
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, pages 3354–3362
April 19 - 23, 2021. ©2021 Association for Computational Linguistics

3354

Reanalyzing the Most Probable Sentence Problem: A Case Study in
Explicating the Role of Entropy in Algorithmic Complexity

Eric Corlett Gerald Penn
Department of Computer Science

University of Toronto
{ecorlett,gpenn}@cs.toronto.edu

Abstract

When working with problems in natural lan-
guage processing, we can find ourselves in
situations where the traditional measurements
of descriptive complexity are ineffective at de-
scribing the behaviour of our algorithms. It is
easy to see why — the models we use are of-
ten general frameworks into which difficult-to-
define tasks can be embedded. These frame-
works can have more power than we typi-
cally use, and so complexity measures such as
worst-case running time can drastically over-
estimate the cost of running our algorithms.
In particular, they can make an apparently
tractable problem seem NP-complete. Using
empirical studies to evaluate performance is
a necessary but incomplete method of deal-
ing with this mismatch, since these studies no
longer act as a guarantee of good performance.
In this paper we use statistical measures such
as entropy to give an updated analysis of the
complexity of the NP-complete Most Probable
Sentence problem for pCFGs, which can then
be applied to word sense disambiguation and
inference tasks. We can bound both the run-
ning time and the error in a simple search algo-
rithm, allowing for a much faster search than
the NP-completeness of this problem would
suggest.

1 Introduction

Natural Language Processing uses many algo-
rithms that are theoretically intractable, but work
well in practice. The k-means clustering algorithm,
for example, has an exponential worst-case time,
but is generally polynomial in practical applica-
tions (Arthur et al., 2009). If we look at problems,
as opposed to algorithms, the task of training neural
networks (Blum and Rivest, 1993), sentence disam-
biguation in pCFGs and HMMs (Sima’an, 2002),
and solving cryptograms (Nuhn and Ney, 2013)
have even been shown to be NP-complete. These

results would seem to be at odds with the observa-
tion that we are able to actually perform these tasks.
Clearly, while NP-completeness results are a nec-
essary part of our understanding, they do not tell
the whole story about our algorithms’ behaviour.

Faced with the inadequacy of existing descrip-
tive complexity measures to represent program op-
eration, some researchers have resorted to empiri-
cal measures of performance (e.g. Carroll, 1994).
Unfortunately, empirical studies have their own pit-
falls, and these are also difficult to address. Specif-
ically, empirical studies of program performance
have an implicit dependence on the distribution of
inputs used in the study. Changing this distribution
of inputs can change the overall performance dras-
tically. This, after all, is why we separate training
and evaluation test sets.

Ultimately our analytic tools should work to-
gether with our empirical studies, in the sense that
we should be able to give quantify how much pro-
gram performance changes as we change our input
distributions. This would allow us to circumscribe
our guarantees of program performance; if those
bounds are not met (e.g., if a program takes much
longer than expected to run), we have evidence that
the set of inputs did not comply with the distribu-
tion in the first place.

The situation of NLP is a little more complicated,
however. Many of our algorithms include, implic-
itly or explicitly, probability distributions as part
of their input. Take for example a natural language
parser. Thirty years ago, these relied upon lexical-
ized pCFGs that explicitly assigned probabilities to
different rules and word n-grams, whereas today,
the distributions used by neural parsers avail them-
selves of distributions that are rather more implicit.
But in both cases, the distributions are acquired by
sampling training data.

The aim of our research programme is to incor-
porate these distributions into our theoretical anal-

3355

yses of program performance. If we were to follow
existing analyses of a program’s dependence on
textual input, we may choose to characterize that
dependency as a function of the length of the dis-
tribution’s description. Uniform distributions, ar-
guably the shortest to write, often ensure the worst
program performance. Indeed, there is plenty of ev-
idence from statistics, information theory and other
AI applications that a particular derivative char-
acteristic of distributions which is systematically
related to the length of their descriptions captures
many aspects of this dependency: entropy.

In this paper we take steps towards this goal
by demonstrating how to link the run time of a
specific inference problem, the Most Probable Sen-
tence (MPS) problem for pCFGs (Sima’an, 2002),
to the entropy of its input. While this is somewhat
of a niche problem, it does provide a good demon-
stration of our approach. We will describe below
in Section 8 some other graphical models that this
approach can be readily applied to.

We start our analysis of the MPS problem in Sec-
tion 3 by outlining the problem definition, the NP-
hardness proof of the problem, and the main bound
we are going to prove about it. In Sections 4 and 5,
we develop an analysis of the MPS problem by
showing how entropy, specifically, the conditional
entropy of a parse tree given the words of a sen-
tence, changes the running time of a simple search
algorithm for the most probable tag sequence over
that sentence. In Section 6, we show that there
is an inherent trade-off between accuracy and run
time whose worst case is dictated by the pCFG
sentence-to-tree entropy. Finally, in Section 7, we
characterize the run time of our search when we
hold our grammar constant and draw many sen-
tences from it.

2 Previous Work

Historically, most complexity results in computer
science have dealt with worst-case complexity. A
major NLP result in this vein has been the study by
Sima’an (2002), which shows that the most prob-
able parse problem (MPP) for pSTSGs and the
most probable sentence problem (MPS) for both
pSTSGs and pCFGs are all NP-complete. These
problems can be thought of as renormalization over
a graphical model, and have been studied further
in several publications, including De la Higuera
and Oncina (2013) and Goodman (1998). Similar
NP-completeness results exist for the problem of

finding the optimal word order for phrases in ma-
chine translation (Germann et al., 2001) and for
solving letter-substitution problems such as cryp-
tograms (Nuhn and Ney, 2013).

An argument could be made for average-case
complexity (Levin, 1986; Impagliazzo, 1995) as
an alternative to what we are attempting here.
Average-case complexity is a step towards the type
of results that we want, but it still has its short-
comings. In particular, an average case complexity
analysis relies on the underlying distribution of in-
puts being known (and, usually, easy to work with)
in advance. The distribution of choice is often
naı̈vely uniform. In situations where the input dis-
tribution is defined by the problem task, or where it
is actually defined as part of the input, the problem
of how program behaviour changes with the distri-
bution is not completely addressed. Average-case
complexity, moreover, does not give any sort of
guarantee on program performance.

Within artificial intelligence, approximation re-
sults are perhaps a more natural approach to anal-
ysis. Nearly all of these endeavour to establish a
worst-case result, however, and in some cases, such
as with Markov Logic Networks and Bayesian net-
works (Roth, 1996; Cooper, 1990), it is hard even
to approximate for probabilistic inference. What
we want is the worst case, but not the worst dis-
tribution. We want the worst case for a typical
distribution.

A general framework for “probabilistic complex-
ity” has been explored in Ackerman et al. (2011),
in which it is found that the calculation of values
such as conditional probability can be intractable,
even on an otherwise tractable distribution. On the
other hand, attempts to give decompositions for
large families of distributions into tractable bases,
as described in Erdélyi et al. (2009), can be used
to characterize input probabilities for which algo-
rithms will often be efficient. What these papers do
not do is explore how the task-specific aspects of
a problem in a powerful model can shift an algo-
rithm’s complexity into a hard or easy part of the
input space.

A promising alternative approach to analyzing
program complexity is to look at the smoothed com-
plexity of an algorithm. In this paradigm, the com-
plexity of an algorithm is not based on the worst
input that an arbitrary adversary could choose for
the problem. Instead, the adversary is constrained
by having a small error added to their inputs. The

3356

expected complexity of the resulting problem is
then reported, and can often be much better than the
usual worst case. This approach to complexity anal-
ysis is very effective for describing the behaviour
of many otherwise exponential algorithms, such as
the simplex algorithm (Spielman and Teng, 2004)
or the k-means clustering algorithm (Arthur et al.,
2009). The major limitation of this approach for us,
however, is that the improvement in performance is
assumed to be due to measurement error in the in-
put. Such an assumption is very appropriate when
talking about, for example, measurements taken of
continuous real-world quantities like length. It is
not likely to be appropriate for situations where the
program improvement is due to observable regular-
ities in the input data.

What we really want to do is to exploit the fact
that we see only a fragment of the theoretically
possible input space in the real world. Unfortu-
nately, the task of identifying good problem frag-
ments for our models is itself very hard, and so we
will instead attempt to use statistical measures to
build tools for narrowing down the space in which
our inputs will lie. A start towards this goal is
found for the letter-substitution problem in (Corlett
and Penn, 2013), but this approach does not give
a tight enough bound to describe when we should
expect better running times, and it does not imme-
diately generalize to other tasks. We would like to
strengthen the approach used in that paper to make
it more applicable to different areas. With this in
mind, we turn to another NP-complete problem,
the MPS problem for pCFGs.

3 Tagging and NP-Completeness

To start, we recall the definition of the problem:

Most Probable Sentence Problem (MPS)
Instance: A pCFG model G and a string s.
Question: Find a sequence of part-of-speech tags,
σ, that maximizes the sum of probabilities of trees
with yield s and pre-terminals σ.

As an example, suppose we were looking at the
sentence “Time flies like an arrow”. There are
several assignable tag sequences, such as

N V AdvDetN

or
Adj N V DetN.

Each tag sequence might be obtainable from more
than one parse tree. The probability of any such

tag sequence is the sum of the probabilities of the
trees yielding that sequence.

The difficulty of this problem lies in the fact that
we are looking for the POS tags that maximize
the sum of the probability of all trees using those
tags. If we were looking for the single most likely
tree, or if we were looking for the sum of all trees
with yield s, without fixing the POS tags, the usual
O(n3) parsers would work.

A reduction, as described in Sima’an (2002) is
made from 3-SAT as follows: given a 3-SAT for-
mula φ with η clauses and κ variables, we build
a pCFG grammar Gφ that generates strings that
contain 3η copies of a single terminal, such as x.
The tags for these terminals are either T or F – that
is, they are the truth assignments for the literals
of φ (e.g., if η = 2, we would generate six-tag
sequences such as TTFTTF). The grammar Gφ is
capable of generating two types of trees for every
input string: one that generates true assignments
that may or may not be consistent across variable
instances, and one that generates consistent assign-
ments for one designated variable. A string of tag
assignments that has one tree of the first type and κ
trees (one for each variable) of the second type will
have a total probability that is higher than trees that
lack this many, and so there is a threshold Q that
separates input strings with true, consistent assign-
ments from input strings without true, consistent
assignments.

In the following sections, however, we will prove
the following:

Theorem 3.1 Suppose that we draw a sentence s
from a pCFG grammar G. Then, the MPS prob-
lem can be solved inO(n4[pG(s)/pG(τ(s))]) time,
where:

• n is the length of s,

• τ(s) is the tag sequence assigned within the
most likely tree, t(s), that has yield s, and

• pG(s) is the probability of s in G, and
pG(τ(s)) is its probability given τ(s).

This is a major improvement over the bound
of Sima’an (2002) because it shows that the ex-
ponential run times that we expect from an NP-
complete problem are in fact bounded by the ratio
pG(s)/pG(τ(s)). For the pathological grammars
that are used in the NP-completeness proof, this
ratio grows exponentially with the size n of the sen-
tence. On the other hand, we conjecture that it is

3357

quite small for the natural language grammars that
we see in practice. Empirically computing the aver-
age such ratio on a corpus can itself be very trying,1

but there are good indications that it is relatively
constrained. In the Penn Treebank, for example,
46.5% of the word tokens in the corpus have only
one POS tag assignable, and these words are fairly
well dispersed throughout the corpus: the median
intrasentential distance between them (not includ-
ing the single-tag words themselves) is 1, with an
average of 4.4. In any case, a parser that avails itself
of this theorem does not need to explicitly calculate
pG(s)/pG(τ(s)). pG(s)/pG(t(s)), which directly
relates to the probability of the best tree for s, is
likely to be a much looser bound. We will attempt
to bound it theoretically in Section 7.

Proof of Theorem 3.1: This is an immediate
consequence of Lemmata 5.5 and 5.6. The proofs
are presented below. Section 4 describes a simple
search algorithm that will be the focus of the dis-
cussion. Section 5 will analyze the running time
of this algorithm in a way that provides the basis
for these lemmata. In Section 6, we will extend
this result to describe the error incurred if we allow
early stopping. �

4 Analysis of Problem and Exemplary
Algorithm

We will use a similar approach to that used in (Cor-
lett and Penn, 2013), in that we will use an A∗

search to solve the MPS problem for pCFGs. The
idea behind the search is as follows: given a pCFG
G and a string s of n words, we can find the over-
all probability pG(s) in G through a cubic time
algorithm that algebraically mirrors a conventional
all-paths parsing algorithm. But for our purposes,
we can do it differently: given any instance w of
a word in s, we can make a guess as to the POS
tag r that w will take, and then run the algorithm,
but with the restriction that only the tag r will be
counted for w. In our earlier example of “Time
flies like an arrow,” perhaps this would mean run-
ning the parser given the restriction that “Time” is
an adjective, while letting the other words take any
tag that they can. Clearly, this run of the parser will
still take O(n3) time, as it would if we simultane-
ously constrained any subsequence of the words of
s rather than just one.

Recall that pG(s) is the sum of all pG(t), where

1The reader may wish to refer to our work on this subject
at https://doi.org/10.5683/SP2/CM9QY1.

t ranges over all trees with the yield of s. Fur-
thermore, if, for a subsequence of word instances
(wu1 , wu2 , . . . , wuJ), we restrict the parser so that
only the POS tags (r1, r2, . . . , rJ) will be consid-
ered, the probability calculated will be the sum
of pG(t′), where t′ ranges over all trees with both
have the yield of s and which have the desired POS
tag restrictions. We will use this probability as
an admissible heuristic in our A∗ priority queue,
and consider possible sequences of tag assignments
as nodes in the search space. We will refer to se-
quences of tag assignments with the character a,
and we will index them by the letter i. Sequences
of tag assignments will not, in general, fix a tag for
every word in s.

To run the search, we fix an order for the words
in s. We assume a last-to-first ordering here, but
any ordering will suffice. We push an empty as-
signment {}with the score pG(s) onto a probability
queue Q. While Q is nonempty, we pop its maxi-
mum element ai and look for the first word wu in
our ordering of swhich is not fixed by ai. For every
possible POS tag rj for wu, we add the POS tag as-
signment {wu : rj} to ai to get a new sequence of
tag assignments a[j]i , compute pG(s) restricted to
a
[j]
i , and insert a[j]i into Q with the resulting proba-

bility. We return the first tag assignment a popped
from Q that fixes every word in s.

To see that thisA∗ search is correct, we first note
that it must terminate: every time a tag assignment
A is popped from the queue, either a fixes every
word in s and the program terminates, or a series
of strictly longer tag assignments a′ is added to the
queue.

Furthermore, since our heuristic for a tag assign-
ment sequence a is the sum of the probabilities of
all suitably restricted trees t in G with yields of s,
we can see that when we extend a tag assignment
sequence a, we are simply adding new constraints
to the contributing trees t, and so the set of trees
counted is non-increasing. This means that the
heuristic is also non-increasing. The same argu-
ment tells us that any extension of a tag assignment
sequence a that fixes every word in s must have a
probability that is at most that of s given a. These
arguments, taken together, indicate that the first tag
sequence found that fixes every word in s will be
the one that gives the maximum probability, and so
this assignment will give the solution to the MPS
problem.

https://doi.org/10.5683/SP2/CM9QY1

3358

5 Initial Analysis

In order to find the time complexity of this algo-
rithm, recall the fact that the admissible heuristic is
non-increasing. If we apply this to the first and last
tag assignment sequences popped from the stack,
we can see:

Lemma 5.1 If MG(s) is the probability of s given
its most likely tag sequence, and if a is any tag
sequence expanded in the search, then

pG(s) ≥ pG(s|a) ≥MG(s).

Similarly, if a is a tag sequence that is seen but
not expanded in the search,

MG(s) ≥ pG(s|a).

So understanding the algorithm complexity be-
comes an issue of determining how many a are
in this range. Furthermore:

Lemma 5.2 If we extend a specific tag sequence
ai in our search by one tag assignment into the new
sequences a[1]i , a

[2]
i , . . . , a

[m]
i , then

pG(s|ai) =
m∑
j

pG(s|a[j]i).

This just means that in our example sentence
s =“Time flies like an arrow,” if we were to ar-
gue that “flies” can only be an N or a V, then the
probability of s is the sum of the probability of s
given that “flies” is a N plus the probability of s
given that “flies” is a V. Any of the parse trees that
are compatible with one restriction are incompat-
ible with the other, and so the outcomes in their
probabilities are disjoint.

In fact, since Lemma 5.2 applies to every tag
sequence we expand, we can go so far as to apply
it iteratively to cover the whole search space:

Corollary 5.2.1 Let QO be the selected optimal
solution together with the items left stranded on Q
at the end of the search. Then:∑

a∈QO
pG(s|a) = pG(s).

Let D∗ be the set of all ai such that every ex-
pansion of ai, a

[1]
i , a

[2]
i , . . . , a

[m]
i is a member of

QO. Some of the members of QO will be com-
plete sequences of tag assignments — every word
in s has received a tag in these. Others may not

be complete, because the search terminated before
they could be expanded. Because of this, D∗ is not
merely the set of QO parent nodes in the search
space — some parents will be left out because they
were extended both to assignment sequences that
were further extended, as well as to assignment
sequences that were not further extended.

Let D′ be the subset of QO consisting of every
node with its parent in D∗. Every element of QO
only has one parent node (no joins in the search
space) because we always marshal out the tags of
s in the order that we defined over its words. By
Corollary 5.2.1:

pG(s) =
∑
a∈QO

pG(s|a)

=
∑
a∈D′

pG(s|a) +
∑

a∈QO\D′
pG(s|a)

≥
∑
a∈D′

pG(s|a).

Then, by repeated applications of Lemma 5.2 to
the elements of D∗:

Lemma 5.3

pG(s) ≥
∑
a∈D′

pG(s|a) =
∑
a∈D∗

pG(s|a).

Interestingly, the nodes of D∗ are the nodes that
are the most complete assignment sequences that
still satisfy pG(s|a) ≥MG(s), from the first clause
of Lemma 5.1 — every node expanded in the search
is either in D∗ or is an ancestor of a node in D∗.
It takes at most n− 1 steps of expansion to arrive
at this frontier, because every step assigns a tag to
a new word of s, and there are at most |D∗| such
paths through the search space. So the total number
of nodes expanded must be at most O(n|D∗|).
Lemma 5.4 Let RG(s) = pG(s)/MG(s). The to-
tal number of nodes expanded must be at most
O(nRG(s)).

Proof: We have just learned that for every
a ∈ D∗, pG(s|a) ≥ MG(s). Therefore, by
Lemma 5.3, pG(s) ≥

∑
a∈D∗MG(s), and so

RG(s) ≥
∑

a∈D∗ 1 = |D∗|. �
Finally, note that every one-word expansion in

our search procedure comes with a decoding step
that is bounded by O(n3) time. Thus we have:

Lemma 5.5 The running time for the entire search
is O(RG(s)n4).

3359

The proof by Sima’an (2002) of overall NP-
completeness implies that RG(s) can be exponen-
tially large in n. His reduction exhibits a gram-
mar which generates a single s with probability
one, while the value of MG(s) is proportional to
a threshold value, which is exponentially small
in n. So in this degenerate case, the ratio RG(s)
will always be exponentially large in the size of
the grammar. In any case, determining RG(s) is
the key to understanding the running time of our
search.

Finding RG(s) is as difficult as finding MG(s),
since we can use one to calculate the other. So
we cannot directly use RG(s) in our calculations
— we need a bound for it instead. Clearly, given a
positive lower bound for MG(s), L, then RG(s) ≤
pG(s)/L also.

A very simple lower bound L is the most proba-
ble single parse tree t(s) for s, which can be calcu-
lated inO(n3) time. Clearly, the probability of t(s)
is at most the probability of all trees with the same
tag assignment as t(s), and this sum is itself at most
the probability of the largest full tag assignment.
Thus:

Lemma 5.6 For any sentence s,

RG(s) ≤ pG(s)/pG(τ(s)) ≤ pG(s)/pG(t(s)).

In the case of pure pCFG parsing, finding pG(s)
also admits an O(n3) algorithm, although the im-
plicit sum over all possible trees includes a poten-
tially infinite series over cycles of unary phrase
structure rules. When this series converges, find-
ing the probability mass added by these extra trees
involves inverting a potentially large matrix that
can be prohibitively expensive, although this cost
is independent of the input length, and can be pre-
computed offline.

6 A Trade-off Between Accuracy and
Time

Practically, we may not want to run a fullA∗ search,
especially if the overall search takes a long time.
The above analysis is a convenient starting point
for investigating the consequences of stopping our
search early.

If we do decide to stop the A∗ search early, we
will want to output a tag sequence. Let this tag
sequence be â(s). We will assume here that it is
τ(s), the one associated with the most likely tree,
t(s), which means that it can be calculated easily,
and can easily be combined with any other estimate

(just check both tag sequence estimates and take
the better).

The heuristic score of â(s) provides a lower
bound on the probability of the most likely tag
sequence, which may in fact not be â(s). As the
search progresses, those scores will decrease, and
so the range of values that the maximum probabil-
ity can take on will also decrease. In particular,
the error that we incur by simply choosing the tag
sequence â(s) as our output will always be at most
pG(ai)/pG(â(s)). Given some k ≤ n, let us run
our A∗ search for n2k iterations. We assert that:

Theorem 6.1 If we run our search for n2k itera-
tions, we will get a reduction in error of at least k
bits, i.e., we achieve an overall reduction in error
of at least 2−k.

Proof: Suppose otherwise. Then, since pG(s|ai)
is the score of the latest partial solution on the
queue after n2k iterations, we have that pG(a∗) <
pG(s|ai), where a∗ is an optimal tag assign-
ment. But, since the error that we incur by
choosing ât is not reduced by at least 2−k, then
pG(s|ai)/pG(â(s)) > 2−k(pG(s)/pG(â(s))).

Let Qi be the partial tag sequence ai together
with the items left stranded on Q when we termi-
nate the search. Then, as we saw in Corollary 5.2.1:

∑
a∈Qi

pG(s|a) = pG(s).

Furthermore, let Di and D′i be defined analo-
gously to D∗ and D′ from Section 5. The argu-
ments of Lemma 5.3 still apply, so that

∑
a∈Di

pG(s|a) ≤ pG(s).

Since pG(s|ai) ≤ pG(s|a) for every a ∈ Di, it
follows that:

∑
a∈Di

pG(a) = pG(s)

⇒
∑
a∈Di

(pG(s|ai)) ≤ pG(s)

⇒
∑
a∈Di

1 ≤ pG(s)/(pG(s|ai)),

3360

in which case:

|Di| ≤ pG(s)/(pG(s|ai))

=
(pG(s)

pG(â(s))

)
/
((pG(s|ai))
pG(â(s))

)
<
(pG(s)

pG(â(s))

)
/
(
2−k
(pG(s)

pG(â(s))

))
= 2k.

At this point, the number of nodes expanded by
the algorithm is at most the number of unexpanded
nodes in the search space times the number of their
ancestors. where the number of ancestors of any
node is at most n (since this is the maximum depth
in the tree). On analogy to Section 5, the total
number of nodes that have been expanded in the
search is less than n2k. But we have stated that the
algorithm has been run at least n2k times. There-
fore, we have an error reduction of at least 2−k, as
desired. �

If the algorithm halts in this time, we have an
exact solution, and so our error rate is zero. So
if we allow early stopping in our search we can
guarantee that the error times the number of times
the search iterates is O(n(pG(s)/pG(â(s)))). Due
to the cubic run time of the parsing algorithm, we
find:

Lemma 6.2 If we allow early stopping as de-
scribed above, the total run time multiplied by the
algorithm error will be O((pG(s)/pG(â(s))n4)).

As in Section 5, we can see that what we need
to find is a bound on pG(s)/pG(t(s)).

7 Bounding pG(s)/pG(t(s))

Here we will find a bound on pG(s)/pG(t(s))
given only the grammar G. We can consider G
as a model that probabilistically generates trees t,
which in turn generate the yield s.

We know pG(t) ≤ pG(t(s)), where t(s) is the
most likely tree that has the yield s. So, by the
previous arguments, pG(t) is a lower bound for
MG(s), and so pG(s)/pG(t(s)) ≤ pG(s)/pG(t).
We will relate these values to the per-word sentence
and tree entropies HG,n(s) and HG,n(t), where n
is fixed.

If the the generative process for trees in G is
ergodic and stationary, then as the size of the
tree t increases, the density of the nonterminals
in t approaches some distribution πt. Further-
more, as the density of the words in s approach

some distribution πs with high probability, then
for any δ, ε > 0, there is an N > 0 such that
if n > N , then, with probability at least 1 − δ,
log pG(s) < −n(HG,n(s)− ε/2) and log pG(t) >
−n(HG,n(t) + ε/2). In this case:

pG(s)/pG(t(s)) ≤ pG(s)/pG(t)
= 2log(pG(s))−log(pG(t))

< 2−n(HG,n(s)−ε/2)+n(HG,n(t)+ε/2)

= 2n(HG,n(t)−HG,n(s)+ε).

Since s is completely determined by the tree t, we
have that HG(s) = HG(s, t), and so:

2n(HG,n(t)−HG,n(s)+ε) = 2n(HG,n(t)−HG,n(s,t)+ε)

= 2n(HG,n(t|s)+ε)

Thus:

Theorem 7.1 If the grammar G, taken as a gener-
ative process, is ergodic and stationary, then for
any ε, δ > 0 there is a number n such that, for any
tree with at least n leaves:

log (pG(s)/pG(t(s))) ≤ n(HG,n(t|s) + ε)

with probability greater than 1− δ.

Even if the grammar is not stationary and er-
godic, we can ask what happens when we hold the
grammar fixed and draw sentences from it, as is
the case in typical NLP applications. In this case,
the expected value of log(pG(s)/pG(t)) is still the
conditional entropy HG(t|s) – we just cannot fix
the sentence size. This value is not guaranteed to
be an upper bound for the running time of the al-
gorithm, or even for the logarithm of the expected
value of (pG(s)/pG(t)).

Instead, we can look at the second moment
νG(t|s) of log(pG(s)/pG(t)) in order to bound the
overall likelihood of encountering a high-running-
time input: For any δ > 0, we can find a c such
that the probability of drawing an s such that
log(pG(s)/pG(t)) > HG(t|s) + cνG(t|s) is less
than δ. Thus:

Theorem 7.2 Suppose we hold G constant and
draw trees t from it, and that s is the yield of t.
Then, for any δ > 0 there is a c such that:

pG(s)/pG(t(s)) < 2HG(t|s)+cνG(t|s)

with probability greater than 1− δ.

3361

This bound unfortunately does not tell us how
the problem difficulty scales with the sentence
length n, but it does give us a sense of how diffi-
cult the MPS problem will be for a given grammar.
While it is true that finding the exact values for ei-
ther HG(t|s) or νG(t|s) is undecidable for general
pCFGs, these values are can be given rough bounds
– for exampleHG(t|s) is bounded above by the tree
entropy HG,n(t). Finding better bounds is clearly
an area for future research. Further discussion of
the variance of the tree entropy can be found in
(Chi, 1999).

8 Other Applications

In this paper, we have only considered the MPS
problem, but the same approach can be applied to
other inference problems, such as those found in
Bayesian networks or CRFs. In particular, suppose
that we are performing inference on a graphical
model in which:

• we are trying to assign values to a finite set S
of hidden variables in order to maximize the
probability p of an event E, based on a finite
set of hidden variables,

• we can build partial solutions to our inference
problem by assigning values to one or more
of these variables,

• we can use the probability of E over the par-
tial solutions, or an approximation thereof, as
an A∗ heuristic on these partial solutions,

• extending nodes can always proceed accord-
ing to an order defined as a function of the
input (but independently of the node being
expanded or its score), and

• extending nodes in theA∗ search will partition
its score among the child nodes.

If all of these conditions are met, then the A∗

search above will still solve the problem, and will
admit the same analysis. If the probability of E
with no constraints is p0(E) and the probability
of E under the optimal constraints is p∗(E), the
ratio p0(E)/P ∗(E) will fill the same role as the
ratio pG(s)/pG(t) in our above analysis, and can
be used to create a similar entropic bound. The
main difficulty lies in the time we take to find the
probability p(E) given a set of constraints. This
time will be application-dependent: in our case it

took O(n3) time. Our current method will gener-
alize to any task in which the p(E) value can be
efficiently found.

9 Conclusions

Our analysis tells us something about how a par-
ticular NP-complete problem – the MPS prob-
lem for pCFGs – relates to a specific prop-
erty of grammars. Our worst case running
time is O(n42n(HG,n(t|s)+ε)) with high probabil-
ity. Slightly more promising is that, when we draw
a sentence s, it will take at most 2HG(t|s)+cνG(t|s)n4

steps with probability 1− δ, where ν is the second
moment of the entropy and c depends on δ. If we
perform early stopping on the search, the product of
the running time with the error will have the same
bound. More practically, if we can determine that
the ratio pG(s)/pG(τ(s)) is small, our algorithm
will have a much quicker run time.

Even in the worst-case scenario, the problem
complexity collapses if we can break a sentence
into several smaller instances. While we cannot
do so in the grammar given by Sima’an (2002), it
is possible in many NLP grammars. Roark and
Hollingshead (2008) showed, for example, that we
can find clause boundaries in sentences generated
by the Penn Treebank grammar both quickly and
reliably. Future work should focus on formalizing
this for the MPS problem.

References
Nathanael L Ackerman, Cameron E Freer, and

Daniel M Roy. 2011. Noncomputable conditional
distributions. In Logic in Computer Science (LICS),
2011 26th Annual IEEE Symposium on, pages 107–
116. IEEE.

David Arthur, Bodo Manthey, and H Roglin. 2009. k-
means has polynomial smoothed complexity. In
Foundations of Computer Science, 2009. FOCS’09.
50th Annual IEEE Symposium on, pages 405–414.
IEEE.

Avrim L Blum and Ronald L Rivest. 1993. Training a
3-node neural network is np-complete. In Machine
learning: From theory to applications, pages 9–28.
Springer.

John Carroll. 1994. Relating complexity to practical
performance in parsing with wide-coverage unifica-
tion grammars. In Proceedings of the 32nd annual
meeting on Association for Computational Linguis-
tics, pages 287–294. Association for Computational
Linguistics.

3362

Zhiyi Chi. 1999. Statistical properties of probabilistic
context-free grammars. Computational Linguistics,
25(1):131–160.

Gregory F Cooper. 1990. The computational complex-
ity of probabilistic inference using bayesian belief
networks. Artificial intelligence, 42(2):393–405.

Eric Corlett and Gerald Penn. 2013. Why letter sub-
stitution puzzles are not hard to solve: A case study
in entropy and probabilistic search-complexity. In
The 13th Meeting on the Mathematics of Language,
page 83.

Gábor Erdélyi, Lane A Hemaspaandra, Jorg Rothe,
and Holger Spakowski. 2009. Generalized juntas
and np-hard sets. Theoretical Computer Science,
410(38):3995–4000.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel
Marcu, and Kenji Yamada. 2001. Fast decoding and
optimal decoding for machine translation. In Pro-
ceedings of the 39th Annual Meeting on Association
for Computational Linguistics, pages 228–235. As-
sociation for Computational Linguistics.

Joshua Goodman. 1998. Parsing inside-out. arXiv
preprint cmp-lg/9805007.

Colin De la Higuera and Jose Oncina. 2013. The most
probable string: an algorithmic study. Journal of
Logic and Computation, 24(2):311–330.

Russell Impagliazzo. 1995. A personal view of
average-case complexity. In Proceedings of Tenth
Annual IEEE, pages 134–147.

Leonid A Levin. 1986. Average case complete prob-
lems. SIAM Journal on Computing, 15(1):285–286.

Malte Nuhn and Hermann Ney. 2013. Decipherment
complexity in 1: 1 substitution ciphers. In ACL (1),
pages 615–621.

Brian Roark and Kristy Hollingshead. 2008. Classi-
fying chart cells for quadratic complexity context-
free inference. In Proceedings of the 22nd Inter-
national Conference on Computational Linguistics
(Coling 2008), pages 745–752.

Dan Roth. 1996. On the hardness of approximate rea-
soning. Artificial Intelligence, 82:273–302.

Khalil Sima’an. 2002. Computational complexity of
probabilistic disambiguation. Grammars, 5(2):125–
151.

Daniel A Spielman and Shang-Hua Teng. 2004.
Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of
the ACM, 51(3):385–463.

https://doi.org/10.1016/0004-3702(94)00092-1
https://doi.org/10.1016/0004-3702(94)00092-1

