation using information-
theoretic measures.

Information theory provides a useful tool for
exploring variation, and for quantifying the pre-
dictability/organization of patterns, e.g., in mor-
phological systems (Ackerman and Malouf, 2013).
We measure Shannon entropy and redundancy over
varied subword tokenizatons of texts obtained with
BPE. At each incremental merge, we compare the
values across 47 typologically diverse languages.

Cross-linguistic corpora are widely used as a
means of quantifying linguistic diversity. For in-
stance, the range of entropy values measured over
word-level types varies greatly across languages.
This is a reflection of the diversity of morpholog-
ical systems. However, we show that this cross-
linguistic variation is not so pronounced at the sub-
word level. Namely, a convergence of entropy val-
ues across languages is achieved at a relatively low
number of merge operations. The entropy of sub-
word distributions grows quickly before this turn-
ing point, while the growth is considerably slower
after it.

Furthermore, in this turning point, the subword
distributions start to correlate with the ones ob-
served at the word-level. We interpret this change
of trend in light of previous findings regarding the
difference between subword and word-level com-
plexity: a language that is complex at the word
level (rich inflectional morphology), is not neces-
sarily complex at a more atomic subword level
(predictable subword patterns).

https://github.com/ximenina/theturningpoint
https://github.com/ximenina/theturningpoint
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2 Background

2.1 Byte-pair Encoding (BPE)
Originally, BPE is a data compression technique
based on replacing the most common pair of con-
secutive bytes with a new symbol (Gage, 1994).
This is currently one of the predominant ap-
proaches for subword tokenization (or morpholog-
ical segmentation). It is widely used to improve
tasks like machine translation or language model-
ing (Sennrich et al., 2015; Provilkov et al., 2020).
Another popular method is provided by Morfessor
(Smit et al., 2014).

When BPE is applied to text, each iteration
merges two adjacent symbols. The main hyperpa-
rameter of BPE is the number of merge operations
applied to the data, which controls the granularity
of the subword units. In NLP, this hyperparam-
eter is usually chosen empirically, e.g., based on
the dataset size or on the task, regardless of the
typological features of a specific language.

2.2 Text and information theory
Bentz et al., (2016) distinguish between corpus-
based and paradigm-based approaches for quanti-
fying morphological complexity. While the former
approaches measure morphological productivity di-
rectly on raw text corpora, the latter make use of
higher level language descriptions, i.e., grammars,
and inflectional paradigms.

In corpus-based approaches, a text is usually re-
garded as a sequence of symbols. Each symbol
is generated with a certain probability, and hence
carries a certain information content (Juola, 1998;
Ehret and Szmrecsanyi, 2016a; Ehret, 2016b; Ko-
plenig et al., 2017; Bentz et al., 2017). The higher
the probability of a symbol, the lower its infor-
mation content. Against this backdrop, the aver-
age information content of a text can be estimated
by Shannon entropy, and approximated with type-
token-ratios (TTR). For instance, if we consider
orthographic words as symbols, languages with a
greater diversity of word types will have higher
entropy (word types are less predictable, due to,
e.g., richer morphology). In fact, such corpus-
based measures have been shown to be correlated
also with paradigm-based approaches that quantify
morphosyntactic distinctions based on grammars
(Bentz et al., 2016; Kirov et al., 2017).

The complexity of the morphological system of
a language is not only related to the diversity of
word types that can be produced, but also to the

way in which subwords are organized within them.
On the corpus-based side, there are some stud-

ies which have focused on the predictability of
internal word structure. For instance, there are
cross-linguistic accounts illustrating the trade-off
between the size of syllables and the size of words:
languages with structurally simple and short syl-
lables need more syllables for encoding the same
content (Fenk-Oczlon and Fenk, 1999; Coupé et al.,
2019). Another line of research proposes to quan-
tify the amount of word-internal information by
comparing the (character level) entropy of the orig-
inal text with a version where the regularities within
orthographic words have been masked (Juola, 1998;
Ehret and Szmrecsanyi, 2016a; Ehret, 2016b; Ko-
plenig et al., 2017).

Most recently, morphological complexity has
been approached through the lense of neural lan-
guage models, and their learning of subword struc-
ture (Vania and Lopez, 2017; Mielke et al., 2019).
Gutierrez-Vasques and Mijangos (2020) propose a
measure reflecting the predictability of the internal
structure of words. It relies on the entropy rate of
a neural language model that is trained to predict
sequences of character n-grams within a word. We
here compare the results of this latest neural net-
work approach with the entropy of subword units
based on BPE.

3 Data and methods

Our general proposal comprises calculating several
measures over varied subword tokenizatons of texts
obtained with BPE. In each consecutive tokeniza-
tion, we hence regard a different set of strings of
characters as symbols of our “alphabet”. In merge
0, a text is a sequence of single UTF-8 characters;
in the last merges, a text is a sequence closer to
orthographic word types (i.e. original tokenization
given by white spaces and punctuation). At each
incremental step, we compare the values across par-
allel corpora in 47 typologically diverse languages.

3.1 Parallel corpus

Using parallel corpora facilitates meaningful com-
parisons across languages, as seen in cross-
linguistic studies on morphological typology, lex-
ical typology, and word order typology (Cysouw
and Wälchli, 2007; Wälchli and Cysouw, 2012;
Östling, 2015; Kelih, 2010; Mayer et al., 2014).
In fact, the idea to compare language complex-
ity through parallel corpora can be traced back to
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Greenberg (1960).
In this work, we use a publicly available par-

allel corpus for 47 languages that was extracted
from the Parallel Bible Corpus (PBC) (Mayer and
Cysouw, 2014). This specific dataset2 contains 115
preprocessed parallel verses per language consis-
tently coded in UTF-8. The set of 47 languages is
a subset of the WALS 100-language sample, which
aims to maximize both genealogical and areal di-
versity. See the list of languages, their ISO639-3
code and linguistic families in Appendix A.

3.2 Scripts and Writing Systems

The respective texts are written in different scripts
(Arabic, Cyrillic, Devanagari, Georgian (Mkhe-
druli), Korean Hangul, Latin, Modern Greek,
Myanmar (Burmese), Thai), and reflect different
writing systems (abugida, abjad, alphabet, syl-
labary). Since BPE starts to operate at the level
of UTF-8 characters, the ideosyncrasies of encod-
ings are relevant for our analyses. For instance,
the word beginning in English consists of 9 UTF-
8 character tokens and 5 types (‘b’,‘e’,‘g’,‘i’,‘n’),
while the corresponding word written in Korean
Hangul 시작 (transliterated as ‘sijak’) consists
of two syllable blocks, namely 시 (‘si’) and 작
(‘jak’). It is these syllable blocks – rather than
individual letters of the Korean alphabet – which
are represented as UTF-8 characters. Thus, while
English texts typically contain 26 UTF-8 charac-
ter types (bare punctuation), Korean texts might
display hundreds and thousands. A similar prolifer-
ation of UTF-8 characters is found in texts written
with Abugidas (e.g. Hindi, Thai, Burmese), or in
latinized scripts with many special characters and
diacritics (e.g. Vietnamese).

3.3 BPE merge operations

The BPE algorithm starts by splitting words into
a sequence of characters. We can think of this as
characters separated by white spaces. In the first
operation, the algorithm merges the most frequent
pair of consecutive characters within the corpus,
e.g., (‘e’,‘d’)→ (‘ed’), thus creating a new symbol
that is added to the vocabulary. In each of the
following operations, the algorithm calculates the
co-occurrence frequency of pairs of all the current
consecutive symbols and it merges again the most
frequent pair.

2Dataset from the Interactive Workshop on Measuring
Language Complexity (IWMLC 2019)

When the algorithm merges a frequent pair of
symbols, it automatically removes many of the
white spaces in the text (this is one aspect of how
BPE achieves text compression). As more merges
are applied, longer symbols (in terms of number
of characters) are obtained – we are getting closer
to the word level. The algorithm stops when a
pre-specified number of merge operations has been
reached, or when it cannot find a pair of consecu-
tive symbols with frequency greater than 1.

A worked out toy example can be found in Table
1. Note that symbols occurring at the end of a word
are considered different from the ones that occur at
any other position. The symbols that are merged
in BPE are hence character sequences of variable
sizes. These can be interpreted as subword units.
This is why BPE is usually seen as a morphological
segmentation technique in NLP.

We applied an existing BPE implementation3 to
the texts of the parallel corpus. For each language,
we obtain many different segmented versions of the
text depending on the number of merges applied.
In specific, we go from merge 0 to merge 10K.

We traverse the range of merge operations by
using different step sizes. We simply do this to ease
the computational load. Moreover, the different
trends that we observe are already stable by merge
350.

• Fine-grained merges:

0 to 350 (step size: 1)

• Coarse-grained merges:

350 to 5K merges (step size: 50)

5k to 10K merges (step size: 1K)

3.4 Information-theoretic measures
Once the texts are segmented, we apply two dif-
ferent information-theoretic measures. Both take
as input a text T with a vocabulary of types V =
{t1, t2, ..., tV } of size |V |. At the word level, these
types correspond to words (strings separated by
spaces). Analogously, at the subword level, the
types are the subword units obtained at a specific
number of merge operations. We distinguish be-
tween the subword units that are at the end of a
word and the rest of them, e.g. -ed and -ed- are
considered different types in the vocabulary.4

We use entropy as a measure of the average
information content of types in a text. We can

3https://github.com/rsennrich/subword-nmt
4We follow this distinction since it is made by the BPE

implementation that we use.

http://www.christianbentz.de/MLC2019_data.htm
https://github.com/rsennrich/subword-nmt
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Merge Text Version Alphabet (Vocabulary of Symbols)
0 g-o-d c-r-e-a-t-e-d t-h-e h-e-a-v-e-n a-n-d g-o-d d-i-v-i-d-e-d

t-h-e l-i-g-h-t
a-, c-, d, d-, e, e-, g-, h-, i-, l-, n, n-, o-, r-, t, t-, v-

1 g-o-d c-r-e-a-t-e-d th-e h-e-a-v-e-n a-n-d g-o-d d-i-v-i-d-e-d
th-e l-i-g-h-t

a-, c-, d, d-, e, e-, g-, h-, i-, l-, n, n-, o-, r-, t, t-, th-, v-

2 g-o-d c-r-e-a-t-e-d the h-e-a-v-e-n a-n-d g-o-d d-i-v-i-d-e-d
the l-i-g-h-t

a-, c-, d, d-, e-, g-, h-, i-, l-, n, n-, o-, r-, t, t-, the, v-

3 g-od c-r-e-a-t-e-d the h-e-a-v-e-n a-n-d g-od d-i-v-i-d-e-d
the l-i-g-h-t

a-, c-, d, d-, e-, g-, h-, i-, l-, n, n-, od, r-, t, t-, the, v-

4 god c-r-e-a-t-e-d the h-e-a-v-e-n a-n-d god d-i-v-i-d-e-d the
l-i-g-h-t

a-, c-, d, d-, e-, g-, god, h-, i-, l-, n, n-, r-, t, t-, the, v-

5 god c-r-e-a-t-ed the h-e-a-v-e-n a-n-d god d-i-v-i-d-ed the
l-i-g-h-t

a-, c-, d, d-, e-, ed, g-, god, h-, i-, l-, n, n-, r-, t, t-, the, v-

6 god c-r-ea-t-ed the h-ea-v-e-n a-n-d god d-i-v-i-d-ed the
l-i-g-h-t

a-, c-, d, d-, e-, ea-, ed, g-, god, h-, i-, l-, n, n-, r-, t, t-, the, v-

Table 1: Example of BPE merge operations. Original text: God created the heaven [...] and God divided the light [...]

calculate the entropy as follows (Shannon, 1948):

H(T ) = −
V∑
i=1

p(ti) log2 p(ti) (1)

Where the probability of a type p(t) is estimated
using the so-called maximum likelihood method
(i.e. its relative frequency in the text). Higher
values of entropy indicate higher complexity (less
predictability). We take this as our main measure
of text-based morphological complexity through
merges.

We also use redundancy, a measure that is re-
lated to entropy. The entropy of a source of data
is maximum when the symbols comprising a mes-
sage can be chosen freely and they are equiprob-
able (maximum uncertainty). The redundancy, as
defined here, quantifies how close the empirically
estimated entropy H(T ) is to the maximum value
it can take, assuming that we utilize the same al-
phabet (or types in our case). It can be defined as
follows (Partridge, 1981; Karmeshu, 2003):

R(T ) = 1− H(T )

max{H(T )}
= 1− H(T )

log2 |V |
(2)

Where H(T ) is the entropy of a text, calculated
as in (1). The maximum entropy can be calcu-
lated as max{H(T )} = log2|V |, i.e, the entropy
when the probability distribution of types is uni-
form p(ti) =

1
|V | . The values of R range from 0 to

1. Values closer to 1 indicate higher redundancy.

3.5 Spearman’s rank correlation

We use correlations for exploring the connection
between values yielded by the complexity measures
described above. We rank languages according to
these measures. In particular, we use Spearman’s

rank correlation, which tests for a correlation be-
tween the rankings of two variables (monotonic
relationships, not necessarily linear).

We apply Spearman’s rank correlation to the
following variables:

1. Final merge (the number of merge operations needed to
reach the final step of the BPE algorithm);

2. Average word length (at the word level);

3. Size of the vocabulary of characters (of the original
texts);

4. Entropy and redundancy measured over the texts at dif-
ferent merges;

5. Two external morphological complexity measures
(based on unigrams and trigrams of characters).

Since we have many variables, and hence pair-
wise correlations, we apply the Bonferroni correc-
tion on p-values. We select the correlations that are
still significant after correcting for multiple testing,
see Appendix C.

4 Results

4.1 From characters to words: the turning
point

Figure 1 shows the entropy of languages at different
merge operation stages: merge 0, merge 30, merge
200, and the word level. We choose these specific
merges for the sake of illustration. In particular,
merge 200 is representative of the turning point of
several trends.

At the very first merges, texts are closer to char-
acter level tokenizations, i.e., small subword units.
The initial point is merge 0 (roughly corresponding
to the character level). Here, the texts’ entropies
range between 4.01− 7.77 bits. We notice that lan-
guages with a larger inventories of UTF-8 charac-
ters start with higher entropy values. For instance,
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Figure 1: Entropies of languages at different merge operations. Histograms of the distributions are shown above the panels. The
sizes of the original UTF-8 character sets are indicated by colors.

Korean (kor) is an outlier due to its alpha-syllabary
writing system (Section 3.2).

In the subsequent merges, all languages start
increasing their entropy. However, the values also
start to become less dispersed across languages. In
fact, we can see that, in merge 200, the majority of
languages are centered around 7.3 bits. This means
that, at this merge, the frequency distributions of
subwords are similar across languages. Moreover,
the size of the initial inventory of characters seems
not to affect the texts’ entropy at these later merges.

As BPE approaches tokenizations which are
closer to orthographic words, entropy values start
to disperse again. If we measure entropies over the
original texts (without any subword tokenization),
we can see that the cross-linguistic variation is con-
siderably wider than the one obtained when the
texts are represented by subwords (fewer merges).

This trend is also observable in Fig. 2, where the
standard deviation (σ) of entropy across languages
is shown as a function of the number of merges. A
minimum is reached at merge 200; in fact, between
merges 190-240 there is practically no variation of
σ. This means that, around this number of merges,
the entropies of subword distributions’ across lan-
guages are closest to one another. After 240 merges,
the values start to slowly disperse again and keep
dispersing up to the final merges.

Moreover, if we rank languages by their entropy,
the rankings obtained before merge 200 are not cor-
related with the ones observed in later merges (see
Section 4.3). From this point onward, the rankings
start to gradually correlate with the one observed at
the word-level. For instance, at merge 350 (a rela-
tively low number of merges) the vocabularies still
contain many short subword units, and the variance
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Figure 2: Standard deviations (σ) of entropies across lan-
guages per each BPE merge operation.

of entropies across languages is still close to the
minimum. Despite of this, the language rankings
obtained at this merge are already similar to the
rankings observed at the word level.

For some languages, the entropy at the sub-
word level (fewer merges) is systematically differ-
ent from that at the word level (higher number of
merges). For instance, Kalaallisut (kal), typically
seen as polysynthetic, starts with low H in the first
merges – it ranks almost last. However, at merge
200, it is rather in the middle range, and it further
increases in entropy with subsequent merges, to
the point where it ranks highest of all languages,
namely at the word level (Fig. 1).

As we discussed earlier, the entropy (H) has
its minimum at merge 0. After each merge op-
eration, H increases. The first merges cause the
most drastic changes in the entropy. After the first
hundreds of merges, the entropy increases more
slowly, i.e., each merge does not cause a big in-
crement of the text entropy anymore. In contrast,
redundancy starts decreasing since the first merges.
R reaches a minimum after a certain number of
merges for all languages (297 merges on average),
and then it starts increasing again as the word level
is approached. Figure 3 shows an example of the
entropy (H) and redundancy (R) across merges for
the French text. Appendix B contains the entropy
and redundancy curves for all languages.

The first operations merge very frequently ad-
jacent symbols, which impacts the subword dis-
tributions of the texts. This is the reason why re-
dundancy and entropy are changing quickly for
the early merges. These first merges find the most
frequent and productive patterns, e.g., inflectional
markers (‘-ed’ and ‘-ing’), and orthographic prac-
tices for representing sounds (e.g. ‘th’) in English.

When highly recurrent patterns get merged, the
redundancy of the texts is reduced. We can think of
this in terms of skewed distributions. At merge 0,
the vocabulary’s initial distribution of elements is
skewed (few UTF-8 characters, high frequencies).
When BPE starts merging the most salient patterns,
the distribution of subwords gets closer to a uni-
form distribution (more symbols, lower frequen-
cies), and a minimum of redundancy is reached. Af-
ter this, the merge operations lead again to skewed
distributions (redundancy grows again). However,
these latter distributions across languages are cor-
related to the ones observed at the word level and
not to the first merges’ skewed distributions.

Interestingly, the number of merges at which
entropies start to grow slower, and redundancies
reach a minimum, are in the same range of merges
in which languages start to change their trends be-
tween subword and word level, ca. 200-300 merges.
This is also the turning point in which the cross-
linguistic standard deviation of entropies reaches a
minimum.

Figure 3: H and R across BPE merges for French (fra).

4.2 Max. number of merges per language

Not all languages require the same number of oper-
ations to reach the point where no pair of subwords
can be merged anymore. In our corpus, languages
needed between 1.1K and 7K operations for reach-
ing this final merge (Figure 4).

We can see that languages with lower values
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Figure 4: Maximum number of BPE merges for each lan-
guage (x-axis) against word level entropy (y-axis).

of word entropy require fewer merges. This is
the case for languages with isolating tendencies:
Sango (sag), Vietnamese (vie), Fijian (fij), Yoruba
(yor). The Indo-European language that requires
the least merges is English (eng). These are also
the languages that reach the entropy plateau faster,
i.e., the first merges capture very productive re-
currences, but after a relatively small number of
operations, the text entropy does not change that
much anymore.

On the other hand, languages with richer mor-
phological processes (polysynthetic, agglutinative,
or template morphology) require more merges to
reach this final point. Namely, Kalaallisut (kal),
Burmese (mya), Yagua (yad), Egyptian Arabic
(arz), Turkish (tur), Alamblak (amp), Finnish (fin),
require the most merges. Note that Burmese (mya)
is not generally considered a morphologically com-
plex language; it has very long orthographic words
on average. This is related to the Burmese script,
which uses white spaces differently from other
scripts (therefore, it has very long character string
sequences).

Notice that despite this outlier, the figure illus-
trates that characters’ inventory size is not strongly
influencing the final number of merge operations
(Fig. 4). A language that has a small character
inventory to start with can still require many merge
operations to reach the final merge, as exemplified
by Kalaallisut (kal), Turkish (tur), Yagua (yad), and
Finnish (fin).

4.3 Correlations between measures

In order to investigate relationships between mea-
sures, a correlation matrix is shown in Figure 5 with
the variables explained in Section 3.5. We only in-

clude correlations for the entropy and redundancy
taken at merges 0, 30, 200, 350, and the word level
in this matrix. See Appendix C for the complete
correlation matrix, which includes a wider range of
merges.

The final merge is strongly correlated with the
entropy at the word level and the average word
length of a language. This is expected since lan-
guages with higher entropy/TTR (at the word level)
tend to have longer words because they encode
more morphosyntactic distinctions within a word.
Therefore, under this conceptualization of complex-
ity, complex languages will require more merges
during BPE encoding. We did not find any strong
correlations between word length and any of the
early merges’ measures.

The entropy of the texts on the first operations
(from merge 0 to merge 100) showed no strong
correlation with the entropy at the word level, either
positive or negative (ρ < ±0.14). Therefore, there
is not a general trade-off between subword and
word level complexities. Some languages display
such a trade-off, e.g., being very complex at the
word level, while having low complexity on the first
merges. However, others are more stable across
merges.

Interestingly, it seems that after the ‘turning
point’, the correlation between subword tokeniza-
tions and the word level starts to be more prominent.
At merge 200 the correlation is ρ = 0.47, this grad-
ually increases, e.g., by merge 350, there is already
a strong correlation with the word level (ρ = 0.72).
As we saw in Section 4.1, the rankings obtained at
the first merges (somewhere below 200) differ from
the trend observed at the subsequent merges, .i.e.,
after merge 200 the complexity rankings of lan-
guages start to be more similar to the one observed
at the word level.

Regarding redundancy, there is a strong trade-
off between entropy and redundancy at the word
level (ρ = 0.72). This is understandable since a
language with high entropy at the word level will
have a wide diversity of word forms, few repeti-
tions, hence, less possibility of compression (low
redundancy). However, entropy and redundancy
are not always correlated. As shown in Fig. 3 (and
Appendix B), the entropy tends to grow through
merges, while redundancy first decreases and then
grows again. In fact, cross-linguistically, we did
not find a strong correlation between H and R dur-
ing the early merges. By merge 200, H and R
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already start to be negatively correlated. This trade-
off is maintained in further operations and at the
word level.

Even though R and H are not correlating on the
first merges, they show similar behavior, i.e., both
of them seem to follow a trend on the first merges,
not correlated with their respective values at the
word level, but then this trend changes (around the
turning point).

We can also see that the size of a language’s char-
acter inventory is correlated with the entropy on the
first merges (around 0.6). While for redundancy,
this correlation is not significant.

Figure 5: Spearman’s rank correlation (subset of variables)

4.3.1 Predictability of sequences

Entropy is reflecting the degree of organization
or predictability of subword types across several
merges. This provides a glimpse of the morpho-
logical complexity of languages. However, one
might argue that to really approach morphological
complexity, our measures would have to consider
the restrictions given by the allowed sequences of
subword units within a word.

To address this concern, we compare our re-
sults with a corpus-based morphological complex-
ity measure that aims to quantify the predictability
of subword sequences within a word. This external
approach uses a neural language model for esti-
mating the predictability of sequences of n-grams
within a word (Gutierrez-Vasques and Mijangos,
2020). H1gram is the entropy rate obtained at the

character level, H3gram is the entropy rate using
sequences of character trigrams.

The entropies of texts at merge 0 are already
strongly correlated with H3gram (ρ = 0.81). A
higher correlation is obtained at merge 30 (ρ =
0.86). This means that at this point, the subword
distribution is reflecting a complexity that is related
to the predictability of its morphs – or at least of
its character trigrams. This correlation starts to
vanish in later merges, especially after the turning
point (since we are probably starting to capture
predictability more related to the word level).

Interestingly, H1gram does not correlate with
BPE entropies, not even at merge 0. This could
be related to the fact that, even at merge 0, we
distinguish between the characters at the end of
an orthographic word versus any of the remaining
positions. This already captures some degree of
sequentiality that seems more related to H3gram.

The measure H3gram is restricted to predict-
ing fixed-size overlapping sequences of characters
within a word, while the tokenizations that we ob-
tain with BPE contain subwords of variable lengths
across merges. Despite this, it is interesting that
these two measures strongly correlate at the first
merge operations, suggesting that they reflect a
similar phenomenon at the subword level.

5 Discussion

The “turning point” we discussed here reflects sev-
eral phenomena. Firstly, languages become more
similar in terms of their subword entropies around
this point. Secondly, the trends of entropy and
redundancy start to change (redundancy starts to
grow, while entropy growth slows down). Thirdly,
there is a shift in several cross-linguistic correla-
tions around the same region of merges. It seems
that two different subword distributions emerge,
one before the turning point, and one afterward.

The entropy measured over word-level types re-
flect one dimension of diversity, i.e., some lan-
guages have rich inflectional morphology while
others do not mark grammatical information word-
internally. However, in another dimension, at the
subword level, this variation is reduced.

If we rank languages by their entropy, the first
merges’ rankings are not correlated to the ones
closer to the word level. In some of the languages,
we see a clear trade-off across merges. For instance,
some languages with high word entropy (low pre-
dictability, long words with the potential of com-
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bining many different morphological distinctions),
have highly predictable subword distributions.

Languages where this trade-off is observed in-
clude: Basque (eus), Imbabura Highland Quichua
(qvi), Finnish (fin), Yagua (yad), Kalaallisut (kal).
There are also examples of languages that start with
high complexity on the first merges but they are
not the most complex ones at the word level: Viet-
namese (vie), Thai (tha), Hindi (hin), Yoruba (yor),
Nama (naq). English (eng) is also an example of
a language that has comparatively low entropy at
the word level, probably due to a relative lack of
productive inflections, but is not one of the least
complex at the subword level (first merges).

However, this trade-off was not general, as we
did not find a significant negative correlation be-
tween the entropies at first merges with the en-
tropies at last merges.

Taking a linguistic perspective, several accounts
have focused on the structure of the morphological
paradigm and the predictability between the in-
flected forms (Blevins, 2006, 2016; Ackerman and
Malouf, 2013; Cotterell et al., 2018). For instance,
Ackerman and Malouf (2013) distinguish between
two types of complexity: a) enumerative complex-
ity (E-complexity), reflecting the diversity of mor-
phological distinctions, word forms, paradigm size;
and b) integrative complexity (I-complexity), re-
lated to systematic paradigmatic organization un-
derlying the morphological surface patterns.

The entropy values of I-complexity tend to be
lower and less disperse than the ones exhibited
by E-complexity (Ackerman and Malouf, 2013).
According to these observations, a morphological
paradigm could grow (many different word forms,
many morphosyntactic distinctions) as long as it
maintains its predictive structure. This is argued to
be the reason why languages vary more widely in
the dimension of E-complexity, while being more
constrained in the I-dimension. Even though our
work is not based on paradigms, and it did not
require the use of linguistically annotated data, our
findings seem to point in a similar direction, at least
in the sense that the internal predictability of words
is more similar across languages than than their
word-level predictability.

However, note that there is some evidence from
language learning experiments – with neural net-
works and human participants – which suggests
that both are more sensitive to E-complexity than
I-complexity (Johnson et al., 2020). It is an open

question how our word-internal predictability mea-
sures relate to language learning.

On a practical note, the fact that certain num-
bers of BPE merges lead to more similar entropies
across languages could be beneficial for NLP mul-
tilingual tasks. To our knowledge, the entropy and
redundancy of tokenized texts have not been used
as a criterion for choosing an appropriate number
of BPE merge operations. There is recent work that
investigates how the number of merges can lead to
more balanced distributions of subwords, improv-
ing tasks like NMT (Gowda and May, 2020).

Another important question is to what extent
our findings can be generalized to other corpora.
The corpus size, type of register, etc., are likely to
influence the turning point. As a general trend we
expect this convergence to arise in a relatively low
number of BPE operations.

6 Conclusions

In this paper, we went from single characters to
orthographic words through incremental merges
of BPE. We observed that text entropy values
across 47 typologically diverse languages are less
dispersed at the subword level than at the word-
level. Our findings revealed a curious turning point,
around the merge 200, where the values are least
dispersed. Around this point, subword token distri-
butions gradually start to look like word-level distri-
butions (subword- and word-level entropy rankings
are correlated only after this point). Additionally,
this is approximately the point where text redun-
dancy starts to grow after an initial drop and also
where entropy growth slows down considerably
after initial fast growth.

At the early merges, the entropy of texts is
strongly correlated with an independent measure
based on modeling character trigrams sequences.
This provides new evidence that contributes to the
ongoing discussion regarding different types of lin-
guistic complexity.

Finally, our analysis could provide a useful in-
sight for NLP processing. Choosing the number
of merges that result in more similar distributions
across languages could lead to more suitable sub-
word representations for multilingual settings.
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A Languages

iso639 3 language family
aey Amele Trans-New Guinea
amp Alamblak Sepik
ape Bukiyip Torricelli
apu Apurinã Arawakan
arn Mapudungun Araucanian
arz Egyptian Arabic Afro-Asiatic
bsn Barasana-Eduria Tucanoan
cha Chamorro Austronesian
deu German Indo-European
dgz Daga Dagan
ell Modern Greek Indo-European
eng English Indo-European
eus Basque Basque
fij Fijian Austronesian
fin Finnish Uralic
fra French Indo-European
hae Eastern Oromo Pama-Nyungan
gug Paraguayan Guaranı́ Afro-Asiatic
hau Hausa Afro-Asiatic
hin Hindi Indo-European
ind Indonesian Austronesian
jac Popti’ Mayan
kal Kalaallisut Eskimo-Aleut
kat Georgian Kartvelian
kew West Kewa Trans-New Guinea
khk Halh Mongolian Altaic
kor Korean Korean
laj Lango (Uganda) Eastern Sudanic

mig San Miguel El Grande Mixtec Oto-Manguean
mya Burmese Sino-Tibetan
mzh Wichı́ Lhamtés Güisnay Matacoan
naq Nama (Namibia) Khoe-Kwadi
pes Western Farsi Indo-European
plt Plateau Malagasy Austronesian
qvi Imbabura Highland Quichua Quechuan
rus Russian Indo-European
sag Sango Niger-Congo
spa Spanish Indo-European
swh Swahili Niger-Congo
tgl Tagalog Austronesian
tha Thai Tai-Kadai
tur Turkish Altaic
vie Vietnamese Austro-Asiatic
xsu Sanumá Yanomam
yad Yagua Peba-Yaguan
yaq Yaqui Uto-Aztecan
yor Yoruba Niger-Congo
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B Entropy and redundancy graphs

Figure 6: Entropy of all languages.

Figure 7: Redundancy of all languages (only the first 600 merges are shown in order to illustrate the merges in which the
minimums are reached for most languages)
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C Correlations

Figure 8: Correlation matrix
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C.1 Significant correlations
Correlations still significant after Bonferroni correction (ordered from the highest to lowest coefficient).

var 1 var 2 pvalue corr num pvalue.correct var 1 var 2 pvalue corr num pvalue.correct
H 5000 H wordlevel 0 0.99 47 0 H 350 H 5000 2.66E-08 0.71 47 1.35E-05
H 20 H 30 0 0.98 47 0 R 0 R 20 2.85E-08 0.71 47 1.44E-05
R 5000 R wordlevel 0 0.97 47 0 H 100 H3gram 4.84E-08 0.7 47 2.45E-05
R 20 R 30 0 0.97 47 0 word length H wordlevel 7.18E-08 0.69 47 3.63E-05
H 30 H 60 0 0.94 47 0 R 0 R 30 7.28E-08 0.69 47 3.68E-05
H 0 H 20 0 0.92 47 0 R 350 R wordlevel 1.52E-07 0.68 47 7.69E-05
H 60 H 100 0 0.91 47 0 R 20 R 100 1.97E-07 0.67 47 9.98E-05
H 0 H 30 0 0.91 47 0 R 0 R 60 2.05E-06 0.63 47 0.00104
R 30 R 60 0 0.9 47 0 char vocab H 20 2.96E-06 0.62 47 0.00150
H 20 H 60 0 0.9 47 0 char vocab H 0 3.96E-06 0.62 47 0.00200
R 60 R 100 0 0.9 47 0 char vocab R 60 4.81E-06 0.61 47 0.00243
H 200 H 350 1.55E-15 0.87 47 7.86E-13 char vocab H 30 5.67E-06 0.61 47 0.00287
H 30 H3gram 6.66E-15 0.86 47 3.37E-12 char vocab R 20 6.21E-06 0.61 47 0.00314
R 20 R 60 1.02E-14 0.86 47 5.17E-12 char vocab H 60 1.05E-05 0.59 47 0.00529
R 200 R 350 1.91E-14 0.86 47 9.66E-12 char vocab R 30 1.12E-05 0.59 47 0.00569
final merge word length 3.46E-14 0.85 47 1.75E-11 H 60 H 200 3.24E-05 0.57 47 0.01639
H 20 H3gram 5.20E-14 0.85 47 2.63E-11 char vocab H 100 4.30E-05 0.56 47 0.02175
H 0 H 60 2.29E-13 0.84 47 1.16E-10 H 200 R 5000 8.54E-05 -0.54 47 0.04322
H 60 H3gram 6.39E-13 0.83 47 3.23E-10 final merge R 350 5.12E-06 -0.61 47 0.00259
H 0 H3gram 9.40E-13 0.83 47 4.75E-10 final merge R 5000 2.45E-06 -0.63 47 0.00124
final merge H 5000 2.13E-12 0.82 47 1.08E-09 word length R 5000 2.28E-06 -0.63 47 0.00116
H 30 H 100 5.99E-12 0.81 47 3.03E-09 word length R 350 2.75E-07 -0.67 47 0.00014
H 20 H 100 2.99E-10 0.77 47 1.51E-07 H wordlevel R 350 6.79E-09 -0.73 47 3.43E-06
final merge H wordlevel 1.10E-09 0.75 47 5.57E-07 H 5000 R 350 5.52E-09 -0.73 47 2.79E-06
word length H 5000 2.03E-09 0.74 47 1.03E-06 H 350 R wordlevel 2.85E-09 -0.74 47 1.44E-06
H 0 H 100 2.20E-09 0.74 47 1.11E-06 H 350 R 350 4.38E-10 -0.76 47 2.22E-07
H 100 H 200 2.75E-09 0.74 47 1.39E-06 H 350 R 5000 8.86E-11 -0.78 47 4.48E-08
R 350 R 5000 6.46E-09 0.73 47 3.27E-06 H 5000 R wordlevel 4.44E-15 -0.87 47 2.25E-12
R 30 R 100 1.03E-08 0.72 47 5.23E-06 H wordlevel R wordlevel 0 -0.91 47 0
H 350 H wordlevel 1.07E-08 0.72 47 5.40E-06 H 5000 R 5000 0 -0.94 47 0
R 100 R 200 1.63E-08 0.72 47 8.26E-06 H wordlevel R 5000 0 -0.96 47 0


