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Abstract

Neural models for morphological inflection
have recently attained very high results. How-
ever, their interpretation remains challeng-
ing. Towards this goal, we propose a simple
linguistically-motivated variant to the encoder-
decoder model with attention. In our model,
character-level cross-attention mechanism is
complemented with a self-attention module
over substrings of the input. We design a
novel approach for pattern extraction from at-
tention weights to interpret what the model
learn. We apply our methodology to analyze
the model’s decisions on three typologically-
different languages and find that a) our pattern
extraction method applied to cross-attention
weights uncovers variation in form of inflec-
tion morphemes, b) pattern extraction from
self-attention shows triggers for such variation,
c) both types of patterns are closely aligned
with grammar inflection classes and class as-
signment criteria, for all three languages. Ad-
ditionally, we find that the proposed encoder
attention component leads to consistent perfor-
mance improvements over a strong baseline.

1 Introduction

With the rise of deep learning, neural networks
have been nowadays used in the process of deci-
sion making in various domains, as different as
trading, medicine and government. Ethical consid-
erations of such decisions have led to an increas-
ing need for interpreting neural models which is a
vivid research topic in machine learning commu-
nity (Lipton, 2018; Gilpin et al., 2018). Although
interpretability research in NLP is partly driven
by ethics (Jacovi and Goldberg, 2020), there is
a growing body of work exploring what linguis-
tic properties emerge in neural models (Belinkov
and Glass, 2019; Manning et al., 2020). The latter
line of work aims to aid and scale up linguistic
research, which is also the topic of this paper. Lin-

guistics research focuses on uncovering patterns
and regularities in language. Retrieving and ana-
lyzing structures of languages learned by neural
agents can systematize our knowledge and, ide-
ally, help us to come up with new regularities. Re-
cent advances (Schrimpf et al., 2020) in testing
hypotheses about human language processing us-
ing the growing suite of modern interpretable NLP
are, indeed, inspiring, but still relatively limited
to few languages. To scale up linguistic research,
we require truly language-independent models de-
veloped for languages other than English (Bender,
2011). In return, understanding the model’s deci-
sions can lead to new ideas, how to improve the
performance of the model on hard cases, i.e. on a
particular linguistic phenomenon or language.

In our work, we concentrate on interpretability
methods suitable for examining what knowledge
of inflection morphology is captured by neural net-
works. Specifically, we consider a neural model
that learns a mapping from a lemma and an abstract
morpho-syntactic definition (MSD) to its inflected
form. MSD comprises a part-of-speech (POS) tag
as well as language-specific inflection tags. For
example, given the Italian lemma scolorire “dis-
color” and MSD V;IND;PRS;3;PL (verb, 3rd per-
son plural present indefinite form), the output is the
word form scoloriscono. Datasets for this task of
morphological reinflection are available for many
languages and provide an opportunity to study a
broad set of inflection phenomena.

Character-level encoder-decoder neural models
with attention achieved very high performance on
this task across many languages (see Cotterell et al.,
2017, 2018; Vylomova et al., 2020 for the results
of the recent shared tasks). Nevertheless, this class
of models is typically not interpreted, and if it is so,
the interpretation is limited to visualizing attention
heatmaps on selected examples (see e.g. Aharoni
and Goldberg 2017; Peters and Martins 2019).
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Figure 1: Example of a heatmap visualizing attention
weights learned by the model of Peters and Martins
(2019). The inflected form is generated from top to
bottom.

We argue that per-example heatmaps provide
very limited insight into what neural agent learns
about a specific inflection phenomenon and how
neural learning process can be related, in a system-
atic way, to the linguistic theory. Indeed, consider
the previous Italian example: how would humans
reason to convert the lemma to its inflected form?1

In this work, we assume that humans apply the
rules of grammar (implicit for native speakers, and
explicit for language learners) when they perform
this task. Specifically to our example, human rea-
soning could look as follows: the verb scolorire
ends with the suffix -ire which determines its in-
flection class2, according to which we construct
the inflected form by copying the stem scolor-
and adding an inflection suffix -iscono. What
does a typical character-level model of an encoder-
decoder class do? We visualize learned attention
weights for an example of such a model in Fig. 1.
By analyzing the most prominent alignments, we
conclude that the model’s character-level decisions
can be combined into a) copying a substring of
characters corresponding to the stem and b) gen-
erating characters for a substring corresponding to
the inflection suffix. However, the decision why
the model chose a particular inflection class is not
visible.

To reach interpretability of models for inflection,
we require methods that satisfy three conditions.

1This is something that speakers implicitly (maybe, we
do not know this for a fact) perform every time they use a
word. This is also often an explicit task that language learners
perform in the process of acquiring a new language.

2There are three inflection classes in Italian (Table 1).
Verbs ending on -ire select between two classes: one (in the
example) is more frequent in terms of types of verbs that
belong to it, whereas the other one (-ere class) is selected by
some very frequent verbs ending on -ire.

First, the inflection model’s decisions have to be
aligned more closely to human reasoning by sep-
arating two kinds of operations: determining in-
flection class versus generating a string (given the
assignment to a class). Second, a systematic anal-
ysis of model’s decisions requires the extraction
of inflection rules that are interpretable to humans.
Finally, both of these factors require working with
subword units rather than individual characters, the
latter being the prevailing practice for inflection
models.

In this paper, we propose a methodology
- subword modification for a typical inflec-
tion model and interpretation method - which
meet all three requirements. Our experiments
on three typologically-different inflection phe-
nomenon show that the linguistic rules elicited with
our framework are highly consistent with linguis-
tic knowledge (approximated by grammars). We
evaluate the effectiveness of the proposed subword
modification and find that, apart from its direct
impact on interpretability, it leads to consistent per-
formance improvements. To facilitate the use of
our methods for linguistic research, we share our
code3.

2 Methodology: Interpretability for
Inflection

How to make a character-level neural model for
inflection more interpretable? We take the stance
that, to make current models more interpretable,
we should analyze their decisions in terms of sub-
words, i.e. clusters of characters rather than indi-
vidual characters. Interpreting character decisions
is outside of human intuition because of the dou-
ble articulation principle (Martinet, 1967) which
postulates that single phones are uninterpretable
to humans, whereas the clusters of them form a
mental linguistic representation of meaning in the
speaker’s mind. In writing, this distinction maps to
the one between single characters and morphemes.
4

From this perspective, we formulate the follow-
ing desired properties for retrieving linguistic struc-
tures of inflection. For a given grammatical cate-
gory (e.g. MSD V;IND;PRS;3;PL from the previ-
ous example in Italian),

3https://github.com/tatyana-ruzsics/
interpretable-inflection

4In this work, we refer to morphemes in their most general
sense - apart from functional words and affixes we consider
morphological processes, e.g. infixation and reduplication

https://github.com/tatyana-ruzsics/interpretable-inflection
https://github.com/tatyana-ruzsics/interpretable-inflection
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ARE ERE/IRE IRE
1SG O O ISCO
2SG I I ISCI
3SG A E ISCE
1PL IAMO IAMO IAMO
2PL ATE ETE ITE
3PL ANO ONO ISCONO

Table 1: Italian verbal inflectional classes, present tense

P1: identify substrings in an inflected form cor-
respondig to morpheme(s) attributed to this
category // scoloriscono

P2: identify variation (dataset-wide) in the form
of the morpheme (morphological class), e.g.
all other substrings attributed to the same cat-
egory // -ano, -ono, -iscono

P3: indicate whether triggers for such variation
can be attributed to particular substrings of
the lemma // scolorire

P4: identify triggers (dataset-wide) for each inflec-
tion class identified in P2 // -are, -ere, -ire

We propose to extract human-interpretable rules
from an encoder-decoder model with attention.
Specifically, to make it more interpretable, we
modify such model by complementing the cross-
attention mechanism with a novel component (§3)
for self-attention over the subwords of the lemma.
The task of this component is to help identify the
morphological class. To extract the rules, we de-
sign a pattern extraction method (§4) that aggre-
gates learned attention weights a) over a span of
characters in a word and b) over a range of words
in the same inflection category. Pattern extraction
applied to character-level cross-attention weights
retrieves linguistic rules satisfying requirements
P1 and P2, whereas pattern extraction applied to
subword-level self-attention weights, targets the
requirements P3 and P4.

2.1 Case studies

To demonstrate the use of our approach for lin-
guistic research, we will analyze how well patterns
extracted with our proposed methodology align
with human knowledge of typologically different
phenomena. In morphological typology, cross-
linguistic strategies to define the form and meaning
of morphemes are described by typological param-
eters (Shopen, 1985; Dryer and Haspelmath, 2013;
Bickel and Nichols, 2007) that separate different

dimensions of the strategies. To select typologi-
cally different languages for our study, we focus
on fusion and flexivity dimensions. Fusion clas-
sifies how easy it is to find a boundary between a
morpheme and its phonological host and can take
the following values: isolating (separate phonolog-
ical word), concatenative (segmentable dependent
morphemes) and nonlinear (not segmentable mor-
phemes). Flexivity indicates whether variation in
morpheme form can be explained by phonological
processes (nonflexive) or not (flexive).

In our case studies, we consider verb conjugation
rules and select three languages covering different
degrees of fusion and flexivity: Finnish, Italian and
Tagalog. In Finnish and Italian, morphemes are sep-
arable (concatenative fusion), whereas inflection in
Tagalog is formed with affixes, including infixes,
and reduplication (nonlinear fusion). Morphemes
in Finnish can change their shape because of vowel
harmony (nonflexive case). Forms of morphemes
in Italian and Tagalog are selected by lexical con-
text (flexive case) but distinctly. Italian verbs are
conjugated with respect to three inflection classes
defined by the lemma’s ending (-are, -ire, and -ere,
see Table 1), whereas assignment to an inflection
class in Tagalog has no explicit rule.

3 Neural Model Cross-AttchSelf-Attsub

In this section, we introduce our novel component
for self-attention over subwords of the lemma
(Self-Attsub ). This module can be integrated into
any variant of encoder-decoder system for inflec-
tion with character-level cross-attention (Cross-
Attch ). In this work, we show such integration
to a sparse two-headed model of Peters and Mar-
tins (2019).5 To explain the two-headed attention
mechanism of the baseline model as well as our
novel attention component, we first introduce the
terminology of an abstract attention head module.

Attention Head Given an input sequence of vec-
tors H = h1 . . .hJ , hk ∈ RD1 and a query vector
q ∈ RD2, attention head module computes two
components: attention weights a ∈ RJ and an
attention head vector c ∈ RD1:

αj = qᵀWahj , c =
∑

ajhj (1)

where attention weights a are obtained by a map-
ping function from real values to probabilities, ap-
plied to alignment scores α. Following Peters and

5This model was among the winners of SIGMORPHON
2019 shared task (ranked first in terms of edit distance)
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Martins (2019), we use sparsemax activations6

as a mapping function. Hereafter we refer to the
construction of an attention head vector c as scor-
ing a sequence of vectors H with a query vector
q.

Baseline Cross-Attch (Peters and Martins, 2019)
Input lemma and MSD sequences are represented
by separate bi-LSTM encoder states: Hu encodes
characters in lemma, and Hv encodes tags in MSD.
The decoder is a unidirectional LSTM with input
feeding (Luong et al., 2015). At each prediction
time t, it computes a hidden state st which is fol-
lowed by the construction of two attention heads
ut and vt: one for lemma and one for MSD. They
are calculated by scoring the respective represen-
tations, Hu and Hv, with a query - decoder state
st. The two attention heads are used to compute
separate candidate attentional decoder states:

s̃tu = tanh(Wu[ut; st]) (2)

s̃tv = tanh(Wv[vt; st]) (3)

They are combined in a weighted sum to obtain
an attentional decoder state s̃t, where weights are
calculated by a sparse gate vector pt = [p0, p1] ∈
R2:

pt = sparsemax(Wg[ut;vt; st]) (4)

s̃t = p0s̃tu + p1s̃tv (5)

The attentional decoder state is fed into a sparse
prediction layer. For the input feeding, the input
to decoder comprises the predicted symbol embed-
ding and gated attention vector ct:

ct = p0ut + p1vt (6)

The two-headed gate mechanism provides extra
interpretability in the form of a three-way answer
about what is relevant at a time step: the lemma,
the inflections, or both.

Integrating Self-Attsub We depart from the ex-
isting character-level solution in that we assume
that the input to the model - a (lemma, MSD) pair -
is complemented with the segmentation of lemma
into subwords.7 We obtain an extra subword rep-
resentation of lemma Hsubw by averaging lemma

6sparsemax activations (Martins and Astudillo, 2016)
serve as a sparse (and therefore, more interpretable) alternative
to a commonly used attention function - softmax. The latter
yields dense attention weights: all elements in the input always
make at least a small contribution to the decision.

7Such representation can be obtained with any off-the-
shelf segmentation algorithms, e.g. BPE (Sennrich et al.,
2016a) or Morfessor (Smit et al., 2014).

representation vectors in Hu spanning characters
within each subword. Besides the attention heads
ut and vt computed at each generation step, we
construct an additional attention head vector m
which is computed once before the decoding stage.
It is constructed by scoring the sequence of lemma
subword representations in Hsubw with a query
vector qpos corresponding to the encoding of the
lemma’s POS tag. This encoding is obtained by
selecting a vector in MSD representation Hv cor-
responding to the position of the POS tag (e.g,
POS tag V (verb) is in the first position in MSD
V;IND;PRS;3;PL).

To integrate subword-level attention head m in
the baseline system, we modify the gate layer in
Eq. 4:

pt = sparsemax(Wg[m;ut;vt; st]); (7)

In this way, the gate mechanism (and decoding) is
expected to be informed with a signal for inflection
class selection when such signal can be attributed
to specific character spans (subwords) in the lemma.
The attention over subwords is static and shared
across target positions, aiming to separate the sig-
nal of the class assignment it conveys from local
character transformations, given this assignment.

4 Pattern extraction

To extract linguistic rules from the trained model
Cross-AttchSelf-Attsub , we represent its knowledge
of inflection as a database. To populate it, we an-
alyze predictions of the model on a dataset. The
latter can be the original task data or a dataset col-
lected to study a specific inflection phenomenon.
Then, for each example in the dataset, we populate
the knowledge database with the example itself and
two patterns, which are extracted from the learned
attention weights. The first one is a transforma-
tion pattern (§4.1) obtained by applying our pat-
tern extraction method to learned cross-attention
weights (Cross-Attch component). This method can
be applied to any inflection model embedded into
encoder-decoder paradigm with attention. The sec-
ond pattern is over the lemma subwords (§4.2)
which is obtained from attention weights of the
novel Self-Attsub component. Finally, we explain
how populated in this way knowledge database can
be queried to study inflection phenomena (§4.3).

4.1 Cross-Attch Transformation Patterns
This method maps each example (lemma, MSD)
→ inflected form to a transformation pattern of a
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Input:
X = s

1
c
2
o
3
l
4
o
5
r
6
i
7
r
8
e
9

F = V
1

IND
2

PRS
3

3
4
PL
5

Y = s
1
c
2
o
3
l
4
o
5
r
6
i
7
s
8
c
9
o
10
n
11
o
12

AX and AF as in Figure 1

Step 1: Transform att. weights into ‘salient’ alignments
A = [X1 · · ·X7

copy
, F4, F3, F2, F4, F4]

Step 2: Inverse A and group pred. steps by gen. type
X1 → {c : [1]} F4 → {f4 : [8, 11, 12]}
· · · F3 → {f3 : [9]}
X7 → {c : [7]} F2 → {f2 : [10]}

Step 3: Replace char. in X and Y with indexed gen. type
P tr(X) = c1 · · · c1

7
re

P tr(Y ) = c1 · · · c1
7

f41 f31 f21 f42 f42

Step 4: Collapse adjacent symbols
P tr(X)=c1 re

P tr(Y ) = c1 f41 f31 f21 f42

Output:
c1 re→ c1 f41 f31 f21 f42

(c1↔ scolori, f41↔ s, f31↔ c, f21↔ o, f42↔ no)

Table 2: Illustration of Cross-Attch Transformation Pat-
terns algorithm applied to the example in Fig. 1.

form P tr(lemma) → P tr(inflected form). For-
mally, the input to the algorithm is a lemma X =
x1, . . . xn, MSD F = f1 . . . fl, predicted target
form Y = y1 . . . ym and cross-attention weights
over lemma charactersAX = aX1 . . . aXm, aXi ∈ Rn

and over MSD tags AF = aF1 . . . a
F
m, aFi ∈ Rl.8

The output is a string of a form P tr(X)→ P tr(Y )
where the constructed pattern representation P tr

for the lemma and target are built through the fol-
lowing steps (shown in Table 2 for our example in
Fig. 1):

Step 1. Transform input attention weights Ax

andAf into “salient” alignmentsA: Each com-
ponent aj of salient alignments A = a1 . . . am is
a set of input positions (in lemma X and/or MSD
F ) that provide the most significant contributions
to predicting a character in Y at position j. We
denote positions by capitalized symbols, i.e. F1
for position 1 in F , to reflect the difference be-
tween the position’s index and value. Salient align-
ments are built by applying a filtering function
φ to attention weights at each predicted position:
φ : [aXj ; aFj ]→ aj . In the following, we illustrate
how our algorithm works for the simplest choice of

8We assume that the sum of weights in a combined vec-
tor [AX ;AF ] is 1. In Cross-AttchSelf-Attsub model this is
achieved by scaling cross-attention weights for the lemma and
MSD with corresponding gate values. Another way, typical
for neural inflection models of encoder-decoder class, is to run
cross-attention over a concatenation of the lemma’s characters
and MSD’s tags.

the filtering function, max-pooling, which simply
selects one input position with the highest attention
weight.9 In our running example, this strategy re-
sults in only one element for each component aj :
e.g. a7 = X7.

Step 2. Inverse mapping A and group pre-
diction steps by generation type: By inverting
salient alignments, we construct a mapping from
input positions to prediction steps grouped by a
symbol corresponding to generation type. The lat-
ter is identified for each alignment aj by the type
of input: we denote generation from the lemma’s
characters (aj = Xi) by symbol g, whereas that
from a tag (aj = Fk) is denoted by indexed symbol
fk. The special case of copying a character from
the lemma, i.e. aj = Xi and xi = yj , is denoted
by symbol c. Thus, a position in F can be mapped
to only one group of prediction steps (the type of
generation is unique and defined by the tag’s po-
sition), whereas that in X can be mapped to up to
two groups, g and c. Some input positions might be
absent in the constructed mapping, if not present in
salient alignments, e.g. X9 in Table 2.

Step 3. Replace characters in X and Y with in-
dexed generation type symbols: We index (in
the order of input positions) triples of salient align-
ments (input position, generation step, generation
type) identified in the previous step. Then, we con-
struct patterns of lemma and inflected form, by
replacing characters at aligned positions with an
indexed value of the generation type symbol, e.g.
(c,Xj , Yk) → index;xj → cindex; yk → cindex.
In X , this can result in an aggregated symbol, e.g.
replacing Xi with c1;2; g1 means that position Xi

is aligned to three target positions, two of which
are generated by copying xi. As illustrated in our
running example, we use the same index value
in two special cases: a) a whole target substring
was copied, and b) a whole target substring was
generated by the same tag. We keep the track of
symbolic mappings from characters to indexed gen-
eration symbols that replace them.

Step 4. Collapse adjacent symbols: Scan repre-
sentations P tr(X) and P tr(Y ), built at the previ-
ous step and iteratively collapse adjacent symbols
of the same value. At the same time, we update

9sparsemax activations provide another choice to filter-
ing function by keeping the input positions corresponding to
nonzero attention weights. In our example, this would result
in e.g. a7 = {X7, F2}. We refer to a more general form of
the algorithm covering such case in the Appendix.
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the symbolic mapping: if two adjacent symbols are
collapsed, we replace their string mappings with a
single mapping from the strings concatenation to
the generation symbol.

The idea behind the inverse mapping and index-
ing in steps 2 and 3 is to ensure a unique way of
indexing generation symbols across all data pairs.
The indices themselves are essential to keep a one-
to-one mapping from substrings to the generation
symbols they are replaced with. Both factors come
into play when we query the knowledge database
for an inflection phenomenon (§4.3).

4.2 Self-Attsub Lemma Patterns

This algorithm takes as an input a data example
(X,Y, F ), along with a segmented lemma represen-
tation S(X) = s1 . . . sp and learned self-attention
weights over lemma’s subwords: aS(X) ∈ Rp. The
output is a pattern for salient subwords in lemma
P l(X) which is built with a similar procedure as
described above where indexing steps 2 and 3 are
skipped.

First, we transform self-attention weights aS(X)

into salient alignments a by applying a filtering
function: φ : aS(X) → a, thereby identifying
a set of subword positions with the most signif-
icant contribution to the overall generation pro-
cess (any type of filtering function described in
the previous subsection can be applied). After-
ward, we replace all subwords in the input lemma
at nonsalient positions, Sj 6∈ a, with a dedi-
cated symbol, e.g. asterisk *. Finally, we itera-
tively merge adjacent asterisk symbols to obtain
a more general pattern. To illustrate with our run-
ning example, given a segmented representation
of lemma S(X) = s|col|or|i|re and salient align-
ments a = {S4, S5}, obtained by filtering input
positions with nonzero self-attention weights, the
resulting pattern for salient subwords in the lemma
is P l(X) = ∗ire.

4.3 Querying Patterns

As a result of applying the previous two meth-
ods, each data example (X,Y, F ), along with seg-
mented lemma representation S(X) and learned
attention weights (AX ,AF , aS(X)), can be mapped
into two items: Cross-Attch transformation pat-
tern P tr(X)→ P tr(Y ) and Self-Attsub pattern for
salient subwords in lemma P l(X). The data exam-
ples along with the extracted patterns are stored in a
knowledge database. To systematically study how

the neural model handles a specific linguistic phe-
nomenon of interest, the database can be queried,
for patterns and examples, with a phenomenon’s
formalization in a form of regular expressions ap-
plied to the lemma, inflected form or MSD. Se-
lected with a query examples are then grouped by
their patterns (either transformation or lemma ones)
resulting in each group representing an induced lin-
guistic rule for the phenomenon.

At this stage, to make the patterns more readable,
we perform an unmasking operation within each
group: if a particular symbol is used to substitute
one substring that is the same for all examples
within a group, we replace the symbol back with
this substring. For instance, if the pattern from our
example c1 re→ c1 f41 f31 f21 f42 represents one
such group, and symbol f42 is used to substitute
only one string no, which is the same across all
data points in the group, we can unmask the string,
to obtain a pattern c1 re→ c1 f41 f31 f21 no.

5 Experiments and Results

We perform three case studies, introduced in §2.1,
to demonstrate how our framework allows querying
patterns learned by an inflection neural model. The
goal of our experiments is to assess how well the
extracted patterns correspond to known inflection
rules. To see whether our modifications to the in-
flection model affect its performance, we check the
inflection accuracy on the analyzed languages and
compare it with the original character-level model.

We use data from SIGMORPHON shared task:
2018 edition for Italian and Finnish (10K/1K/1K
examples in train/development/test data), and 2020
edition for Tagalog (1,870/236/478). For each lan-
guage, we train Cross-AttchSelf-Attsub model with
batch size 4, beam size 1 and other hyperparame-
ters as reported in Peters and Martins (2019). To
produce segmented lemma input, we use the BPE
method (Gage, 1994; Sennrich et al., 2016b) with
1K merges on a token list (100K examples) ex-
tracted from WikipediaDumps articles.10.

Using model’s predictions on the concatenation
of train, development and test set, we query Cross-
Attch and Self-Attsub patterns As a filtering function,
we keep only nonzero weights for Self-Attsub pat-
terns, whereas we choose max-pooling for Cross-
Attch ones, as on average sparse activations assign

10We use archives of the name format enwiki-20190920-
pages-articles.xml.bz2 from https://ftp.acc.umu.
se/mirror/wikimedia.org/dumps/

https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/
https://ftp.acc.umu.se/mirror/wikimedia.org/dumps/
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nonzero weight to one input feature. To system-
atically examine whether the classes of patterns
extracted are correct and cover the data adequately,
we report two metrics, namely a) number of exam-
ples selected with a query and how many of them
are grouped by each pattern, and b) model accuracy
(correct predictions) with respect to the number of
examples per selection with a query and per group
pattern.

Cross-Attch : Transformation Patterns For
each language, we define specific queries:
3rd person plural present tense for Italian
(MSD=V;IND;PRS;3;PL), 3rd person plu-
ral present positive imperative for Finnish
(MSD=V;ACT;PRS;POS;IMP;3;PL) and im-
perfective aspect with agent semantic role for
Tagalog (MSD=V;IPFV;AGFOC). The choice of
MSDs is rather arbitrary: for illustrative purposes
we select grammatical categories that contain
enough examples to represent form variation of
the corresponding morpheme. Table 3 present the
extracted Cross-Attch patterns. For each query,
we show patterns that group at least 5% of the
examples selected with a query. The patterns are
sorted by their number of examples in a decreasing
order. For each presented pattern, we show an
example mapped to this pattern and symbol
mapping information. The latter lists, for each
symbol in the pattern, all substrings mapped to
this symbol along with their frequencies (within a
group), if the number of distinct substrings is less
than five elements. Otherwise, we show average
length (≈) of substrings mapped to this symbol, or
exact length (=), if it is the same for all of them.
These symbol mappings also include bijection
cases (↔) that were unmasked after grouping
examples (as described in §4.3)

We observe that in all three cases, the patterns
recover inflection morphemes listed in grammars
for studied grammatical categories as well as their
form variation. For Finnish, the model correctly
identifies morpheme -koot as well as its variant -
kööt because of vowel harmony. Additionally, the
patterns (3) and (4) display morphophonological
processes on morphemes boundaries: if a stem ends
with -d or -l, this ending is removed from the final
form. In Italian, the morphemes for all three inflec-
tion classes are present in the patterns: -ano (-are
class) -ono (-ere class) and -scono (-ire class). Be-
sides, the separation of reflexive ending si is visible
(pattern (2)) for the -are class. Tagalog patterns de-

Transformation Patterns No.of/Acc

Finnish
Q: MSD=V;ACT;PRS;POS;IMP;3;PL 46/0.91

(1) c1 a→ c1 k oo t 23/1.00
karsastaa : karsastakoot
|c1|≈ 7.1; f61↔ k; f51↔ oo; f71↔ t

(2) c1 ä→ c1 k öö t 7/1.00
mylviä : mylvikööt
|c1|≈ 7.4; f61↔ k; f51↔ öö; f71↔ t

(3) c1 d a→ c1 k oo t 5/1.00
promovoida : promovoikoot
|c1|≈ 8.4; f61↔ k; f51↔ oo; f71↔ t

(4) c1 l a→ c1 k oo t 3/1.00
aaltoilla : aaltoilkoot
|c1|≈ 7.7; f61↔ k; f51↔ oo; f71↔ t

Italian
Q: MSD=V;IND;PRS;3;PL 255/0.99

(1) c1 a r e→ c1 a n o 149/1.00
zampicare : zampicano
|c1|≈ 6.7; f31↔ a; f41↔ n; f51↔ o

(2) c1 a r s i→ si c1 a n o 40/1.00
impaperarsi : si impaperano
|c1|≈ 6.8; f11↔ si; f31↔ a; f41↔ n
f51↔ o

(3) c1 e r e→ c1 o n o 23/1.00
rirompere : rirompono
|c1|≈ 7.1; f21↔ o; f41↔ n; f51↔ o

(4) c1 r e→ c1 s c o n o 16/1.00
scolorire : scoloriscono
|c1|≈ 7.3; f41↔ s; f51↔ c; f21↔ o
f42↔ n; f52↔ o

Tagalog
Q: MSD=V;IPFV;AGFOC 377/0.86

(1) c1;2 c3;4 c5→ n f31 c1 c3 c2 c4 c5 142/0.90
paalam : nagpapaalam

|c1|=1; |c2|=1; |c1;2|=1; |c3;4|=1
c3: {a (82), u (34), i (23), e (3)}
c4: {a (82), u (34), i (23), e (3)}
f31:{ag (131), a (8), ang (1), an (2)}
f21↔ n; |c5|≈ 3.3

(2) c1 c2;3 c4→ f21 f31 c2 c1 c3 c4 78/0.86
hiram : humihiram

|f21|=1; |c1|=1;|c2;3|=1; |c4|≈ 3.1
f31: {um (71), am (3), k (1),

as (1), an (2)}
c2: {i (24), a (35), u (17), o (2)}
c3: {i (24), a (35), u (17), o (2)}

Table 3: Cross-Attch transformation patterns. Q is a
query regular expression. The number of examples (No
of ) and accuracy (Acc) are shown per selection with a
query and per group pattern.

tect two frequent inflection classes corresponding
to so-called um-verbs and nag-verbs. Analyzing
symbolic mappings, we conclude that the pattern
(1) encodes prefixation (the most frequent prefix in
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this group is nag) with subsequent copying of the
first syllable and copying of the full lemma string.
The pattern (2) expresses reduplication of the first
consonant (which interestingly gets aligned to a tag
rather than to the first character of the lemma), gen-
erating infix (the most frequent infix in this group
is um), copying the second character of the lemma
(vowel, as seen from the mapping statistics), and
then copying of full lemma string.

Self-Attsub : Lemma Patterns We analyze Self-
Attsub lemma patterns to determine whether our
model uses indeed subword segments when choos-
ing the specific variant of a morpheme. Concretely,
we use regular expressions on the target form to
select examples corresponding to a specific form
of morpheme, identified above with transformation
patterns. Then, we map selected examples to their
Self-Attsub patterns. Table 4 presents the queries
and extracted patterns.11 For each query, we list
the most frequent patterns (sorted by frequency in a
decreasing order) along with one segmented lemma
example mapped to the pattern.12 The segments
of lemma examples, identified as salient (and pre-
sented in the patterns) are highlighted in bold.

We conclude that the subword regions identified
by Self-Attsub patterns conform to a great extent
to triggers of morpheme form variation listed in
grammars. We note that although the regions for
finding such clues (when they are phonological or
lexical, and frequent) look plausible, their form is
influenced by the results of BPE segmentation and
may not be perfectly aligned with grammars. For
example, Italian patterns show that the model’s fo-
cus is on the endings of lemmas for all three classes.
In case of reflexive verbs, where reflexive ending
-si tends to be separated into a separate subword by
BPE, the model correctly places focus on a more
informative penultimate segment. The patterns ex-
tracted for Finnish, display the grammar rules too:
the focus on the lemma endings -aa and -ua for the
first group, and -ää/-ä for the second group, points
directly to the harmony of back and front vowels,
respectively. The model does not search for the
clues in the vowel patterns of the stem but chooses
a smart strategy to focus directly on the inflection
endings for lemmas: they are frequent and already

11For Tagalog, we note that we do not find any frequent
patterns for e.g. a query “gold target=nag*”, which is in line
with no explicit criteria for inflection class assignment in this
language.

12We refer to the Appendix, Tables 6-7 for the full list of
extracted patterns.

agree with the vowels found elsewhere in the stem
to the left.

Lemma Patterns No. of/Acc

Finnish
Q: gold target=*koot & MSD=msd fin 37/0.97

*aa (kar|sa|st|aa) 8/1.00
*ua (ku|or|ett|ua) 5/1.00

Q: gold target=*kööt & MSD=msd fin 9/1.00

*ää (jä|n|ist|ää) 3/1.00
*ä (v|et|ele|hti|ä) 3/1.00

Italian
Q: gold target=*scono & MSD=msd it 23/1.00

*re (in| z| o| ti|chi| re) 9/1.00
*ire (s| col| or| ire) 7/1.00
*ir* (re| in| ser| ir| si) 6/1.00

Q: gold target=*ano & MSD=msd it 189/1.00

*are (z| am| pic| are) 149/1.00
*arsi (im| pa| per| arsi) 26/1.00
*car* (ri| mb| ec| car| si) 3/1.00

Q: gold target=*ono & !(*scono)
& MSD=msd it 41/0.95

*ere (ri| otten| ere) 19/0.95
*dere (te| le| ve| dere) 10/1.0
*ger* (cos| par| ger| si) 3/1.00

Table 4: Self-Attsub Lemma Patterns. Q is a query regu-
lar expression, msd fin is V;ACT;PRS;POS;IMP;3;PL,
and msd it is V;IND;PRS;3;PL. The number of exam-
ples (No of ) and accuracy (Acc) are shown per selection
with a query and per group pattern.

Self-Attsub : Performance Impact We evaluate
the impact of the novel Self-Attsub component by
comparing the performance of Cross-AttchSelf-
Attsub with that of the baseline model, Cross-Attch

. For reference, we include the results of a) the
hard monotonic attention (HMA) system of Wu
and Cotterell (2019) which currently holds as the
state-of-the-art on the reinflection task by rerun-
ning their code; b) a variant of our system, Cross-
AttchSelf-Attch where the encoder attention module
is run over the characters of the lemma, instead of
subwords. The latter corresponds to a limiting case
of lemma segmentation where each character is a
segment. We report accuracy and edit distance on
the test set in Table 5. Additionally, we provide
information on the number of trained parameters
for each model. The number of parameters for
Cross-AttchSelf-Attsub model is the same as for its
character variant Cross-AttchSelf-Attch . The dif-
ference in the number of parameters across the
languages is due to the variation of their character
vocabulary sizes.
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Baseline Our model Comparison

Cross-Attch Cross-AttchSelf-Attsub Cross-AttchSelf-Attch HMA

Italian 95.40 (0.09) [1,742K] 96.70 (0.09) [1,783K] 97.40 (0.06) [1,783K] 96.80 (0.29) [8,647K]
Finnish 93.80 (0.13) [1,758K] 94.40 (0.09) [1,798K] 93.60 (0.12) [1,798K] 93.90 (0.13) [8,709K]
Tagalog 65.75 (1.21) [1,739K] 69.98 (0.92) [1,780K] 66.81 (1.00) [1,780K] 63.39 (1.53) [8,623K]

Table 5: Accuracy (and edit distance) on the test set. The number of model parameters is given in squared brackets.

We observe, that the Cross-AttchSelf-Attsub

model shows systematic improvements across all
three languages over the baseline and reference
models. Regarding the level of segmentation, the
Cross-AttchSelf-Attch system achieves higher re-
sults on Italian, where indeed, class variation can
be associated with a certain character in a certain
position. In terms of the number of trained pa-
rameters, the improvements due to the Self-Attsub

component are achieved by only adding a relatively
small number of extra parameters compared with
the baseline model, Cross-Attch . We also note that
the performance of our systems is higher or on par
with the state-of-the art model HMA, whereas the
latter has an on-average sevenfold increase in the
number of parameters in comparison with to that of
Cross-AttchSelf-Attsub and Cross-AttchSelf-Attch .

6 Discussion and Future Work

In the following, we discuss our proposed method-
ology in terms of two aspects, namely, interpretabil-
ity for inflection (in terms of typological parame-
ters) and ideas for performance improvement.

Interpretability for Inflection In terms of the
typological parameter of fusion, the results of our
experiments illustrate that our Cross-Attch pattern
approach can effectively extract rules for concate-
native morpheme forms as well as reduplication
processes. What is beyond, at the moment, are
nonlinear processes that are not always visible in
orthography, e.g. tonal changes and internal stem
changes. The latter, for example, is demonstrated
by root and pattern morphology in Arabic and He-
brew, for which standard orthographies do not indi-
cate most vowels.

Regarding flexivity, our Self-Attsub pattern
method can identify phonological (visible in or-
thography) as well as lexical triggers to the vari-
ation of inflection morpheme’s form. However,
the case of suppletive forms (English go→ went)
would not be identifiable in patterns. Although sup-
pletive cases are likely to be fairly rare in terms
of word types, they seem to be only maintained in

high-frequency words (Bybee, 1985). Therefore,
although affecting only a small number of words,
suppletion might be visible in patterns when stud-
ied together with word frequency (which is, at the
moment, not possible because of the current prac-
tices for building inflection generation datasets).

The parameter of exponence encodes the extent
to which single morphemes express multiple mor-
phosyntactic features. For the class of neural mod-
els currently used for inflection generation, it is not
possible to see a clear correspondence between the
meaning assigned by humans and the model: as we
see from Fig. 1 which illustrates polyexponence in
Italian inflection, the model assigns separate char-
acters of inflection morpheme -scono to different
tags, whereas for humans, it is hard to break down
this morpheme into smaller meaningful parts.13

Performance Future work can evaluate the im-
pact of Self-Attsub in combination with frequently
used induction biases14, as well as transformers
paradigm, which recently proved to be effective on
the task. (Vylomova et al., 2020).

7 Conclusion

We propose a novel approach for interpreting neu-
ral inflection models by extracting patterns from
attention weights. To enhance the interpretability
of this class of models, we design a linguistically
motivated attention component over subwords that
leads to a systematic performance improvement.
Our experiments with linguistic rules induction il-
lustrate the great potential of our methodology for
linguistic research scaled to diverse typology.
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Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
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A Cross-Attch Transformation Patterns
Algorithm

In this Section, we formalize Steps 2 and 3 of the al-
gorithm for pattern extraction from character-level
cross-attention weights presented in §5.

Algorithm 1: (Step 2) Inverse salient align-
ments mapping A and group prediction
steps by generation type

Inputs:
X ← [x1 . . . xn] ; // Lemma

F ← [f1 . . . fn] ; // MSD

Y ← [y1 . . . ym] ; // Target

A← [a1 . . . am] ; // Salient alignments

Init: X pos map = {}, F pos map = {} will
store salient mappings from input positions to
prediction steps, grouped by generation type.

for aj in A:
for P in aj : ; // salient alignments to yj

if P == Xi: ; // aligned to lemma

if xi == yj : ; // copy

add j to X pos map[Xi][c]
else:

add j to X pos map[Xi][g]
else (P == Fk): ; // aligned to tag

add j to F pos map[Fk]
Outputs: X pos map, F pos map

Algorithm 2: (Step 3.1) Replace characters
in Y with indexed generation type symbols
using salient alignments to F

Inputs: F pos map; Ỹ =copy(Y )
Init: f2prev target = {}; f2ind = {}
for Fk in F :

if Fk in F pos map:
for j in F pos map[Fk]: ; // Y indexes

if fk not in (f2prev target)):
f2ind[fk]=1; ; // If nothing

was aligned yet to fk, we

create an index

if ỹj is not replaced:
ỹj → f1

k

else:
ỹj+= f1

k

else:
if (f2prev target[fk] + 1) != j:
f2ind[fk]+=1 ; // If

something was aligned to fk,

check the last target step

saved. Only increment it if

it’s not the same

index=f2ind[fk]
if ỹj is not replaced:

ỹj → f index
k

else:
ỹj+= f index

k

Outputs: P tr(Y ) = Ỹ

B Self-Attsub Lemma Patterns

Algorithm 3: (Step 3.2) Replace characters
in X and Y with indexed generation type
symbols using salient alignments to X

Inputs: X pos map, P tr(Y )

Init: cindex = 1; gindex = 1; X̃=copy(X);
Ỹ = P dec(Y )

for Xi in X:
if Xi in X pos map:

c(Xi) = X op map[Xi][c]
g(Xi) = X op map[Xi][g]
if c(Xi) == [j] and xi == yj and
g(Xi) == ∅: ; // Xi is 1-to-1 copy

if Xi−1 is not adjacent 1-to-1 copy:
cindex+ = 1

x̃i = Ccindex ; ỹj = Ccindex

else:
if c(Xi)! = ∅ and g(Xi)! = ∅:

mask =‘’; full index = []
for k in c(Xi):

cindex+=1
add cindex to full index
if ỹk is not replaced:

ỹk → Cc index

else:
ỹk+= Cc index

mask+=‘Cfull index’
full index = []
for k in g(Xi):

gindex+=1
add gindex to full index
if ỹk is not replaced:

ỹk → Gg index

else:
ỹk+=Gg index

mask+=‘Gfull index’
x̃j →mask

Outputs: P tr(X) = X̃ , P tr(Y ) = Ỹ
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Query No. of/Acc Patterns

gold target=*scono & MSD=msd it 23/1.00 *re: 9/1.0 (in| z| o| ti| chi| re)
*ire: 7/1.0 (s| col| or| ire)
*ir: 6/1.0 (re| in| ser| ir| si)
*cir*: 1/1.0 (in| fer| o| cir |si)

gold target=*ano & MSD=msd it 189/1.00 *are: 149/1.0 (z| am| pic| are)
*arsi: 26//1.0 (im| pa| per| arsi)
*car*:3/1.0 (ri|mb|ec|car|si)
*izzarsi:2/1.0 (dest|abil|izz|arsi)
*iarsi:2/1.0 (di|lan|i|arsi)
*par*:2/1.0 (dis|col|par|si)
*ciarsi:1/1.0 (au|to|den|un|ci|arsi)
*mar*:1/1.0 (in|for|mar|si)
*rarsi:1/1.0 (gi|ost|r|arsi)
*itarsi:1/1.0 (ri|abil|it|arsi)
*quar*:1/1.0 (sci|ac|quar|si)

gold target=*ono & !(*scono) & MSD=msd it 41/0.95 *ere: 18/0.95 (ri| otten| ere)
*dere: 10/1.0 (te| le| ve| dere)
*ger*: 3/1.0 (cos| par| ger| si)
*re:3/1.0 (servi|re)
*e:1/0.0 (ri|ro|m|per|e)
*ir*:1/1.0 (1908:s|ent|ir|si)
*si:1/1.0 (es|p|or|si)
*ire:1/1.0 (ri|di|ven|ire)
*er*:1/1.0 (r|aggi|ung|er|si)
*mer*:1/1.0 (ass|u|mer|si)

Table 6: Italian Self-Attsub Patterns. MSD query msd it is V;IND;PRS;3;PL. Number of examples (No of ) and ac-
curacy (Acc) are shown per selection with query and per group pattern. For each query, we list all extracted lemma
patterns (sorted by frequency in a decreasing order) along with one segmented lemma example (in parentheses)
mapped to the pattern.

Query No. of/Acc Patterns

gold target=*koot & MSD=msd fin 37/0.97 *aa:8/1.0 (kar|sa |st |aa)
*ua:5/1.0 (ku |or |ett |ua)
*id*:5/1.0 (pro |mo |vo |id |a)
*a:4/1.0 (pu |r |je |hti |a)
*ta:4/1.0 (sk |r |uud |a |ta)
*taa:4/1.0 (jo |kel |taa)
*illa:2/1.0 (aal |to |illa)
*ella:2/0.5 (n |ar |a |hd |ella)
*ttaa:1/1.0 (ha |h |mo |ttaa)
*sia:1/1.0 (har |sia),
*ista:1/1.0 (li |i |pa |ista)

gold target=*kööt & MSD=msd fin 9/1.00 *ä:3/1.0 (v |et |ele |hti |ä)
*ää:3/1.0 (jä |n |ist |ää)
*tä:2/1.0 (kä |pä |tä)
*tää:1/1.0 (hy |mä |h |ää)

Table 7: Finnish Self-Attsub Patterns. MSD query msd fin is V;ACT;PRS;POS;IMP;3;PL. Number of examples
(No of ) and accuracy (Acc) are shown per selection with query and per group pattern. For each query, we list all
extracted lemma patterns (sorted by frequency in a decreasing order) along with one segmented lemma example
(in parentheses) mapped to the pattern.


