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Abstract

This work presents multi-modal deep SVDD
(mSVDD) for one-class text classification. By
extending the uni-modal SVDD to a multi-
ple modal one, we build mSVDD with mul-
tiple hyperspheres, that enable us to build a
much better description for target one-class
data. Additionally, the end-to-end architecture
of mSVDD can jointly handle neural feature
learning and one-class text learning. We also
introduce a mechanism for incorporating nega-
tive supervision in the absence of real negative
data, which can be beneficial to the mSVDD
model. We conduct experiments on Reuters
and 20 Newsgroup datasets, and the experi-
mental results demonstrate that mSVDD out-
performs uni-modal SVDD and mSVDD can
get further improvements when negative super-
vision is incorporated.

1 Introduction

One-Class Classification (OCC), a special classi-
fication problem, aims to learn a model on the ba-
sis of training samples only from one class. The
learned model is expected to make an accurate de-
scription of the class (so called target or normal)
and then to distinguish the target from samples for
negative classes during testing (Moya et al., 1993;
Tax, 2002). The one-class classification problem
has arisen in many real-world applications, includ-
ing anomaly or novelty detection (Roberts, 1999;
Chandola et al., 2010; Gupta et al., 2013), bioin-
formatics (Alashwal et al., 2006), and especially
computer vision (Rodner et al., 2011; Ruff et al.,
2018).

One-class text classification would be benefi-
cial to the scenario where anomalous text contents
(e.g., web pages, spam emails) (Yu et al., 2004)
need to be detected, and only a positive training
corpus is available. One of the early work on one-
class text classification is Manevitz and Yousef

(2001), who implemented versions of one-class
support vector machines (OC-SVM) (Schölkopf
et al., 2001) and showed good performances over
the Reuters dataset (Dumais et al., 1998). OC-
SVM and support vector data description (SVDD)
(Tax and Duin, 2004) are boundary-based meth-
ods (Tax, 2002). Both try to describe the target
data using a boundary. SVDD learns an optimal hy-
persphere with the minimum radius to include the
most target data, while OC-SVM builds a hyper-
plane to maximally separate the data points from
the origin where outlier examples lie around.

Reconstruction-based approaches, including Au-
toEncoder (Jacobs, 1995) and principal component
analysis (PCA) (Bishop, 1995), which aim to learn
a more compact representation for the description
of target data. The compact representation could be
a set of prototypes or subspaces obtained by opti-
mizing a reconstruction error on the target training
data.

Regarding the features for representing text in
OCC, document-to-word co-occurrence matrices
or hand-crafted features have been commonly used
in most of the previous work (Manevitz and Yousef,
2001, 2007; Kumaraswamy et al., 2015). Pre-
trained vectors have been popular for many NLP
tasks (Mikolov et al., 2013; Bengio et al., 2003).
The recent context vector data description (CVDD),
proposed by Ruff et al. (2019), fully uses word em-
bedding knowledge and a neural network structure
to process one-class classification problems.

Ruff et al. (2018) introduced deep support vector
data description (deep SVDD), a fully unsupervised
method for deep one-class classification for image
data. Deep SVDD learns to extract the common
factors of target training samples with a neural net-
work to minimize the radius of a hypersphere that
encloses the network representations of the data.
The learned hypersphere, with a center c and a neu-
ral feature transformer φ(x), can be an end-to-end
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feature learning and one-class classification model.
Target data samples may have distinctive distri-

butions that are located in different regions. There-
fore, uni-modal deep SVDD with one hypersphere
may not be enough to describe the target samples.
In this work, we extend deep SVDD to multiple
modes, where each mode describes the target sam-
ples from a distinctive aspect. Given our multi-
modal deep SVDD, mSVDD in short, we can create
an ensemble set of hyperspheres with different cen-
ters to build a better one-class model. Ghafoori and
Leckie (2020) proposed deep multi-sphere SVDD
(DMSVDD), a similar but different work from ours.
We will also discuss the relationship between the
two and compare them in the experiments.

In one-class classification, only samples from
the target class are available for training, while
the model needs to discriminate between the tar-
get class and other classes in testing. Due to the
unavailability of training samples from negative
classes, it is hard for the one-class models to learn
effective discrimination information, especially for
mSVDD with a multi-layer neural structure. In this
study, we also propose an architecture for improv-
ing the discrimination ability of mSVDD by incor-
porating negative supervision. Specifically, we
define two kinds of losses, contrastive and triplet,
for joint training with the objective function of
mSVDD, which is expected to enhance the discrim-
inative power of mSVDD.

In summary, the main contributions of this work
are as follows. 1) We propose a general one-class
neural learning framework, called mSVDD, to ex-
tend the uni-modal deep SVDD to end-to-end multi-
modal. 2) We also prove that three one-class mod-
els, deep SVDD, DMSVDD, and CVDD, are all
special cases of the mSVDD model. 3) We pro-
pose two approaches for effectively incorporating
negative supervision information to improve the
performance of the proposed mSVDD.

2 Preliminaries

Before describing our mSVDD, we first introduce
SVDD (Tax and Duin, 2004) and its extension,
deep SVDD (Ruff et al., 2018).

2.1 SVDD

SVDD is a support vector learning method for one-
class classification. It aims at constructing an op-
timal boundary in a feature space that includes
almost all normal target data, given only the tar-

get training samples, T = {x1, ...,xn}, xi ∈ X ,
where n ∈ N is the size of the training data, and
X is a compact subset of Rd. The main idea of
SVDD is to optimize a hypersphere with a center c
and radius R, that encloses the majority of the data.
SVDD solves the following quadratic problem:

min
R,c,ξ

R2 + C
∑
i

ξi (1)

s.t. ‖xi − c‖22 ≤ R2 + ξi, ξi ≥ 0, ∀i = 1, ..., n,

where ξi is a slack variable for allowing a flexible
boundary. C is a regularization parameter, that is
usually represented by 1

νn , where ν ∈ (0, 1] is a
parameter that controls the tradeoff between the
radius of the hypersphere and the penalties ξi.

Several efforts have been proposed to extend
SVDD with multi-spheres. Hao and Lin (2007)
was early work to use multi-sphere SVDD, which
was used for multi-class tasks. For one-class tasks,
(Xiao et al., 2009) used multi-sphere SVDD to
encode multi-distribution target data. Two more ef-
forts have been proposed by (Le et al., 2010, 2013),
which found the optimal solution by an iterative
algorithm consisting of the following two steps:
1) calculate radii and centers, and 2) calculate the
assignments of data to centers.

While one limitation of SVDD, along with its
extensions, would be that it has to perform hand-
crafted feature engineering (Pal and Foody, 2010),
the limitation could be solved by incorporating
neural models into SVDD.

2.2 Deep SVDD

Deep SVDD (Ruff et al., 2018) is an end-to-end
deep neural model that not only optimizes the
SVDD objective loss but also learns a neural fea-
ture transformation. Given target training sam-
ples T = {x1, ...,xn}, deep SVDD first trans-
forms instance x into a data point of the output
feature space with φ, which is a multi-layer neu-
ral network of L ∈ N layers with parameters
W = {W 1, ...,W L}. Deep SVDD defines two
kinds of loss functions:

Soft-boundary deep SVDD :

1

νn

∑
i

max(0, ‖φ(xi;W)− c‖22 −R2)

+R2 +
λ

2

∑
l

‖W l‖2F
(2)
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Figure 1: mSVDD with two modes. φ is a neural net-
work. Fivestars denote a center, and black points de-
note positive target samples, while triangles denote neg-
ative outliers that need to be rejected by hyperspheres.

The first penalty term is for samples lying outside
the sphere, i.e., when the distance of xi to the cen-
ter, ‖φ(xi;W) − c‖22, is greater than radius R af-
ter the transformation by network φ. The above
loss also regularizes the radius and neural weight
parameters in the second term. As with SVDD,
parameter ν ∈ (0, 1] adjusts the tradeoff between
the radius of the hypersphere and the points outside
the hypersphere.

Schölkopf et al. (2001) proved that, in single-
class classification, ν is the upper bound of the
fraction of anomalies, and the lower bound of the
fraction of training samples being anomalies or on
the optimal boundary. Ruff et al. (2018) proved
that this ν-property still holds for uni-modal soft-
boundary deep SVDD.

Another simplified objective that minimizes the
mean distance of all positive training samples to
the center, the one-class form, can be defined as
follows:

One-class deep SVDD (simplified form):
1

n

∑
i

‖φ(xi;W)− c‖22 +
λ

2

∑
l

‖W l‖2F (3)

Here, we can rewrite both the above in a unified
form:

LDSV DD = C
∑
i

[‖φ(xi;W)− c‖22 − β]+

+β +
λ

2

∑
l

‖W l‖2F ,
(4)

where [·]+ = max{0, ·}, β ∈ {0, R2} and regular-
ization parameter C ∈ { 1n ,

1
νn} correspond to the

two types of forms.

3 Multi-Modal Deep SVDD

In this section, we present our mSVDD, a method
for deep one-class classification. Unlike a uni-
modal model with a hypersphere, mSVDD uses a

set of hyperspheres to describe target class data and
to reject samples from negative classes. Figure 1
shows the general idea of mSVDD with two modes.
Consider that we have m modes, each of which is
described by a hypersphere M j with center cj and
radius Rj ; mSVDD uses each M j to describe a dis-
tinctive aspect of the target class and then ensemble
them. This ensembled deep mSVDD model could
provide better descriptions for the target data.

As with deep SVDD, given target training
samples T = {x1, ...,xn}, mSVDD first trans-
forms instance x into a data point of the out-
put feature space with φ, where φ is a deep
neural network of L ∈ N layers with parame-
ters W = {W 1, ...,W L}. In contrast to deep
SVDD, mSVDD uses m hyperspheres to include
almost all of the target data with the minimum
radii, i.e., 1

m

∑m
j=1R

2
j . As in kernel SVDD and

deep SVDD, it should also punish points lying
outside the sphere, i.e., if the distance of x to
the center c, ‖φ(x;W) − c‖22, is greater than ra-
dius R. Since we have a set of hyperspheres
M = {M1, ...,Mm}, one choice would be to pun-
ish x with respect to each hypersphere by adding∑

j max
(
0, ‖φ (x;W)− cj‖22 −R2

j

)
to the loss

function. However, the above penalty term is very
hard, where one sample should satisfy each j-th
constraint corresponding to M j . Therefore, we
loosen the constraint. Given non-negative attention
weight αij for xi to each M j , the penalty term
can be computed as the weighted average over m
constraints. Now, only one ensembled constraint is
required, i.e., the sum of radii is greater than the
sum distance to the center. Formally, we can define
our mSVDD objective as follows:
1

νn

∑
i

max(0,
∑
j

αij(‖φ (xi;W)− cj‖22 −R2
j ))

+
1

m

∑
j

R2
j +

λ

2

∑
l

‖W l‖2F , (5)

where 1
m

∑m
j=1R

2
j is the regularization term for

radii from allm hyperspheres to get a closer bound-
ary around the target data. This form can be seen as
mSVDD with weighted soft-boundary constraints,
which we call soft-boundary mSVDD.

Although the ν-property, mentioned in Sec-
tion 2.2, does not hold true for our multi-modal
case as it is in general, it is still true when the
attention weight αij is constant for different hyper-
spheres. This will give us an intuition on the role
of ν.
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Proposition 1. 1 The ν-property holds if we set
equal attention weight to each hypersphere: i.) ν is
an upper bound for the fraction of outlier samples
and ii.) ν is a lower bound for the fraction of
training samples being rejected or on the optimal
boundary.

3.1 One-class mSVDD (simplified from)

As in deep SVDD, we also have the simplified from
and called: one-class2 mSVDD. If we assume that
the majority of the training data is not anomalous,
then the radius can be ignored and we can define
the simplified mSVDD as follows:

1

n

∑
i

∑
j

αij‖φ (xi;W)−cj‖22+
λ

2

∑
l

‖W l‖2F ,

(6)
where the attention weight αij will be kept, while
the penalty of radius R is deleted.

3.2 Unified Form of mSVDD

We can write the two variants of mSVDD (i.e.,
soft-boundary mSVDD and simplified one-class
mSVDD) in a unified form:

LmSVDD = C
∑
i

[
∑
j

αij
(
‖φ (xi;W)− cj‖22 − βj

)
]+

+
1

m

∑
j

βj +
λ

2

∑
l

‖W l‖2F , (7)

where βj ∈ {0, R2
j}. βj = 0 corresponds to

simplified one-class mSVDD, and βj = R2
j

corresponds to soft-boundary mSVDD. For
xi to the j-th hypersphere, attention weight
αij should be inversely proportional to its
distance to center cj . Thus, we define: αij =
exp(d(xi, cj)/δ))/

∑m
k=1 exp(d(xi, ck)/δ),

where δ < 0 is a temperature hyperparameter.

3.3 Discussions on relationships between
mSVDD and other models

Relationship with Uni-modal Deep SVDD
Their relationship is obvious and can be summa-
rized by the following proposition.

Proposition 2. Deep SVDD is a special case of the
unified form of mSVDD with one hypersphere used.

1The proofs of propositions can be found in the appendix.
2The term “one-class” is used following Ruff et al.

(2018). Note that all the models discussed in this paper are
one-class models.

Proof. Obviously, mSVDD becomes uni-modal
(Ruff et al., 2018) if we use only one hypersphere,
i.e., m = 1.

Relationship between mSVDD and CVDD
CVDD (Ruff et al., 2019) is a one-class model for
text data. In CVDD, each training sample xi (i.e., a
text) is represented by r self-attention feature vec-
tors Si = (si1, ..., sir) (Lin et al., 2017). CVDD
uses a group of r context vectors C = (c1, ..., cr)
to describe the target one-class data, where ck ∈
Rp. CVDD tries to reduce the one-to-one recon-
struction distance between feature vectors Si and
context vectors C. The loss can be defined as:

LCV DD =
1

n

∑
i

∑
k

σikd(ck, sik), (8)

where d(ck, sik) computes the distance, and σik
denotes the attention weight. The following propo-
sition implies the close connection between two to
learn one-class text problem.
Proposition 3. CVDD is a very special case of
one-class mSVDD when mSVDD is applied to text-
based tasks under certain conditions.

Proof. W.L.O.G., rewrite the loss function of one-
class mSVDD in a simplified form for each sample
as follows:

LmSVDD =
1

n

∑
i

∑
j

αij‖φj (xi;W)− cj‖2

=
1

n

∑
i

∑
j

σijd(xi, cj) ≈ LCV DD,

where we drop the regularization terms for weights
of φ and radii, and set m = r, σij = αij ,
d(xi, cj) = ‖φj (xi;W) − cj‖2. φ (xi;W) has
to be a self-attention neural model, φj (xi;W) is
the j−th feature vector of sample xi, and cj is the
j−th context vector of target samples. Now the
loss functions of CVDD and one-class mSVDD are
almost the same.

Relationship between mSVDD and DMSVDD
DMSVDD (Ghafoori and Leckie, 2020) also uses
multi-hyperspheres to extend SVDD. The loss func-
tion of DMSVDD is as follows:

LDMSVDD =
1

νn

∑
i

[‖φ(xi;W)− ci∗‖22 −R2
i∗ ]+

+
1

K

∑
k

R2
k +

λ

2

∑
l

‖W l‖2F , (9)
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where K is the number of hyperspheres3, ci∗ is the
nearest center of sample xi and Ri∗ is its radius.

Proposition 4. DMSVDD can be seen as a hard-
version of soft-boundary mSVDD if we set the at-
tention weight in some way.

Proof. In the calculation of the attention weight
for mSVDD with αij =

exp(d(xi,cj/δ))∑m
k=1 exp(d(xi,ck)/δ)

, the
temperature parameter δ could influence the assign-
ment of center ck. If we set δ → 0−, the above
formula acts as the argmin operation.4 In this case,
αii∗ = 1 if i∗ = argmink=1,...,K d(xi, ck), and 0
otherwise. Now, we can get the form of DMSVDD
from soft-boundary mSVDD (Eq. 5) through the
adjustment of the attention weight. Therefore, we
can prove that DMSVDD is also a special case of
mSVDD.

The above relation illustrates key difference be-
tween them: DMSVDD puts value on one hyper-
sphere with the largest weight.

3.4 Summarizing mSVDD
We summarize the proposed mSVDD in accordance
with the discussions presented above. The pro-
posed multi-modal deep SVDD (mSVDD) learns a
compact description of one-class data with multiple
hyperspheres. mSVDD is also a generic framework
that includes deep SVDD, CVDD, and DMSVDD
if the corresponding conditions are met.

4 Multi-Modal Deep SVDD with
Negative Supervision

In this section, we incorporate negative supervision
into the training of mSVDD. The SVDD-related
models are usually trained with only positive sam-
ples from the target one-class, while, if negative
samples (samples which should be rejected) are
available, the models can be extended to train with
them to improve the description (Tax, 2002). Note
that these samples are not necessarily required to
be from “real” negative class. In our experiment,
we use some external data as the pseudo-negative
samples.

Given a set of extended training samples T ′ =
{(x1, y1), ..., (xn′ , yn′)}, where the first n sam-
ples are labeled yi = 1, denoting positive,

3In DMSVDD, K changes dynamically. However, we
ignore this difference and focus on the comparison of the
models.

4δ approaches 0 from the negative side.

whereas the others are labeled yi = 0, which
denotes negative samples that should be rejected
by mSVDD. Our mSVDD is represented with
m hyperspheres and is formulated as M =
{M1(c1, R1), ......,Mm(cm, Rm)}. It is required
that the positive samples should be inside the m
hyperspheres, while the negative samples should
lie outside. Given training samples composed of
positive and a negative samples, we can first get
their corresponding distances to each center cj .
The goal of optimization should be to pull the
positive samples closer the center and to push the
negative ones away. Formally, we define the dis-
tance between one sample xi and one center cj as
dij = d(xi, cj) = ‖φ(xi;W) − cj‖22. There are
usually two types of losses to obtain the discrimi-
native loss.

Contrastive type: The contrastive-type loss di-
rectly optimizes the distance by encouraging the
distance between a positive sample and a center to
be smaller, while it forces the larger distance to a
negative sample:

L(ij)Con d = yi[dij −R2
j ]+ + (1− yi) [R2

j − dij ]+,
(10)

where R2
j can be seen as a margin (or threshold )

with a function that prevents too much effort from
being wasted in enlarging/reducing distances (Had-
sell et al., 2006).

Triplet type: The triplet-type loss is defined for a
pair of positive sample xi and negative sample xi′ .
If we consider center cj as an anchor representative
of target data, the triplet loss punishes only when
dij , the distance from xi to cj , is greater than di′j ,
the distance from xi′ to cj , with a margin τ > 0:

L(ii
′j)

Tri d =
[
dij − di′j + τ

]
+
. (11)

For clarity, Eqs. 10 and 11 show only the two
types of losses for one hypersphere. Multi-modal
version can be obtained by sum operation over j ∈
{1, ...,m}.

The triplet loss forces only positive samples to be
closer to the center than negative samples, and the
contrastive loss requires only keeping the distances
for negative samples above the radius. These two
types of objectives are easy to achieve, especially
when we assume that negative samples are “not
real.” This can result in failing to make a full
use of negative supervision. Therefore, we will
reformulate both LTri d and LCon d.
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4.1 Reformulating Contrastive and Triplet
Losses

Normalization layer In neural models with the
contrastive or triplet loss, it is a common strategy
to normalize the feature representations of samples
for training stability (Schroff et al., 2015; Wang
et al., 2017). Therefore, we apply the normalization

to the input vectors: x̂ = x/
√∑

|xi|2 + ε, where
ε > 0 is a value avoiding division by zero.

Reformulation Given a center cj and positive
and negative samples, we can use the probability
form in the optimization objective, rather than the
two non-probabilistic ones: LCon d andLTri d. We
introduce p(yi = 1|xi, cj), which is the probabil-
ity that a hypersphere with center cj accepts the
sample xi, and define it as follows:

p(yi = 1|xi, cj) = σ(sf̂ i
T
ĉj), (12)

where σ(x) = 1
1+exp(−x) , f i = φ(xi;W) de-

notes the feature output vector of xi, and s is a
scale hyper-parameter for preventing failed con-
vergence (Wu et al., 2018) after the normalization.
For each sample xi, cj acts as a pseudo-weight
vector for the classification of the j-th hypersphere
of mSVDD. Thus, given p(yi = 1|xi, cj), the prob-
ability of a sample being accepted by hypersphere
M j , we can reformulate the two discriminative
losses with the probability.

Contrastive type loss:

L(ij)Con = −yi log p(yi = 1|xi, cj)
− (1− yi) log p(yi = 0|xi, cj) (13)

= −yi log σ(sf̂ i
T
ĉj)− (1− yi) log σ(−sf̂ i

T
ĉj)

This loss maximizes the likelihood of training posi-
tive samples being accepted or negative rejected.

Triplet type loss:

L(ii
′j)

Tri =
[
log σ(sf̂ i′

T
ĉj)− log σ(sf̂ i

T
ĉj) + τ

]
+

= [log p(yi′ = 1|xi′ , cj)− log p(yi = 1|xi, cj) + τ ]+
(14)

The loss will punish when the log probability of a
negative sample is greater than a positive sample
with a margin τ .

Algorithm 1: mSVDD with Negative Su-
pervision
Input: data loader load training batch from

T ′ = {(x1, y1), . . . ,xn′ , yn′)}
Models: model includes all modules for

training, f = φ(xi;W) is a neural
feature encoder

Parameters : Hyperparameters γ, ν, s, τ , ε
1 for batch in batch loader do

/* load positive and negative

samples */

2 d p, d n = batch // size: np == nn

3 p = f .forward(d p) // shape: np × d

4 n = f .forward(d n ) // shape: nn × d

5 Calculate LmSVDD given (p) (Eq. 7)
6 Calculate LCon|Tri given (p,n) (Eqs. 13

or 14).

/* get final loss (Eq. 16) */

7 Loss = LmSVDD + γ ∗ LCon|Tri
8 Loss.backwards()
9 model.update()

4.2 Reformulating Contrastive and Triplet
Losses for Multiple Modes

While Eqs. (12), (13), and (14) show the uni-modal
case, for the multi-modal one, we have to consider
m different centers {c1, . . . , cm} in the calcula-
tion of the two reformulated discriminative losses.
Therefore, we propose two strategies as follows:

p(yi = 1|xi) =

 max
16j6m

p(yi = 1|xi, cj) Max

1
m

∑
j p(yi = 1|xi, cj) Mean,

(15)
where Max references only M j with the max logit
output, while Mean takes account of all hyper-
spheres equally. Then, we can obtain the corre-
sponding Contrastive and Triplet losses by substi-
tuting Eqs. (13) and (14) with the probability term
(Eq. (15)).

4.3 Training Loss
The final training loss for the mSVDD with negative
supervision can be formulated as:

L = LmSVDD + γLCon|Tri, (16)

where γ adjusts between the mSVDD loss and the
discrimination with negative supervision. In the
training process, LCon|Tri will sum the loss from
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one batch samples with Eqs. (13) and (14). Algo-
rithm 1 provides the training process for mSVDD
with negative supervision in one epoch. Please see
Section B in the appendix for more discussions on
the relationship between mSVDD and the use of
negative supervision.

5 Experiments

5.1 Datasets and Implementation Details

Datasets Experiments were conducted on two
datasets: 20 Newsgroups5 and Reuters6, which
have been commonly used in other one-class text
classification work (Manevitz and Yousef, 2001;
Ruff et al., 2019). We used the same pre-processing
steps as the ones used in earlier work (Ruff et al.,
2019), including lowercasing, removing stopwords,
and tokenization. We used the external data for
negative supervision in the absence of “real” la-
beled negative instances. We followed the similar
logic for choosing our external data as the one in
the field of pretrained word vectors, in which one
general corpus, such as Wikipedia articles, is of-
ten adopted as the training dataset (Mikolov et al.,
2013). So we also chose one publicly available
corpus WikiText-2 (Merity et al., 2016), extracted
from Wikipedia articles, as our external data. As
shown in Algorithm 1, data loader loads one batch
of negative samples, i.e., sentences from WikiText-
2, which are labeled with 0.

Encoder For encoding the text input, i.e.,
φ(x,W ), we used a Bidirectional LSTM with at-
tention (Hochreiter and Schmidhuber, 1997; Xu
et al., 2015), with the number of hidden units being
150. For the pre-trained word embeddings, we ex-
perimented with GloVe Vectors (Pennington et al.,
2014) and set the dimension to 300. In our exper-
iments, we did not adopt the widely used BERT
model (Devlin et al., 2019), as Ruff et al. (2019)
showed that BERT model did not improve the per-
formance.

Settings As for the optimization of parameters,
Adam (Kingma and Ba, 2014) with a base learn-
ing rate of 0.001 was used for 50 epochs. The
batch sizes were set to 32 and 64 for Reuters and
Newsgroups, respectively. For the initialization of
mSVDD model, we employed two operation steps.
In the absence of negative samples, mSVDD was

5http://qwone.com/json/20Newsgroups
6http://daviddlewis.com/resources/testcollections/

reuters21578/

first pre-trained on target samples by using an Au-
toEncoder with two objectives: 1) warm-up and
2) reducing the reconstruction error for the target
samples, such that the model could be more robust
to noise or anomalous inputs (Jacobs, 1995; Hin-
ton and Salakhutdinov, 2006). An AutoEncoder
feed-forward network with a 0.5 compression rate,
which consists of an encoder and a decoder, was
put on the back of the BiLSTM feature network.
Then, the weights of them hyperspheres in mSVDD
were initialized by running k-means clustering on
the features learned before (Lloyd, 1982). As for
the regularization term of mSVDD, cj was regu-
larized (Ng, 2004), and a weight decay with 0.95
was applied for the parameters. As for the number
of hyperspheres, different settings, 1, 3, 5, 10, were
tested. For the hyperparameters, we set parameter
s = 1.2 for scale, ν = 0.1, δ = −0.9 for the atten-
tion weight, τ = 0.1 for the triplet loss, ε = 1e−6
for norm, and γ = 1 for the training loss. The
results were averaged over 10 runs with different
random seeds.

Evaluation metrics The performance was mea-
sured by the area under the receiver operating char-
acteristics (ROC) curve (AUCs), a commonly used
metric for one-class text classification (Manevitz
and Yousef, 2001; Ruff et al., 2019).

5.2 Results

5.2.1 Results of mSVDD
Table 1 shows the performance of mSVDD with
different choices of m, i.e., the number of hy-
perspheres. Here, mSVDD(1) represents uni-
modal deep SVDD ((Ruff et al., 2018)). The re-
sults show that: 1) As for the one-class version,
mSVDD could provide better performances than
the uni-modal one, especially when more hyper-
spheres were used. We can see that mSVDD(10),
which uses the largest number of m, outperforms
mSVDD(1) in more times than mSVDD(5) and
mSVDD(3), that performs comparable with uni-
modal mSVDD. Similar results can also be ob-
served in soft-boundary, mSVDD with more hy-
perspheres (10 or 5) won more times, nine out of
thirteen cases in two datasets, than other settings.
This proves the necessity of incorporating more
hyperspheres to better describe the target data.

2) While the performance of mSVDD did not
improve linearly along with m, we can explain
this from the following aspects. As for the model,
mSVDD with more centers means that it has more
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Target mSVDD (1) mSVDD (3) mSVDD (5) mSVDD (10)
Class One-v Soft-v One-v Soft-v One-v Soft-v One-v Soft-v

Reuters
earn 95.6 95.9 95.5 95.9 96.0 96.2 95.9 96.1
acq 89.4 89.0 90.0 89.1 89.3 89.1 90.1 89.2

crude 92.7 92.8 92.5 91.5 92.5 92.5 92.4 92.4
trade 98.4 98.3 98.3 98.9 98.8 98.7 98.6 98.8
money 86.3 86.2 85.1 86.2 86.4 86.4 87.1 86.8
interest 97.2 97.3 97.2 96.9 97.2 96.6 97.3 96.8

ship 92.5 91.7 93.8 91.6 93.8 92.3 92.6 91.7
20 News

comp 85.3 84.9 86.2 86.0 86.1 85.9 86.7 86.5
rec 77.1 76.2 77.7 77.0 77.6 76.9 77.6 76.8
sci 66.5 66.3 67.3 67.3 67.1 66.7 66.9 67.0

misc 75.2 75.0 76.0 76.2 75.5 76.2 75.5 76.2
pol 79.2 79.1 78.5 78.7 78.7 78.4 78.5 78.4
rel 83.6 82.5 83.1 82.5 83.1 82.3 83.1 82.2

Table 1: mSVDD with different settings of m. Num-
bers in brackets denote the number of hyperspheres
in mSVDD. One-v and Soft-v denote the two versions
of mSVDD, One-class and Soft-boundary, respectively.
AUCs in % on the Reuters (upper part) and 20 News-
group (lower part) datasets. Best scores in each row are
presented in bold, while the second best are underlined.

parameters and a complex model structure, which
is hard to be optimized, especially on the data with
a small training size (e.g., pol or rel.) As for the
data, some data might have simple data distribu-
tions without the need for more modes. Another
aspect would be the attention weights of multiple
hyperspheres. (Ghafoori and Leckie, 2020) showed
that focusing on some “good” hyperspheres would
be beneficial rather than over all hyperspheres. In
the calculation of attentions, we did not adjust δ
so as to have a large weight for one specific hyper-
sphere. This may cause limited improvements. We
will compare mSVDD with DMSVDD later.

5.2.2 Results of mSVDD with negative
supervision

Table 2 shows the performance of mSVDD trained
with negative supervision and compares the re-
sults with the other methods. From the discus-
sion in the last subsection, we used m = 3 in
this subsection. To perform negative supervision
for mSVDD, we evaluated four approaches where
different losses and their reformulated probability
forms were selected. For the method of DMSVDD,
we report the results in the setting of the initial num-
ber of spheres Kinit = 10. As for the comparison
between DMSVDD and mSVDD, DMSVDD puts
value on one hypersphere and performs slightly
better over mSVDD(3) in some cases (e.g., earn,
acq and comp). This indicates one inspiration that
discarding “bad” hyperspheres is sometimes neces-
sary.

For Reuters, the results indicate that mSVDD

could benefit from the joint training of the discrim-
ination losses, except for acq and ship. mSVDD
with negative supervision also achieved the best
scores in the four cases compared with other meth-
ods including DMSVDD.

We have more obvious comparisons for 20 News-
group. All four negative supervision methods could
improve mSVDD markedly and perform the best
over all baselines for all target classes of 20 News-
group. For example, mSVDD with negative su-
pervision could increase 2-3 points for comp. For
different losses for negative supervision, the con-
trastive type loss, which has larger punishment
over negative data, performs better than the triplet
type loss, which uses a relatively small margin.
Much more distinct improvements can be seen in
the comparison with CVDD for rec or with OC-
SVM for misc, while we obtained their best scores
from Ruff et al. (2019). Further, the contrastive
loss consistently outperformed other models includ-
ing the baselines. In addition, the performance of
Con+Max was greater than the Con+Mean strategy
to reformulate the probability. We hypothesize that
focusing on one of the hyperspheres is effective
when we used mSVDD with the contrastive loss.

5.2.3 Results of CVDD with negative
supervision

Table 3 shows the results of CVDD with the pro-
posed negative supervision for mSVDD. As men-
tioned in Section 3.3, CVDD can be seen as a spe-
cial case of mSVDD. Therefore, the proposed neg-
ative supervision approaches to mSVDD can be
also applied to CVDD theoretically. To highlight
the usefulness of the negative supervision, we con-
ducted the experiments to use the triplet loss with
Max probability for CVDD. As for the implemen-
tation, since CVDD uses a different multi-head
structure, we also used a different form to incorpo-
rate Triplet+Max to CVDD (See Section C in the
appendix for the details of the implementation.).

Overall, we can see that the proposed negative
supervision could enhance CVDD in most cases on
the two datasets. The overall performance mainly
shows the following: 1) The improvement by the
negative supervision to CVDD is consistent with
mSVDD due to the similarity between the two. 2)
The generality of the negative supervision can be
shown, as Triple+Max was successfully applied to
the different multi-head structure.

Regarding different target-classes, ship with the
smaller training data size may cause worse perfor-



3386

Reuters target class 20 Newsgroup target class
Model earn acq crude trade money interest ship comp rec sci misc pol rel
OC-SVM 91.1 93.1 92.4 99.0 88.6 97.4 93.1 82.0 75.6 64.1 63.1 75.5 79.2
CVDD 94.0 91.5 95.5 99.2 82.8 97.7 97.6 70.9 53.3 56.8 75.1 65.3 76.3
DSVDD 95.9 89.4 92.8 98.4 86.3 97.3 92.5 85.3 77.1 66.5 75.2 79.2 83.6
DMSVDD 96.0 89.8 92.1 98.8 87.1 97.2 93.0 86.3 77.1 66.8 75.3 78.5 82.0
mSVDD One 95.5+ 90.0 92.5+ 98.3+ 85.1+ 97.2+ 93.8 86.2+ 77.7+ 67.3+ 76.0+ 78.5+ 83.1+
+Triple+Max 96.9 89.4 93.8 99.6 89.0 98.4 92.7 88.3 78.6 67.5 77.6 79.9 83.8
+Triple+Mean 97.1 89.9 93.9 99.5 89.3 98.3 92.3 87.9 77.5 67.7 75.5 79.1 83.9
+Con+Max 97.2 90.8 92.9 98.8 91.3 97.8 92.3 89.4 79.1 68.3 76.4 80.7 84.2
+Con+Mean 96.6 91.0 92.8 98.6 90.2 98.0 91.9 89.2 78.9 68.3 76.6 79.9 84.4
mSVDD Soft 95.9+ 89.1 91.5+ 98.9+ 86.2+ 96.9+ 91.6 86.0+ 77.0+ 67.3+ 76.2+ 78.7+ 82.5+
+Triple+Max 97.1 89.6 92.8 99.4 89.3 97.4 92.6 87.8 78.5 68.8 76.1 79.9 82.9
+Triple+Mean 97.2 90.1 92.4 99.3 91.0 98.0 92.7 87.5 78.7 68.5 76.6 79.7 83.0
+Con+Max 97.0 88.2 93.1 99.2 91.2 98.4 91.6 88.6 78.3 69.0 78.3 80.5 83.2
+Con+Mean 97.2 88.1 93.0 98.9 91.3 98.4 90.4 88.3 78.7 68.4 78.1 80.8 83.4

Table 2: mSVDD with negative supervision. AUCs in % on the Reuters (left part) and 20 Newsgroup (right part)
datasets. For OC-SVM and CVDD, two baselines, we adopted their best scores from (Ruff et al., 2019). DSVDD
and DMSVDD were our implementations. One and Soft mean One-class and Soft-boundary forms, respectively.
+Triple+Max, which denotes mSVDD with Triplet loss with Max probability strategy, followed by three other
negative supervision methods. In the rows of mSVDD Soft and mSVDD One, ‘+’ following numbers means that
there were improvements with negative supervision (three of four methods.) The best scores in each column are
presented in bold, while the second best are underlined.

Reuters target class
Model (r) earn acq crude trade money interest ship

CVDD (3) 94.0 90.2 89.6 98.3 82.5 92.3 97.6
+Triple+Max 96.1 90.2 97.3 98.3 84.2 92.4 91.8
CVDD (5) 92.8 88.7 92.5 98.2 76.7 91.7 96.9
+Triple+Max 94.0 94.4 96.7 98.7 84.0 97.3 92.5
CVDD (10) 91.8 91.5 95.5 99.2 82.8 97.7 95.6
+Triple+Max 93.0 91.2 97.4 99.6 85.7 98.7 94.2

20 Newsgroup target class
Model (r) comp rec sci misc pol rel

CVDD (3) 70.9 50.8 56.7 75.1 62.9 76.3
+Triple+Max 74.5 64.2 61.0 75.1 62.2 72.5
CVDD (5) 66.4 52.8 56.8 70.2 65.3 72.9
+Triple+Max 73.2 64.5 58.4 76.2 63.6 76.1
CVDD (10) 63.3 53.3 55.7 68.6 65.1 70.7
+Triple+Max 78.3 69.7 60.5 73.3 67.5 79.1

Table 3: CVDD with the proposed negative supervi-
sion. AUCs in % on the Reuters (upper part) and 20
Newsgroup (lower part) datasets. Number r in brackets
denotes the number of heads in CVDD. Bold means the
better AUCs score.

mance, so does real with CVDD(3), which are sim-
ilar phenomena with mSVDD. In addition, the neg-
ative supervision could also prevent over-fitting for
CVDD. For example, CVDD(3) with the minimal
parameters achieved the best score for comp when
varying “r” among 3, 5 and 10. In contrast, when
the negative supervision was used, CVDD(10) with
the maximal parameters attained the best and also
performed better for all six target classes of the 20
Newsgroup dataset.

6 Conclusion

In this work, we proposed mSVDD, a new generic
one-class text classification framework that uses
multi-modal deep SVDD. Rather than the uni-
modal deep SVDD, mSVDD can enhance the de-
scription ability to the target one-class data with
multiple hyperspheres. We also proved that this
generic framework can include three variants, deep
SVDD, DMSVDD, and CVDD under certain con-
ditions. In addition, in the absence of “real” nega-
tive training data, we also proposed approaches for
effectively adding negative supervision to further
improve the performance of mSVDD. The experi-
ments validated that the proposed mSVDD provides
better performance compared to uni-modal SVDD.
The experiments also showed the further improve-
ments in most cases when negative supervision was
used for mSVDD and CVDD. For future work of
this study, we will use some sampling strategies to
improve the current work.
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A Proofs of Proposition 1

Schölkopf et al. (2001) proved that, in single-class
classification, ν is the upper bound of the fraction
of anomalies, and the lower bound of the fraction of
training samples being anomalies or on the optimal
boundary. Ruff et al. (2018) proved that this ν-
property still holds for uni-modal soft-boundary
deep SVDD. Although the same proposition does
not hold true for our multi-modal case as it is in
general, it is still true when the attention weight
αij is constant for different hyperspheres. This will
give us an intuition on the role of ν.

Proposition 1. (ν-property )7 The hyper-
paramter ν ∈ (0, 1] in soft-boundary deep mSVDD
holds if we set an equal attention weight to each
hypersphere:

i. ν is an upper bound on the fraction of outlier
samples.

ii. ν is a lower bound on the fraction of train-
ing samples being rejected or on the optimal
boundary.

Proof. Ad (i). For each training instance xi, its
loss function is defined as hinge-loss: l(f(xi)) =
max{0,

∑
j αij (‖φ(xi;W)−cj‖2−R2

j )}, where
f is the model with parameters. Let us define
di =

∑
j αijd(xi, cj). Assume αij = 1/m,

we have di = 1
m

∑
j d(xi, cj). We also define

Rs = 1
m

∑
j R

2
j . And W.L.O.G, we also assume

d1 6 ... 6 dn which means dn is n-th farthest
sum distance. The number of outliers is given by
nout = |{i|di > Rs}|. Rewrite the objective of
soft-boundary deep mSVDD ( Eq. 5) as:

Jsoftm = Rs −
nout
νn

Rs = (1− nout
νn

)Rs

Since the objective of mSVDD is to get a minimum
Rs, therefore 1 − nout

νn should be positive, Thus,
nout 6 νn must hold in the training. It implies that
at most νn outliers should be rejected.

Ad (ii). The optimal R∗s has to hold the inequal-
ity nout 6 νn. If R∗s >= dn, then nout takes the
minimum value of 0 which means the boundary
includes all the samples. Since nout is increased
as long as Rs decreased. If nout take the maxi-
mum value of νn under condition (i), we can have
the minimal R∗s = di∗, where i∗ = n − nout
means di∗ is (n − nout)-th farthest distance. We

7Rewrite this proposition in the main body

…
8( 8(;8< 8=

0
8>

6 = 0.2

9 = 10

3 > 69=2

)∗

69 = 2

Figure 2: Example of ii of ν-property. Up arrow means
R∗ = d8, where n = 10 means 10 samples, ν = 0.2.

define {xi|di > R∗s} is the set of training sam-
ples being rejected (di > R∗s) or on the optimal
boundary (di = R∗s). Then we have inequality:
|{xi|di > R∗s}| = |{xi|di > R∗s} ∪ {xi|di =
R∗s}| > nout + 1 > νn. This implies that at least
νn samples being rejected or just on the optimal
boundary. Figure 2 shows an example with 10
training samples.

Proposition 1 and its proof refer to works (Ruff
et al., 2018; Chen et al., 2005; Schölkopf et al.,
2000).

B Discussions on mSVDD with Negative
Supervision

B.1 Relationship between mSVDD and the
use of negative supervision

mSVDD and negative supervision are not two in-
dependent sub-architectures. Negative supervision,
including contrastive and triplet losses, are spe-
cially equipped to mSVDD. Specifically, these two
components are closely connected by the center
of the hypersphere, cj . Both mSVDD (Eq. 7 )
and negative supervision ( Eq. 13 or 14 ) contain
cj . Since there is no real negative data, external
data are used as pseudo negative samples to com-
plete negative supervision. The use of negative su-
pervision could improve the discrimination ability
of mSVDD. In training, negative supervision loss
forces mSVDD to reject unseen samples since real
negative data in testing are also unseen in training.
This improves inter-class discrepancy, compared
with intra-class loss mSVDD optimized. However,
in testing, the decision function will be the same as
mSVDD trained with only positive samples.

B.2 Necessity of joint loss

In training loss of mSVDD with negative super-
vision( Eq. 16 ), LmSVDD aims to minimize the
intra-class variations while LCon|Tri tries to maxi-
mize the inter-class discrimination. If γ in Eq. 16
is set to 0, it will train mSVDD only with target
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positive samples, where discriminative information
could not be learned. On the other hand, if we
use only LCon|Tri loss for training, it may result
in large intra-target variations, especially when the
triplet type loss is chosen, since it requires that
only positive samples to be closer than pseudo neg-
ative samples. Additionally, because of the absence
of real negative samples, it is another problem to
sample the “appropriate” pseudo negative samples,
such that the contrastive or triplet losses could fit
our original objective, that is, learn a compact de-
scription boundary for the target one-class data.
Therefore, it is necessary to jointly train with the
loss of negative supervision.

C Implementation of CVDD with
negative supervision

The proposed negative supervision methods can
also be applied to CVDD. Now, we introduce our
implementation of CVDD with triplet type loss
and the Max probability strategy. CVDD uses a
group of r context vectors C = (c1, ..., cr) to de-
scribe the target one-class data, where ck ∈ Rp.
Given one context vector ck,∀k ∈ {1, ..., r} and a
pair of training positive and negative samples, we
can get the reformulated probability form. First,
CVDD maps a training sample xi to r heads of fea-
ture vectors Si = (si1, ..., sir). Then, we denote
p(yi = 1|sik, ck) as the probability that k-th sik
reconstructs k-th context vector ck well.

p(yi = 1|sik, ck) = σ(ŝik
T ĉk) (17)

And with triplet and Max probability strategy, we
can define the negative supervision loss as:

L(ii
′)

Tri = [ log p(yi′ = 1|xi′)− log p(yi = 1|xi) + τ ]+

= [log max
k=1,...,r

p(yi′ = 1|si′k, ck)−

− log max
k=1,...,r

p(yi = 1|sik, ck) + τ ]+

(18)

where τ is a margin. Then, L(ii
′)

Tri can then be added
to Eq. 8 to obtain the training loss.


