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Abstract

The number of senses of a given word, or poly-

semy, is a very subjective notion, which varies

widely across annotators and resources. We

propose a novel method to estimate polysemy

based on simple geometry in the contextual

embedding space. Our approach is fully un-

supervised and purely data-driven. Through

rigorous experiments, we show that our rank-

ings are well correlated, with strong statis-

tical significance, with 6 different rankings

derived from famous human-constructed re-

sources such as WordNet, OntoNotes, Oxford,

Wikipedia, etc., for 6 different standard met-

rics. We also visualize and analyze the correla-

tion between the human rankings and make in-

teresting observations. A valuable by-product

of our method is the ability to sample, at no ex-

tra cost, sentences containing different senses

of a given word. Finally, the fully unsuper-

vised nature of our approach makes it applica-

ble to any language. Code and data are pub-

licly available1.

1 Introduction

Polysemy, the number of senses that a word has,

is a very subjective notion, subject to individual

biases. Word sense annotation has always been

one of the tasks with the lowest values of inter-

annotator agreement (Artstein and Poesio, 2008).

Yet, creating high-quality, consistent word sense

inventories is a critical pre-requisite to successful

word sense disambiguation.

Towards creating word sense inventories, it can

be helpful to have some reliable information about

polysemy. That is, knowing which words have

∗ Equal contribution. CX handled the data, generated
the rankings, and sampled the examples of section 7. AJPT
computed the results, plots, and wrote the paper. Both authors
participated in the design of the study.

1https://github.com/ksipos/polysemy-assessment

many senses and which words have only a few

senses. Such information can help in creating new

inventories but also in validating and interpreting

existing ones. It can also help select which words

to include in a study (e.g., only highly polysemous

words).

We propose a novel, fully unsupervised, and

data-driven approach to quantify polysemy, based

on basic geometry in the contextual embedding

space.

Contextual word embeddings have emerged in

the last few years as part of the NLP transfer

learning revolution. Now, entire deep models are

pre-trained on huge amounts of unannotated data

and fine-tuned on much smaller annotated datasets.

Some of the most famous examples include ULM-

FiT (Howard and Ruder, 2018) and ELMo (Pe-

ters et al., 2018), both based on recurrent neu-

ral networks; and GPT (Radford et al., 2018) and

BERT (Devlin et al., 2018), based on transform-

ers (Vaswani et al., 2017). These models all are

very deep language models. During pre-training on

large-scale corpora, they learn to generate powerful

internal representations, including fine-grained con-

textual word embeddings. For instance, in a well

pre-trained model, the word python will have two

very different embeddings depending on whether

it occurs in a programming context (as in, e.g., “I

love to write code in python”) or in an ecological

context (“while hiking in the rainforest, I saw a

python”).

Our approach capitalizes on the contextual em-

beddings previously described. It does not involve

any tool and does not rely on any human input

or judgment. Also, thanks to its unsupervised na-

ture, it can be applied to any language (even those

with limited resources), provided that contextual

embeddings are available.

The remainder of this paper is organized as fol-

lows. We detail our approach in section 2. Then,
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Figure 1: Illustration of the proposed approach with D = 2 and L = 3.

we present our experimental setup (sec. 3), evalua-

tion metrics (sec. 4), and report and interpret our

results (sec. 6). In section 7, we briefly touch on

two other interesting applications of our method.

One that allows the user to sample sentences con-

taining different senses of a given word and one

that goes towards word sense induction. Finally,

related work is presented in section 8.

2 Proposed approach

2.1 Basic assumption

First, by passing diverse sentences containing a

given word to a pre-trained language model, we

construct a representative set of vectors for that

word (one vector for each occurrence of the word).

The basic and intuitive assumption we make is that

the volume covered by the cloud of points in the

contextual embedding space is representative of the

polysemy of the associated word.

2.2 Main idea: multiresolution grids

As a proxy for the volume covered, we adopt a

simple geometrical approach. As shown in Fig.

1, we construct a hierarchical discretization of the

space, where, at each level, the same number of

bins are drawn along each dimension. Each level

corresponds to a different resolution. Our polysemy

score is based on the proportion of bins covered by

the vectors of a given word at each level.

Grid vs. clustering. Using a binning strategy

makes more sense than a clustering-based approach.

Indeed, clusters do not partition the space equally

and regularly. This is especially problematic since

word representations are not uniformly distributed

in the embedding space (Ethayarajh, 2019). There-

fore, the vectors lying in the same dense area of

the space will always belong to one single large

cluster, while outliers lying in the same, but sparser,

area of the space, will be assigned to many differ-

ent small clusters. Therefore, counting the number

of clusters a given word belongs to is not a reli-

able indicator of how much of the space this word

covers.

2.3 Scoring scheme

We quantify the polysemy degree of a word w as:

score(w) =

L
∑

l=1

coveragel
w

2L−l
(1)

where coveragel
w

designates the proportion of bins

covered by word w at level l, between 0 and 1. At

each level, 2l bins are drawn along each dimension

(see the vertical and horizontal lines in Fig. 1). The

hierarchy starts at l = 1 since there is only one bin

covering all the space at l = 0 (so all words have

equal coverage at this level). The total number of

bins in the entire space, at a given level l, is equal

to (2l)D.

Consider again the example of Fig. 1. In this

example, each word is associated with a set of 10

contextualized embeddings in a space of dimension

D = 2, and the hierarchy has L = 3 levels. First,

we can clearly see that word 1 (blue circles) covers

a large area of the space while all the vectors of

word 2 (orange squares) are grouped in the same

region. Intuitively, this can be interpreted as “word

1 occurs in more different contexts than word 2”,

which per our assumption, is equivalent to saying

that “word 1 is more polysemous than word 2”.

Let us now see how this is reflected by our scor-

ing scheme. First, the penalization terms (denomi-

nators) for levels 1 to 3 are
[

1

22
, 1

21
, 1

20

]

= [1
4
, 1
2
, 1
]

.

Note that the higher the level, the exponentially

more bins, and so the less penalized (or the more

rewarded) coverage is, because getting good cov-

erage becomes more and more difficult. Now, per
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Eq. 1, the score of word 1 is computed as the

dot product of its coverage vector
[

3

4
, 7

16
, 10
64

]

(cov-

erage at each level) with the penalization vector,

which gives a score of 0.5625. Likewise, the score

of word 2 is computed as [1
4
, 1
2
, 1
]

·
[

1

4
, 4

16
, 7

64

]

=
0.297. We can thus see that our scores reflect what

can be observed in Fig. 1: word 1 covers a larger

area of the space than word 2.

Note that the score of a given word is only mean-

ingful compared to the scores of other words, i.e.,

in rankings, as will be seen in the next section.

3 Experiments

In this section, we describe the protocol we fol-

lowed to test the extent to which our rankings

match human rankings.

3.1 Word selection

The first step was to select words to include in

our analysis. For this purpose, we downloaded

and extracted all the text from the latest available

English Wikipedia dump2. We then performed

tokenization, stopword, punctuation, and number

removal and counted the occurrence of each token

of at least 3 characters in size. Out of these tokens,

we kept the 2000 most frequent.

3.2 Generating vector sets

For each word in the shortlist, we randomly se-

lected 3000 sentences such that the corresponding

word appeared exactly once within each sentence.

The words that did not appear in at least 3000 sen-

tences were removed from the analysis, reducing

the shortlist’s size from 2000 to 1822. Then, for

each word, the associated sentences were passed

through a pre-trained ELMo model3 (Peters et al.,

2018) in test mode, and the top layer representa-

tions corresponding to the word were harvested.

The advantage of using ELMo’s top layer embed-

dings is that they are the most contextual, as shown

by Ethayarajh (2019). We ended up with a set of

exactly 3000 1024-dimensional contextual embed-

dings for each word.

3.3 Dimensionality reduction

Remember that the total number of bins in the en-

tire space is equal to (2l)D at a given level l, which

would have given us an infinite number of bins even

2https://dumps.wikimedia.org/
3We used the implementation and pre-trained weights pub-

licly released by the authors https://allennlp.org/
elmo.

at the first level, since the ELMo representations

have dimensionality D = 1024. To reduce the di-

mensionality of the contextual embedding space,

we applied PCA, trying 19 different output dimen-

sionalities, from 2 to 20 with steps of 1. Due to

the quantity and high initial dimensionality of the

vectors, we used the distributed4 version of PCA

provided by the PySpark’s ML Library (Meng et al.,

2016).

3.4 Score computation

We computed our scores for each PCA output di-

mensionality, trying with 18 different hierarchies

whose numbers of levels L ranged from 2 to 19. So

in total, we obtained 19× 18 = 342 rankings.

3.5 Ground truth rankings and baselines

We evaluated the rankings generated by our ap-

proach against several ground truth rankings that

we derived from human-constructed resources.

Since the number of senses of a word is a sub-

jective, debatable notion, and thus may vary from

source to source, we included 6 ground truth rank-

ings in our analysis, in order to minimize source-

specific bias as much as possible. For sanity check-

ing purposes, we also added two basic baseline

rankings (frequency and random). We provide

more details about all rankings in what follows.

3.5.1 WordNet

We used WordNet (Miller, 1998) version 3.0 and

counted the number of synonym sets or “synsets”

of each word.

3.5.2 WordNet-Reduced

There are very subtle differences among the Word-

Net senses (“synsets”), making distinguishing be-

tween them difficult and even irrelevant in some ap-

plications (Palmer et al., 2004, 2007; Brown et al.,

2010; Rumshisky, 2011; Jurgens, 2013). For in-

stance, call has 41 senses in the original WordNet

(28 as verb and 13 as noun). Even for other words

with fewer senses, like eating (7 senses in total),

the difference between senses can be very tiny. For

instance, “take in solid food” and “eat a meal; take

a meal” are really close in meaning. This very fine

granularity of WordNet may somewhat artificially

increase the polysemy of some words.

To reduce the granularity of the WordNet

415 executors with 10 GB of RAM each.

https://dumps.wikimedia.org/
https://allennlp.org/elmo
https://allennlp.org/elmo
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synsets, we used their sense keys5. They

follow the format lemma%ss type:lex filenum:

lex id:head word:head id, where ss type repre-

sents the synset type (part-of-speech tag such as

noun, verb, adjective) and lex filenum represents

the name of the lexicographer file containing the

synset for the sense (noun.animal, noun.event,

verb.emotion, etc.). We truncated the sense keys

after lex filenum.

For instance, “take in solid food” and “eat a

meal; take a meal” initially correspond to two

different senses with keys eat%2:34:00:: and

eat%2:34:01::, but after truncation, they both are

mapped to the same sense: eat%2:34. However,

coarse differences in senses are still captured. For

instance, bank “sloping land” (bank%1:17:01::)

and bank “financial institution” (bank%1:14:00::)

are still mapped to two different senses after trun-

cation, respectively bank%1:17 and bank%1:14.

3.5.3 WordNet-Domains

WordNet Domains (Bentivogli et al., 2004;

Magnini and Cavaglia, 2000) is a lexical resource

created in a semi-automatic way to augment Word-

Net with domain labels. Instead of synsets, each

word is associated with a number of semantic do-

mains. The domains are areas of human knowledge

(politics, economy, sports, etc.) exhibiting specific

terminology and lexical coherence. As for the two

previous WordNet ground truth rankings, we sim-

ply counted the number of domains associated with

each word.

3.5.4 OntoNotes

OntoNotes (Hovy et al., 2006; Weischedel et al.,

2011) is a large annotated corpus comprising vari-

ous text genres (news, conversational telephone

speech, weblogs, newsgroups, broadcast, talk

shows) with structural information and shallow se-

mantics.

We counted the senses in the sense inventory of

each word. The senses in OntoNotes are group-

ings of the WordNet synsets, constructed by human

annotators. As a result, the sense granularity of

OntoNotes is coarser than that of WordNet (Brown

et al., 2010).

3.5.5 Oxford

We counted the number of senses returned by the

Oxford dictionary6, which was, at the time of this

5See ‘Sense Key Encoding’ here: https://wordnet.
princeton.edu/documentation/senseidx5wn

6www.lexico.com
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Figure 2: Average score distribution of the 5 ground truth
rankings and frequency baseline (histogram) vs. average score
distribution of the random baseline (blue curve).

study, the resource underlying the Google dictio-

nary functionality.

3.5.6 Wikipedia

We capitalized on the Wikipedia disambiguation

pages7. Such pages contain a list of the different

categories under which one or more articles about

the query word can be found. For example, the

disambiguation page of the word bank includes

categories such as geography, finance, computing

(data bank), and science (blood bank). We counted

the number of categories on the disambiguation

page of each word to generate the ranking.

3.5.7 Frequency and random baselines

In the frequency baseline, we ranked words in

decreasing order of their frequency in the entire

Wikipedia dump (see subsection 3.1). The naive

assumption made here is that words occurring the

most have the most senses.

With the random baseline, on the other hand, we

produced rankings by shuffling words. Further, we

assigned them random scores by sampling from the

Log Normal distribution8, to imitate the long-tail

behavior of the other score distributions, as can be

seen in Fig. 2. All distributions can be seen in Fig.

6. Note that to account for randomness, all results

for the random baseline are averages over 30 runs.

Not every of the 1822 words included in our analy-

sis had an entry in each of the resources described

above. The lengths of each ground truth ranking

are shown in Table 1.

4 Evaluation metrics

We used 6 similarity, correlation and information

retrieval standard metrics to compare among meth-

ods: cosine similarity, Spearman’s rho (Spearman,

7www.wikipedia.org/wiki/word (disambiguation)
8with mean and standard deviation 0 and 0.6 (resp.)

https://wordnet.princeton.edu/documentation/senseidx5wn
https://wordnet.princeton.edu/documentation/senseidx5wn
www.lexico.com
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Ranking # words

WN 1535

WN-reduced 1535

WN-Domains 1420

Oxford 1536

Wikipedia 1042

OntoNotes 723

Frequency & random 1822

Table 1: Length of the ground truth rankings.

1904), Kendall’s tau (Kendall, 1938), precision at k,

Normalized Discounted Cumulative Gain (Järvelin

and Kekäläinen, 2002), and Rank Biased Overlap

(Webber et al., 2010).

To ensure a fair comparison, the scores in the

rankings of all methods were normalized to be in

the [0, 100] range before proceeding.

Also, each method played in turn the role of can-

didate and ground truth. This allowed us to com-

pute not only the similarity between our rankings

and the ground truth rankings, but also the similar-

ity among the ground truth rankings themselves,

which was interesting for exploration purposes.

For each pair of evaluated and ground truth

method, only the parts of the rankings correspond-

ing to the words in common (intersection) were

compared. Thus, the rankings in each (candi-

date,ground truth) pair had equal length.

5 Implementation details

To compute our scores, we built on the code of the

pyramid match kernel from the GraKeL Python

library (Siglidis et al., 2018). We used the base

R (R Core Team, 2018) cor() function9 to com-

pute the τ and ρ statistics. For RBO, we relied

on a publicly available Python implementation10.

For all other metrics, we wrote our own imple-

mentations. Full details about design choices, to-

kenizers, stopword lists etc., can also be found

in our publicly available code repository: https:

//github.com/ksipos/polysemy-assessment.

6 Results and observations

Our rankings correlate well with human rank-

ings. Results are shown in Fig. 3, as pairwise

similarity matrices, for all six metrics. For read-

ability, all scores are shown as percentages. For a

given metric, our configuration that best matches,

on average, all other methods (except random and

9https://stat.ethz.ch/R-manual/

R-patched/library/stats/html/cor.html
10https://github.com/changyaochen/rbo

frequency) is always shown as the first column.

Since all metrics except NDCG are symmetric, we

only show the lower triangles of the other matri-

ces. For NDCG, candidate methods are shown as

columns and ground truths as rows.

For each of the six evaluation metrics, it can

be seen that the ranking generated by our unsuper-

vised, data-driven method is well correlated with all

human-derived ground truth rankings. This means

that our method is robust to how one defines and

measures correlation or similarity.

In some cases, we even very closely reproduce

the human rankings. For instance, our best config-

urations for cosine and NDCG get almost perfect

scores of 86.5 and 99.72 when compared against

Wikipedia. In terms of Kendall’s tau, Spearman’s

rho, p@k, and RBO, we are also very close to

OntoNotes (scores of 49.43, 35.23, 39.53, and

33.47, resp.).

Finally, the correlation between our rankings

and the human rankings can also be observed to be,

everywhere, much stronger than that between the

baseline rankings (random and frequency) and the

human rankings.

Statistical significance. We computed statistical

significance for the Spearman’s rho and Kendall’s

tau metrics. As shown in Fig. 3, the null hypothesis

that there is no correlation between our rankings

and the human-derived ground truth rankings was

systematically rejected everywhere, with very high

significance (p ≤ 0.0001).

However, against the random baseline, the same

null hypothesis (no correlation) was accepted every-

where. Against frequency, the null was rejected, but

very weakly (only at the p ≤ 0.01 level), and with

very low correlation coefficients (6.53 for Spear-

man and 4.44 for Kendall).

Finally, the correlation between the random and

frequency rankings and the ground truth rankings

is never statistically significant, except for the pair

frequency/OntoNotes, but again, at a weak level

(p ≤ 0.01).

Hyperparameters have a significant impact on

performance, but optimal values are consistent

across metrics. First, as can be observed from

Fig. 4 and Fig. 5, there is a large variability in

performance when D (number of PCA dimensions)

and L (number of levels in the hierarchy) vary.

However, for all six evaluation metrics, the best

configurations are very similar: D2L10, D2L8,

https://github.com/ksipos/polysemy-assessment
https://github.com/ksipos/polysemy-assessment
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/cor.html
https://stat.ethz.ch/R-manual/R-patched/library/stats/html/cor.html
https://github.com/changyaochen/rbo
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Sentences Bin coordinates

it stars christopher lee as count dracula along with dennis waterman (3, 5, 1)
the count of the new group is the sum of the separate counts of the two original groups (4, 1, 3)

the first fight did not count towards the official record (4, 5, 1)
five year old horatia came to live at merton in may 1805 (2, 5, 2)

it features various amounts of live and backstage footage while touring (4, 2, 4)
first tax bills were used to pay taxes and to register bank deposits and bank credits (4, 2, 4)

the ball nest is built on a bank tree stump or cavity (5, 2, 3)

Table 2: Sentences containing different senses of the same word can be sampled by selecting from different bins.

Keywords Bin coordinates

also, gas, used, system, protein, blood, new, steel, food, made (20, 11, 16, 9)
first, new, one, second, later, world, national, olympic, team, games (19, 13, 15, 13)

album music rock one labour number chart songs metal single (21, 14, 14, 16)

Table 3: Towards automatic word sense induction: top 10 most frequent words for different bins containing the word metal. The
bins correspond to 3 senses of metal: chemical element, Olympics (medals), and music.

D2L8, D4L5, D3L9, and D4L1011. Given the

rather large grid we explored ([2, 20]× [2, 19] for

D and L, resp.), with 342 combinations in total, we

can say that all these optimal values belong to the

same small neighborhood. This interpretation is

confirmed by inspecting Fig. 4, where it can clearly

be seen that the optimal area of the hyperparameter

space is robust to metric selection and consistently

corresponds to small values of D (around 3), and

values of L at least above 3 or 4, ideally around

8. For larger values of L, performance plateaus

(keeping D fixed). In other words, it is necessary to

have some levels in the hierarchy, but having very

deep hierarchies is not required for our method to

work well. A benefit of having such small optimal

values of D and L is their affordability, from a

computational standpoint.

All rankings derived from WordNet-based re-

sources are highly correlated. It is interesting to

note that the rankings generated from OntoNotes,

WordNet, WordNet reduced, and WordNet do-

mains, all are highly similar. And this, despite the

very different sense granularities they have. This

means that despite the apparent differences in these

resources, they all tend to produce similar poly-

semy rankings. The Oxford rankings tend to be

part of this high-similarity cluster as well, to a

lesser extent.

Frequent words are not the most polysemous.

Finally, one last interesting observation is that

while the frequency ranking is much better than

the random ones, it still is far away from the human

rankings. In other words, the frequency of appear-

ance of a word (excluding stopwords, of course)

is not as good an indicator of its polysemy as one

11for RBO, D4L10 and D4L8 had the same score.

could expect. Some words that follow this observa-

tion are ”number”, ”population”, and ”war”.

A note on ties. To assess the impact of ties on

the reported results, we repeated all of our exper-

iments multiple times with different tie-breaking

strategies (e.g., random, alphabetical...). Results

do not change: we find the same best parameter

combinations, and the differences in the similarity

matrices are minimal.

7 Other applications

Sampling diverse examples. An interesting by-

product of our discretization strategy is that it can

be used to select sentences containing different

senses of the same word, as illustrated in Table 2.

Provided a mapping, for a given word, between

the sentences that were passed to the pre-trained

language model and the vectors, we can sample

vectors from different bins and retrieve the associ-

ated sentences. If the bins are distant enough, the

sentences will contain different senses of the word.

For instance, in Table 2, we can see that we are

able to sample sentences containing three senses

of the word count: (1) noble title, (2) determining

the total number of, and (3) taking into account.

This has many useful applications in practice, e.g.,

in information retrieval, NLG and conversational

systems, dataset creation, etc.

Automatic word sense induction. A simple way

of capitalizing on our binning strategy to create

word sense inventories would consist in (1) select-

ing distant bins for a given word, and (2) labeling

the selected bins with senses. Both steps can be

performed automatically. While this will be inves-

tigated in future work, we still give, as a proof of

concept, an example in Table 3. In this example,
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Figure 4: Performance (color scale) vs. number of PCA dimensions (x axis) vs. number of levels in the hierarchy (y axis).
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Figure 5: Performance distributions over the 342 values in the discrete hyperparameter space (grids of Fig. 4).
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keywords are extracted from distant bins containing

the word metal, and different senses are retrieved.

8 Related work

Task. Several previous efforts have interested them-

selves in creating sense inventories without human

experts. As an example, in Rumshisky (2011);

Rumshisky et al. (2012) 12, Amazon Mechanical

Turk (AMT) workers are given a set of sentences

containing the target word and one sentence that

is randomly selected from this set as a target sen-

tence. Workers are then asked to judge, for each

sentence, whether the target word is used in the

same way as in the target sentence. This creates

an undirected graph of sentences where clustering

can be applied to find senses. To label clusters with

senses, one has to inspect the sentences in each

cluster manually.

More recently, Jurgens (2013)13 compared three

annotation methodologies for gathering word sense

labels on AMT. The methods compared are Lik-

ert scales, two-stage select and rate, and the

difference between counts of when senses were

rated best/worst. Regardless of the strategy, inter-

annotator agreement remains low (around 0.3).

Methodology. In the original ELMo paper, Peters

et al. (2018) have shown that using contextual word

representations (through nearest-neighbor match-

ing) improves word sense disambiguation. Hadi-

winoto et al. (2019); Coenen et al. (2019) showed

that this technique works well with BERT too.

Pasini et al. (2020) uses a combination of BERT

embeddings and a knowledge-based WSD model to

generate word sense distributions, while Giulianelli

et al. (2020) uses clustering over the embeddings

to detect semantic shifts.

Our approach is also related in spirit to pyra-

mid matching (Nikolentzos et al., 2017; Grauman

and Darrell, 2007; Lazebnik et al., 2006). This

kernel-based method originated in computer vi-

sion. It computes the similarity between objects

by placing a sequence of increasingly coarser grids

over the feature space and taking a weighted sum

of the number of matches occurring at each level.

Matches found at finer resolutions are weighted

more than matches found at coarser resolutions.

12We asked the authors to share annotations with us to use
as ground truth, but they were unable to do so.

13same as footnote 12.

9 Conclusion

We proposed a novel unsupervised, fully data-

driven geometrical approach to estimate word poly-

semy. Our approach builds multiresolution grids in

the contextual embedding space. Through rigorous

experiments, we showed that our rankings are well

correlated (with strong statistical significance) to

6 different human rankings, for 6 different metrics.

Such fully data-driven rankings of words according

to polysemy can help in creating new sense invento-

ries, but also in validating and interpreting existing

ones. Increasing the quality and consistency of

sense inventories is a key first step of the word

sense disambiguation pipeline. We also showed

that our discretization could be used, at no extra

cost, to sample contexts containing different senses

of a given word, which has useful applications in

practice. Finally, the unsupervised nature of our

method makes it applicable to any language.

While our scores are a good proxy for polysemy,

they are not equal to word sense counts. Moreover,

we do not label each sense. Future work should

address these challenges by, e.g., automatically se-

lecting bins of interest and generating labels for

them (see section 7).

Future work should also perform some sort

of extrinsic evaluation. For instance, the Word-

in-Context task (Pilehvar and Camacho-Collados,

2018) could be used, where two occurrences would

be classified as having the same meaning if their

two vectors fall in the same bin.

Another direction is investigating how different

contextual embeddings (e.g., BERT, BART) impact

our rankings, including in languages other than

English (Eddine et al., 2020; Cañete et al., 2020),

and low-resource languages.
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