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Abstract

Pre-trained language models like BERT
achieve superior performances in various NLP
tasks without explicit consideration of syn-
tactic information. Meanwhile, syntactic in-
formation has been proved to be crucial for
the success of NLP applications. However,
how to incorporate the syntax trees effectively
and efficiently into pre-trained Transformers
is still unsettled. In this paper, we address
this problem by proposing a novel framework
named Syntax-BERT. This framework works
in a plug-and-play mode and is applicable
to an arbitrary pre-trained checkpoint based
on Transformer architecture. Experiments
on various datasets of natural language un-
derstanding verify the effectiveness of syntax
trees and achieve consistent improvement over
multiple pre-trained models, including BERT,
RoBERTa, and T5.

1 Introduction

Pre-trained language models like BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2020) and
T5 (Raffel et al., 2019) become popular in recent
years and achieve outstanding performances in var-
ious NLP benchmarks. These models often choose
a Transformer architecture largely owing to its at-
tractive scalability. Studies (Hewitt and Manning,
2019; Jawahar et al., 2019) have shown that a pre-
trained transformer is able to capture certain syn-
tactic information implicitly by learning from suf-
ficient examples. However, there is still a big gap
between the syntactic structures implicitly learned
and the golden syntax trees created by human ex-
perts.

On the other hand, syntax tree is a useful
prior for NLP-oriented neural networks (Kiper-
wasser and Ballesteros, 2018). For example,
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Tree-LSTM (Tai et al., 2015) extends the sequen-
tial architecture of LSTM to a tree-structured
network. Linguistically-informed self-attention
(LISA) (Strubell et al., 2018) proposes a multi-
task learning framework for semantic role labeling,
which incorporates syntactic knowledge into Trans-
former by training one attention head to be attended
to its parent in a syntax tree. In addition, Nguyen
et al. (2020) integrate tree-structured attention in
Transformer with hierarchical accumulation guided
by the syntax tree.

Although there are numerous works on syntax-
enhanced LSTM and Transformer models, none
of the previous works have addressed the useful-
ness of syntax-trees in the pre-training context. It is
straight-forward to ask: it is still helpful to leverage
syntax trees explicitly in the pre-training context?
If the answer is yes, can we ingest syntax trees
into a pre-trained checkpoint efficiently without
training from scratch for a specific downstream ap-
plication? This is an appealing feature in practice
because pre-training from scratch is a huge waste
of energy and time.

In this paper, we propose Syntax-BERT to tackle
the raised questions. Unlike a standard BERT,
which has a complete self-attention typology, we
decompose the self-attention network into multi-
ple sub-networks according to the tree structure.
Each sub-network encapsulates one relationship
from the syntax trees, including ancestor, offspring,
and sibling relationships with different hops. All
sub-networks share the same parameters with the
pre-trained network, so they can be learned collab-
oratively and inherited directly from an existing
checkpoint. To select the task-oriented relation-
ships automatically, we further adopt a topical at-
tention layer to calculate the relative importance
of syntactic representations generated by different
sub-networks. Finally, the customized represen-
tation is calculated by weighted summation of all
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sub-networks.

We conduct extensive experiments to verify the
effectiveness of Syntax-BERT framework on vari-
ous NLP tasks, including sentiment classification,
natural language inference, and other tasks in the
GLUE benchmark. Experimental results show that
Syntax-BERT outperforms vanilla BERT models
and LISA-enhanced models consistently with mul-
tiple model backbones, including BERT, RoBERTa,
and T5. Specifically, it boosts the overall score
of GLUE benchmark from 86.3 to 86.8 for T5-
Large (Raffel et al., 2019) checkpoint, which is
already trained on a huge amount of data. This
improvement is convincing since only a few extra
parameters are introduced to the model.

Our major contributions are as follows:

e To the best of our knowledge, Syntax-BERT
is one of the first attempts to demonstrate the
usefulness of syntax trees in pre-trained lan-
guage models. It works efficiently in a plug-
and-play fashion for an existing checkpoint
without the need for pre-training from scratch.

e To integrate syntax trees into pre-trained
Transformers, we propose a novel method that
decomposes self-attention networks into dif-
ferent aspects and adopts topical attention for
customized aggregation. As shown in the ab-
lation study, this design benefits from syntac-
tic structures effectively while retaining pre-
trained knowledge to the largest extent.

e Syntax-BERT shows consistent improvement
over multiple pre-trained backbone models
with comparable model capacities. It can
be combined with LISA to achieve further
enhancement, indicating that these two algo-
rithms are complementary to each other.

2 Related Work

2.1 Pre-trained language models

Recently, pre-trained language models have re-
ceived significant attention from the natural lan-
guage processing community. Many excellent pre-
trained language models are proposed, such as
BERT, RoBERTa and T5. Transformer (Vaswani
etal., 2017) is a typical architecture for pre-training
language models, which is based on the self-
attention mechanism and is much more efficient
than RNNs. BERT (Devlin et al., 2019) is a repre-
sentative work that trains a large language model

on the free text and then fine-tunes it on specific
downstream tasks separately. BERT is pre-trained
on two auxiliary pre-training tasks, Masked Lan-
guage Model (MLM) and Next Sentence Predic-
tion (NSP). RoBERTa (Liu et al., 2020) is an im-
proved variant of BERT which utilizes dynamic
masks. In RoBERTa, the NSP task is cancelled,
but the full-sentence mechanism is considered. At
the same time, the size of ROBERTa’s training data
(~160GB) is ten times the size of BERT’s train-
ing data. Moreover, Raffel et al. (2019) explore
the effectiveness of multiple transfer learning tech-
niques and apply these insights at scale to create a
new model T5 (Text to Text Transfer Transformer).
With TS5, they reform all NLP tasks into a unified
text-to-text format where the input and output are
always text strings. This is in contrast to BERT-
style models that only output either a class label or
an input span.

2.2 Syntax-aware models

Syntax is a crucial prior for NLP-oriented neural
network models. Along this direction, a range of
interesting approaches have been proposed, like
Tree-LSTM (Tai et al., 2015), PECNN (Yang
et al., 2016), SDP-LSTM (Xu et al., 2015), Su-
pervised Treebank Conversion (Jiang et al., 2018),
PRPN (Shen et al., 2018), and ON-LSTM (Shen
etal., 2019).

Recent works also investigate syntactic knowl-
edge in the context of Transformer, which are more
related to this paper. For instance, Syntax-Infused
Transformer (Sundararaman et al., 2019) feeds the
extra syntactic features into the Transformer mod-
els explicitly, but it only considers simple syntac-
tic features and does not provide a generic so-
lution to incorporate tree-structured knowledge.
Strubell et al. (2018) present a neural network
model named LISA (Linguistically-Informed Self-
Attention) that learns multi-head self-attention in
a multi-task learning framework consisting of de-
pendency parsing, part-of-speech tagging, predi-
cate detection, and semantic role labeling. They
also show that golden syntax trees can dramati-
cally improve the performance of semantic role
labeling. Moreover, Nguyen et al. (2020) propose
a hierarchical accumulation approach to encode
parse tree structures into self-attention mechanism.
However, these approaches are designed for train-
ing a Transformer from scratch without benefiting
from pre-trained checkpoints. Instead, our frame-
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Figure 1: The Overall Architecture of Syntax-BERT. Note that the leftmost part shows an example of syntax tree and its

corresponding parent syntax mask (d = 1).

work works in a plug-and-play mode and retains
the pre-trained knowledge as much as possible for
downstream applications. Concurrent to our work,
Sachan et al. (2020) investigate popular strategies
for incorporating dependency structures into pre-
trained language models, revealing essential design
decisions are necessary for strong performances. In
addition, Hewitt and Manning (2019) design two
sets of probes to determine whether the embedded
space can be converted into syntactic information
space through a linear transformation. It gives the
evaluation metrics to examine how much syntactic
information is included in a model.

3 Syntax-BERT

Syntax-BERT is a variant of pre-trained Trans-
former models, which changes the flow of infor-
mation in a standard BERT network via a syntax-
aware self-attention mechanism. First, the overall
architecture of Syntax-BERT is presented in Sec-
tion 3.1. Then, we introduce the construction of
syntax trees and corresponding masks in Section
3.2. The details of syntactic attention layers will be
described in Section 3.3.

3.1 Architecture

As mentioned earlier, one limitation of vanilla
Transformer is that it simply uses a fully-connected
topology of tokens in the pre-trained self-attention
layer. Although the self-attention mechanism au-
tomatically calculates a relevance score for each
token pair, it still suffers from optimization and
over-fitting problems, especially when the training
data is limited. Some previous works have tried
to induce syntactic structure explicitly into self-

attention. For instance, in Linguistically-Informed
Self-Attention (LISA) (Strubell et al., 2018), syn-
tax tree is incorporated by training one attention
head to be attended to the parent of each token.
However, other structural features such as siblings
and children are discarded in the model. Moreover,
it can not distinguish the usefulness of multiple syn-
tactic features while largely retain the knowledge
from a pre-trained checkpoint.

Syntax-BERT is designed to incorporate gram-
matical and syntactic knowledge as prior in the
self-attention layer and support fine-grained adap-
tation for different downstream tasks. Specifically,
it generates a bunch of sub-networks based on
sparse masks reflecting different relationships and
distances of tokens in a syntax tree. Intuitively,
the tokens inside a sub-network often semantically
related to each other, resulting in a topical repre-
sentation. Therefore, we can adopt a topical at-
tention layer to aggregate task-oriented representa-
tions from different sub-networks.

The overall architecture of Syntax-BERT is il-
lustrated in Figure 1. As shown in the left part
of this figure, we generate syntax masks for the
input sentence in two steps. First, the input sen-
tence is converted into the corresponding tree struc-
ture by a syntax parser. Second, we extract a
bunch of syntax-related masks according to differ-
ent features incorporated in the syntax tree. Next,
the sentence is embedded similar to a standard
BERT (token + positional + field embedding) and
served as input to the self-attention layer. Each self-
attention layer in the Syntax-BERT is composed
of two kinds of attention modules, namely masked
self-attention and topical attention. In a masked
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self-attention module, we apply syntactic masks
to the fully-connected topology, generating topi-
cal sub-networks that share parameters with each
other. Furthermore, the representations from differ-
ent sub-networks are aggregated through a topical
attention module so that the task-related knowledge
can be distilled to the final representation vector.

3.2 Masks induced by syntax tree

Generically, a syntax tree is an ordered, rooted tree
that represents the syntactic structure of a sentence
according to some context-free grammar. It can be
defined abstractly as T' = {R, N/, £}, where R is
the root of syntax tree, A/ and £ stands for node
set and edge set respectively. The most commonly-
used syntax trees are constituency trees (Chen and
Manning, 2014) and dependency trees (Zhu et al.,
2013), and we use both of them in our experiments
unless notified.

To utilize the knowledge in a syntax tree ef-
fectively, we introduce syntax-based sub-network
typologies in the self-attention layer to guide
the model. Each sub-network shares the same
model parameters with the global pre-trained self-
attention layer, while each sub-network reflects a
specific aspect of the syntax tree. This procedure
can be easily implemented by multiple masks ap-
plied to the complete graph topology.

Without loss of generality, we design three cat-
egories of masks reflecting different aspects of a
tree structure, namely parent mask, child mask,
and sibling mask. For a pairwise inference task
that contains a pair of sentences as input, we also
apply another mask, i.e., pairwise mask, to cap-
ture the inter-sentence attention. Moreover, the
distances between nodes (tokens) in a tree incor-
porate semantic relatedness. Starting from a node
A, along the edges of a syntax tree, the minimum
number of edges required to reach another node
B can be regarded as the distance between A and
B, written as dist(A, B). We create fine-grained
masks according to the distance between two nodes
to enable customized aggregation of task-oriented
knowledge.

Mathematically, a mask can be denoted by M €
{0,1}™*", where M; ; € {0, 1} denotes if there is
a connection from token ¢ to token j, and n is the
number of tokens in the current sentence.

In the parent mask with certain distance d, we
have M?. . = 1 if and only if the node i is the

4,7,d
parent or ancestor of node j, at the same time

dist(i,7)
as zero.

In the child mask with certain distance d, we
have M7 ja=1 if and only if the node ¢ is the child
or offspring of node j, at the same time dist (i, j) =
d. In other words, node j is the parent or ancestor
of node .

In the sibling mask with certain distance d, we
have M; ja =1 if and only if we can find their
lowest common ancestor and dist(i, j) = d. Note
that if two nodes are in the same sentence, we can
always find the lowest common ancestor, but the
value should be zero if the corresponding nodes
come from different sentences (in pairwise infer-
ence tasks).

The pairwise mask captures the interaction of
multiple sentences in a pairwise inference task. We
have M}’; " — 1 if and only if both node i and j
are from dlfferent sentences. we do not consider
the distances in-between as the nodes are from
different trees.

= d. Otherwise, the value will be set

3.3 Syntactic attention layers

A block of Syntax-BERT contains two kinds of at-
tention modules: masked self-attention and topical
attention. The operations in a masked self-attention
are similar to a standard self-attention except that
we have sparse network connections as defined
in the masks. The masked self-attention can be
formulated as an element-wise multiplication of
dot-product attention and its corresponding mask:

QK" oM
Vid
Aij = MaskAtt(HWS, HWX , HWY | M;)

HJ = (Al,j D A2’j D...5D AkJ)Wo,j € 1, ey,
ey
where (), K, V represent for the matrix of query,
key and value respectively, which can be calculated
by the input representation H. M represents for
the matrix of syntax mask and ® denotes an op-
erator for element-wise production; o stands for
softmax operator; A; ; denotes the attention-based
representation obtained by the i** head and j**
sub-network; WZQ, WK and W represent for the
parameters for linear projections; M; denotes the
mask for the j*"sub-network; and H j denotes the
corresponding output representation.
The output representations from different sub-
networks embody knowledge from different syntac-
tic and semantic aspects. Therefore, we leverage

MaskAtt(Q, K, V, M) = o( W
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Task #Train #Dev #Test #Class
SST-1 8,544 1,101 2,210 5
SST-2 6,920 873 1,822 2
SNLI 549,367 9,842 9,824 3
MNLI 392,703 9,816/9,833  9,797/9,848 3
CoLA 8,551 1,042 1,064 2
MRPC 3,669 409 1,726 2
STS-B 5,750 1,501 1,380 *
QQP 363,871 40,432 390,965 2
QNLI 104,744 5,464 5,464 2
RTE 2,491 278 3,001 2
WNLI 636 72 147 2

Table 1: Dataset Statistics: the character ¢/ seperate MNLI-m
and MNLI-mm, “*’ represents for the regression task.

another attention layer, named fopical attention to
perform a fine-grained aggregation of these rep-
resentations. The most distinct part of a topical
attention is that q.,sk 1S a trainable query vector
for task-specific embedding. Thus, the fopical at-
tention layer is able to emphasize task-oriented
knowledge captured by numerous sub-networks.

KT
Gtask )V
Vd (2)
HO = TopicAtt(qase, HWE, HWV)

TopiCAtt(qwsb K, V) = U(

where d denotes the size of hidden dimension,
Qrask € RY*? is a task-related learnable query em-
bedding vector; o stands for the softmax operator;
H = (Hy,Hs,....H,)" € R™*%is the output
representation collected by multiple sub-networks;
WX and WV are parameters in the feed-forward
operations; and H© stands for the final text repre-
sentation.

4 Experiments

First, we run experiments on the Stanford Senti-
ment Treebank (SST) dataset (Socher et al., 2013)
in Section 4.1, which is designed to study the syn-
tactic and semantic compositionality of sentiment
classification. Second, in Section 4.2, we evalu-
ate the performance of Syntax-BERT on two natu-
ral language inference datasets: SNLI and MNLI.
Then, more empirical results on the GLUE bench-
mark and a comprehensive ablation study will be
presented in Section 4.3 and 4.4 respectively. At
last, we present the analysis of the structural probes
in Section 4.5.

The statistics of all datasets adopted in this pa-
per are summarized in Table 1. For each dataset,
we optimize the hyper-parameters of Syntax-BERT
through grid search on the validation data. De-
tailed settings can be found in the appendix. In
our experiments, we set the maximum value of

dist(A, B) in a syntax tree as 15 and use both de-
pendency and constituency trees unless specified.
Thus, we have totally 90 (15 x 3 x 2) sub-networks
for single-sentence tasks and 92 ((15 x 3+ 1) x 2)
sub-networks for pairwise inference tasks. We
adopt Transformer (Vaswani et al., 2017), BERT-
Base, BERT-Large (Devlin et al., 2019), RoBERTa-
Base, RoBERTa-Large (Liu et al., 2020) and T5-
Large (Raffel et al., 2019) as backbone models and
perform syntax-aware fine-tuning on them. We
also compare with LISA (Linguistically-Informed
Self-Attention) (Strubell et al., 2018), a state-of-
the-art method that incorporates linguistic knowl-
edge into self-attention operations. Specifically,
LISA (Strubell et al., 2018) adopt an additional
attention head to learn the syntactic dependency
in the tree structure, and the parameters of this
additional head are initialized randomly.

4.1 Stanford Sentiment Treebank

The SST dataset contains more than 10,000 sen-
tences collected from movie reviews from the rot-
tentomatoes.com website. The corresponding con-
stituency trees for review sentences are contained
in the dataset, where each intermediate node in a
tree represents a phrase. All phrases are labeled
to one of five fine-grained categories of sentiment
polarity. SST-2 is a binary classification task. We
follow a common setting that utilizes all phrases
with lengths larger than 3 as training samples, and
only full sentences will be used in the validation
and testing phase. The hyper parameters for each
model are selected by grid search and listed in the
appendix. We compare Syntax-BERT with vanilla
baselines and LISA-enhanced models. The results
are listed in Table 2. As shown in the table, our
model achieves 4.8 and 4.9 absolute points im-
provements respectively against the vanilla Trans-
former with comparable parameter size. By com-
bining our framework with LISA, the results can be
further boosted obviously. This indicates that our
mechanism is somewhat complementary to LISA.
LISA captures the syntactic information through
an additional attention head, whereas our frame-
work incorporates syntactic dependencies into orig-
inal pre-trained attention heads and increases the
sparsity of the network. We can see that Syntax-
Transformer + LISA performs the best among all
settings, and similar trends are demonstrated on the
BERT-Base and BERT-Large checkpoints.
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Model | SST-1 | SST-2
Transformer 48.4 86.2
LISA-Transformer 52.2 89.1
Syntax-Transformer (Ours) 52.7 90.1
Syntax-Transformer + LISA (Ours) 53.2 91.1
BERT-Base 53.7 93.5
LISA-BERT-Base 54.2 93.7
Syntax-BERT-Base (Ours) 54.4 94.0
Syntax-BERT-Base + LISA (Ours) 54.5 94.4
BERT-Large 54.8 94.9
LISA-BERT-Large 55.0 95.9
Syntax-BERT-Large (Ours) 55.3 96.1
Syntax-BERT-Large + LISA (Ours) | 55.5 96.4

Table 2: Comparison with SOTA models on SST dataset.

Model | SNLI | MNLI
Transformer 84.9 71.4
LISA-Transformer 86.1 73.7
Syntax-Transformer (Ours) 86.8 74.1
Syntax-Transformer + LISA (Ours) | 87.0 74.5
BERT-Base 87.0 84.3
LISA-BERT-base 87.4 84.7
Syntax-BERT-Base (Ours) 87.7 84.9
Syntax-BERT-Base + LISA (Ours) 87.8 84.9
BERT-Large 88.4 86.8
LISA-BERT-Large 88.8 86.8
Syntax-BERT-Large (Ours) 88.9 86.7
Syntax-BERT-Large + LISA (Ours) | 89.0 87.0

Table 3: Comparison with SOTA models on NLI datasets.

4.2 Natural Language Inference

The Natural Language Inference (NLI) task re-
quires a model to identify the semantic relationship
(entailment, contradiction, or neutral) between a
premise sentence and the corresponding hypothesis
sentence. In our experiments, we use two datasets
for evaluation, namely SNLI (Bowman et al., 2015)
and MNLI (Williams et al., 2018). We utilize the
Stanford parser (Klein and Manning, 2003) to gen-
erate constituency and dependency trees for the in-
put sentences. The MNLI dataset has two separate
sets for evaluation (matched set and mismatched
set), and we report the average evaluation score of
these two sets.

The test accuracies on SNLI and MNLI datasets
are shown in Table 3. The syntactic prior informa-
tion helps the Transformer to perform much better
on the NLI tasks. The accuracies on the SNLI
and MNLI datasets have been improved by 1.9 and
2.7, respectively, by applying our framework to
a vanilla Transformer. The LISA-enhanced trans-
former can also outperform vanilla transformer on
NLI tasks, but the accuracy improvement is not
as large as Syntax-Transformer. When the back-
bone model is BERT-Base or BERT-Large, con-

sistent conclusions can be drawn from the experi-
mental results. It is worth noting that the syntax-
enhanced models for BERT-large do not show
much gain based on the vanilla counterparts. This
may because BERT-Large already captures suffi-
cient knowledge for NLI tasks in the pre-training
phase.

4.3 GLUE Benchmark

The GLUE benchmark (Wang et al., 2019) offers a
collection of tools for evaluating the performance
of models. It contains single-sentence classifica-
tion tasks (CoLA and SST-2), similarity and para-
phrase tasks (MRPC, QQP, and STS-B), as well as
pairwise inference tasks (MNLI, RTE, and QNLI).
We use the default train/dev/test split. The hyper-
parameters are chosen based on the validation set
(refer to the appendix for details). After the model
is trained, we make predictions on the test data and
send the results to GLUE online evaluation service'
to obtain final evaluation scores.

The evaluation scores on all datasets in GLUE
benchmark are illustrated in Table 4. The perfor-
mances of BERT-Base, BERT-Large, RoBERTa-
Base, RoBERTa-Large, and T5-Large are repro-
duced using the official checkpoint provided by
respective authors. We only use self-contained con-
stituency trees for the SST-2 dataset while other
datasets are processed by Stanford parser’ to ex-
tract both dependency trees and constituency trees.
For a fair comparison, all results of baseline models
are reproduced by our own, which are close to the
reported results.

As shown in the table, syntax-enhanced models
always outperform corresponding baseline mod-
els. Most notably, Syntax-RoBERTa-Base achieves
an average GLUE score of 82.1, lifting 1.3 scores
from a standard RoOBERTa-Base with the same set-
ting. This is impressive as only a few extra pa-
rameters are introduced to the baseline model. Par-
ticularly, the improvements on CoL A and SST-2
datasets are fairly large, showing the generalization
capability of Syntax-BERT and Syntax-RoBERTa
on smaller datasets. Even on T5-Large, which is
trained on more data and holds more advanced per-
formances, our approach still outperforms the base
model marginally (statistically significant under
4.3 p-value using paired t-test). We can see that
more training data will improve the generalization

"https://gluebenchmark.com
*https://nlp.stanford.edu/software/lex-parser.shtml
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Model Avg CoLA SST-2 MRPC  STS-B QQP MNLI-m/mm OQNLI RTE WNLI
Transformer 66.1 31.3 83.9 81.7/68.6  73.6/70.2  65.6/84.4 72.3/71.4 80.3 58.0 65.1
Syntax-Transformer (Ours) 68.8 36.6 86.4 81.8/69.0 74.0/72.3 65.5/84.9 72.5/71.2 81.0 56.7 65.1
BERT-Base 77.4 51.7 93.5 87.2/82.1 86.7/85.4 71.1/89.0 84.3/83.7 90.4 67.2 65.1
Syntax-BERT-Base (Ours) 785 541 940  89.2/86.0 88.1/86.7 72.0/89.6 84.9/84.6 91.1 68.9 65.1
BERT-Large 80.5 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3 86.8/85.9 92.7 70.1 65.1
Syntax-BERT-Large (Ours) 81.8 619 96.1  92.0/88.9 89.6/88.5 72.4/89.5 86.7/86.6 92.8 74.7 65.1
RoBERTa-Base 80.8 57.1 954  90.8/89.3 88.0/87.4 72.5/89.6 86.3/86.2 92.2 73.8 65.1
Syntax-RoBERTa-Base (Ours) 82.1 63.3 96.1 91.4/88.5 89.9/88.3 73.5/88.5 87.8/85.7 94.3 81.2 65.1
RoBERTa-Large 83.9 63.8 96.3 91.0/89.4  72.9/90.2  72.7/90.1 89.5/89.7 94.2 84.2 65.1
Syntax-RoBERTa-Large (Ours) 84.7 64.3 96.9  92.5/90.1 91.6/91.4 73.1/89.8 90.2/90.0 9.5 85.0 65.1
T5-Large 86.3 61.1 96.1 92.2/88.7 90.0/89.2  74.1/89.9 89.7/89.6 94.8 87.0 65.1
Syntax-T5-Large (Ours) 86.8 62.9 97.2  92.7/90.6 91.3/90.7 74.3/90.1 91.2/90.5 95.2 89.6 65.1
Table 4: Comparison with state-of-the-art models without pre-training on GLUE benchmark.
Model | SST-2 | CoLA | STS-B Model | UUAS | Spr.
BERT-Large 94.9 60.5 87.6/86.5 BERT-Base (Devlin et al., 2019) 79.8 0.85
Syntax-BERT-Large 96.1 61.9 89.6/88.5 Syntax-BERT-Base 81.1 0.88
topical attenti 1 1. 4/87. -

w/o topical attention % 616 | 88.4/87.3 BERT-Large (Devlin etal., 2019) | 82.5 | 0.86

w/o syntax trees 95.0 60.5 88.0/87.1 Syntax-BERT.L 834 | 0.90

w/o dependency trees 95.6 61.4 | 83.7/88.1 yntax- “arge i :

w/o constituency trees 95.9 61.4 87.6/86.8 RoBERTa-Large (Liu et al., 2020) 83.2 0.88

w/o parent masks 95.5 60.9 88.7/87.2 Syntax-RoBERTa-Large 84.6 | 0.93

w/o child masks 95.3 61.2 88.3/86.8

w/o sibling masks 938 615 | 8.0/88.1 Table 6: The results of using Structural Probe to test whether

w/o pairwise masks - - 88.8/87.9

Table 5: Ablation study

capability of the model and compensate for the lack
of syntax priors. On the other hand, syntactic in-
formation is useful in most cases, especially when
training data or computation power is limited.

4.4 Ablation Study

For a comprehensive understanding of the model
design, we conduct ablation study with the fol-
lowing settings. (1) without topical attention: the
topical attention layer is removed, and a simple
summation layer is replaced instead; (2) with-
out syntax tree: all the syntactic masks gener-
ated by the syntax trees are replaced by randomly
generated masks, while the parameter size of
the model remains unchanged; (3) without con-
stituency/dependency tree: only one kind of syntax
tree is used in the model; (4) without parent / child /
sibling / pairwise masks: the corresponding masks
are removed in the implementation.

As shown in Table 5, all datasets benefit from
the usage of syntactic information. Generally, par-
ent/child masks are of more importance than the
sibling masks. Moreover, the topical attention
layer is crucial to the performance of Syntax-BERT
model, indicating the advantage of decomposing
self-attention into different sub-networks and per-

different models contain syntactic information or not. UUAS
denotes undirected attachment score, and Spr. denotes Spear-
man correlation.

forming fine-grained aggregation. In addition, the
pairwise mask is important on STS-B dataset and
shows the benefit of cross-sentence attention.

4.5 Structural Probe

Our method ingests syntax trees into the model
architecture directly. To examine if the representa-
tion learned by the model also captures syntactic
knowledge effectively, we follow Hewitt and Man-
ning (2019) to reconstruct a syntax tree of the entire
sentence with linear transformation learned for the
embedding space. If the syntax tree can be better
reconstructed, the model is viewed to learn more
syntactic information. We evaluate the tree on undi-
rected attachment score — the percent of undirected
edges placed correctly, and Spearman correlation
between predicted and the actual distance between
each word pair in a sentence. We probe models for
their ability to capture the Stanford Dependencies
formalism (de Marneffe et al., 2006). As shown in
Table 6, for both metrics, the syntax-aware mod-
els get better scores than corresponding baseline
models, indicating that Syntax-BERT is able to in-
corporate more syntax information than its vanilla
counterparts.
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Figure 2: For an example sentence input, (a) The self-
Attention scores of Syntax-Transformer corresponding
to the sibling mask with dist = 3. (b) The self-
attention scores of a vanilla Transformer.

5 Discussion

5.1 Complexity analysis

First, we choose BERT-Base as the base model to
analyze the space complexity. As reported in (De-
vlin et al., 2019), the number of trainable parame-
ters in BERT-Base is about 110 million. Following
(Strubell et al., 2018), LISA-BERT-Base replaces
one attention head in BERT-Base with a bi-affine
attention head. Such an operation only adds a train-
able matrix — the bi-affine transformation matrix
— in each layer, which brings about 0.6 million
extra parameters. Syntax-BERT-Base introduces
a topical attention layer, which contains 1.0 mil-
lion parameters in total for the BERT-Base version,
while other parameters are inherited from vanilla
BERT. Therefore, both LISA and Syntax-BERT
add few parameters to the model and do not affect
its original space complexity.

We now analyze the time complexity of Syntax-
BERT. Assume the number of tokens in each sen-
tence is NN. First, constructing syntactic trees
for each sentence and extract masking matrices
can be prepossessed in the training phase or fin-
ish in O(N?) in the online inference phase. The
time complexity of the embedding lookup layer
is O(N). Then, the attention score is calculated
by QKT ® M with complexity O(DgN?), where
Dg, is the dimension of (). Assume we have M
sub-networks. The complexity of masked self-
attention is O(M DgN?). In the topical atten-
tion, the calculation process is very similar to tradi-
tional self-attention, only replacing () with a task-
related vector. So it does not change the time
complexity of BERT. Finally, to get output rep-
resentation, subsequent softmax and scalar-vector
multiplication hold O(Dy N) complexity, where
Dy is the dimension of V' for the topical attention.

As such, the overall time complexity of Syntax-
BERT is O(N) + O(MDgN?) + O(DyN) =
O(MDgN?). When M is small, the model has
the same time complexity as vanilla BERT. More-
over, as the sub-networks are usually very sparse,
the time complexity can be further improved to
O(MDgFE) by a sparse implementation. Here
E < N? denotes the average number of edges
in a sub-network.

5.2 Case Study

We select the sentence “John slipped in front of any-
one who was there” in the CoLA dataset for case
study. The task is to examine if a sentence con-
forms to English grammar. This sentence should
be classified as negative since we use everyone
instead of anyone. Syntax-Transformer classifies
it correctly, but the vanilla transformer gives the
wrong answer.

As visualized in Figure 2(a), the relationship
between word pair (“anyone”, “.”) has been
highlighted in one of the sub-networks, and the
corresponding topical attention score for this
sub-network in Syntax-Transformer is also very
high. This shows a good explainability of Syntax-
Transformer by correctly identifying the error term
“anyone”, following a rule that “anyone” is sel-
dom matched with the punctuation “.”. However,
a vanilla Transformer shows less meaningful self-
attention scores, as illustrated in Figure 2(b). We
give a briefing here, and please refer to the ap-
pendix for a complete description.

6 Conclusion

In this paper, we present Syntax-BERT, one of the
first attempts to incorporate inductive bias of syntax
trees to pre-trained Transformer models like BERT.
The proposed framework can be easily plugged
into an arbitrary pre-trained checkpoint, which un-
derlines the most relevant syntactic knowledge au-
tomatically for each downstream task. We eval-
uate Syntax-BERT on various model backbones,
including BERT, RoBERTa, and T5. The empirical
results verify the effectiveness of this framework
and the usefulness of syntax trees. In the future,
we would like to investigate the performance of
Syntax-BERT by applying it directly to the large-
scale pre-training phase. Moreover, we are aiming
to exploit more syntactic and semantic knowledge,
including relation types from a dependency parser
and concepts from a knowledge graph.
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A Detailed settings

Here we provide detailed settings for reproduction.
The open-source code will be released when this
paper is officially published.

A.1 Stanford Sentiment Treebank

For raw Transformers, the number of layers is
set as 12 and hidden dimension for each in-
termediate layer is set as 512. The probabil-
ity of dropout is 0.1, and the hidden dimension
of the final fully-connected layer is 2000. The
word embedding vectors are initialized by GloVe
(glove.840B.3OOd3) (Pennington et al., 2014) and
fine-tuned during training. We use Adam optimizer
with an initial learning rate le-4.

A.2 Natural Language Inference

For raw Transformers, we set layer number as 12,
the hidden dimension of intermediate layers as 512,
dropout ratio as 0.15, and the dimension of fully
connected layer before Softmax activation as 2000.
Learning rate is initialized as Se-4, and Adam opti-
mizer is used along with exponential learning rate
decay of 0.9.

B Connection to GNN

A Transformer layer can be viewed as a special
kind of Graph Neural Network (GNN), where each
node represents for a word and all nodes con-
struct a complete graph. To improve training speed
and generalization ability, there are some previ-
ous works that advocate sparse architectures. For
instance, Sparse Transformer (Child et al., 2019)
separates the full self-attention operation across
several steps of attention for image classification.
Star-Transformer (Guo et al., 2019) sparsifies the
architecture by shaping the fully-connected net-
work into a star-shaped structure consisting of ring

3https://nlp.stanford.edu/projects/glove/

connections and radical connections. In the archi-
tecture of Syntax-BERT, we also introduce sparsity
to the complete graph network by decomposing
it into multiple sub-networks. The most salient
part of our approach is that the inductive bias is
designed by syntax tree, which is a crucial prior
for NLP tasks. In addition, as shown previously in
Table 5, a random decomposition of the network
also result in moderate performance enhancement.
Similar phenomena is also reported in the image
classification scenario with Graph Convolutional
Network (GCN) (Giirel et al., 2019).
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