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Abstract

Referential games offer a grounded learning
environment for neural agents which accounts
for the fact that language is functionally used
to communicate. However, they do not take
into account a second constraint considered to
be fundamental for the shape of human lan-
guage: that it must be learnable by new lan-
guage learners.

Cogswell et al. (2019) introduced cultural
transmission within referential games through
a changing population of agents to constrain
the emerging language to be learnable. How-
ever, the resulting languages remain inherently
biased by the agents’ underlying capabilities.

In this work, we introduce Language Transmis-
sion Simulator to model both cultural and ar-
chitectural evolution in a population of agents.
As our core contribution, we empirically show
that the optimal situation is to take into ac-
count also the learning biases of the language
learners and thus let language and agents co-
evolve. When we allow the agent popula-
tion to evolve through architectural evolution,
we achieve across the board improvements on
all considered metrics and surpass the gains
made with cultural transmission. These re-
sults stress the importance of studying the un-
derlying agent architecture and pave the way
to investigate the co-evolution of language and
agent in language emergence studies.

1 Introduction

Human languages show a remarkable degree of
structure and complexity. In the evolution of this
complex structure, several different intertwined
pressures are assumed to have played a role. The
first of these pressures concerns the function of lan-
guage: as language is to communicate, it should
allow effective communication between proficient

language users (e.g. Smith and Kirby, 2012). This
pressure is strongly intertwined with the nature of
the proficient user: what features of language allow
effective communication depends on the abilities
of the user to use the language.

A second pressure on the shape of human lan-
guage stems from the fact that language must
be learnable. Unlike animal languages, which
are taken to be mostly innate, human languages
must be re-acquired by each individual (Pinker
and Bloom, 1990; Hurford, 1998). A language
can only survive if it can successfully be transmit-
ted to a next generation of learners. In the field
of language evolution, this transmission process
is referred to as cultural transmission, while the
process of change that occurs as a consequence
is called cultural evolution." Like the pressures
arising from the function of language, the way that
cultural evolution shapes language also depends on
the language users: what is learnable depends on
the inductive biases of the learner.

Computationally, the emergence of language
can be studied through simulation with artificial
agents and by investigating the resulting languages
for structure, level of compositionality, and mor-
phosyntactic properties (Kirby, 2001; Kirby and
Hurford, 2002). Originally based on logic and sym-
bolic representations (Kirby, 2001; Christiansen
and Kirby, 2003), with the advent of modern deep
learning methods, there has been a renewed interest
in simulating the emergence of language through
neural network agents (i.a. Lazaridou et al., 2017;

"The importance of cultural evolution for the emergence
of structure is supported by a number of artificial language
learning studies (e.g. Saldana et al., 2018) and computational
studies using the Iterated Learning paradigm, in which agents
learn a language by observing the output produced by another
agent from the previous ‘generation’ (e.g. Kalish et al., 2007;
Kirby et al., 2008, 2015).
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Havrylov and Titov, 2017). Such work typically
involves the use of referential games (Lewis, 1969),
in which two or more agents have to emerge a lan-
guage to obtain a shared reward.

These studies are motivated by the first pressure:
language as a tool for effective communication.
However, they fail to consider the second pressure:
language must be learnable by new agents. They
also fail to study the impact of the learning biases
of the artificial agents themselves, which under-
lies both pressures. In a recent study, Cogswell
et al. (2019) proposed a method to include cultural
evolution in a language emergence game. Their ap-
proach is more naturally aligned with pressures in
humans language evolution than single agent refer-
ential games (see e.g. Wray and Grace, 2007), but
fails to account for the fact that cultural evolution
and the learning biases of the artificial agents are
two sides of the same coin: what language is learn-
able depends on the learning biases of the learner.

In this paper, we will therefore integrate the three
components described above — communication, cul-
tural evolution and learning biases — and setup a
framework in which their interaction can be studied.
This framework, which we refer to with the term
Language Transmission Simulator, consists of a
referential game, played by a changing population
of agents — simulating cultural evolution — which
are subject to architectural evolution — simulating
the learning biases of the learners and allowing
them to co-evolve with the language.

Our contributions are three-fold fold:

* We introduce the Language Transmission Sim-
ulator, that allows to model both cultural
and architectural evolution in a population of
agents;

* We collect a large number of tests from previ-
ous work and combine them into an extensive
test suits for language emergence games;

* We demonstrate that emerging languages ben-
efit from including cultural transmission as
well as architectural evolution, but the best re-
sults are achieved when languages and agents
can co-evolve.

2 Related Work

Much work has been done on the emergence of
language in artificial agents and investigating its
subsequent structure, compositionality and mor-
phosyntax (Kirby, 2001; Kirby and Hurford, 2002).

Originally, such work was based on logic and sym-
bolic representations (Kirby, 2001; Christiansen
and Kirby, 2003), but with the advent of modern
deep learning (LeCun et al., 2015), there has been
arenewed interest in simulating the emergence of
language through neural network agents (i.a. Fo-
erster et al., 2016; Kottur et al., 2017; Choi et al.,
2018; Lazaridou et al., 2017; Havrylov and Titov,
2017; Mordatch and Abbeel, 2018). In the explo-
ration of language emergence, different training
approaches and tasks have been proposed to en-
courage agents to learn and develop communica-
tion. In a typical setup, two players aim to develop
a communication protocol in which one agent must
communicate information it has access to (typically
an image), while the other must guess it out of a
line-up (Evtimova et al., 2018; Lazaridou et al.,
2017).

Kottur et al. (2017) show that ‘natural’ language
does not arise naturally in these communication
games and it has to be incentivised by imposing
specific restrictions on games and agents. Havrylov
and Titov (2017) first demonstrated that using
straight-through estimators were more effective
than reinforcement learning in a collaborative task,
and that optimizing rewards can lead to structured
protocols (i.e. strings of symbols) to be induced
from scratch. Mordatch and Abbeel (2018) find
that syntactic structure emerges in the stream of
symbol uttered by agents, where symbols and syn-
tax can be mapped to specific meanings or instruc-
tions. Choi et al. (2018) use qualitative analysis,
visualization and a zero-shot test, to show that a
language with compositional properties can emerge
from environmental pressures.

Chaabouni et al. (2019) find that emerged lan-
guages, unlike human languages, do not naturally
prefer non-redundant encodings. Chaabouni et al.
(2020) further find that while generalization capa-
bilities can be found in the languages, composition-
ality itself does not arise from simple generalization
pressures. (Rodriguez Luna et al., 2020) encourage
desirable properties of human languages, such as
compositionality, to emerge through well-crafted
auxiliary pressures. Finally, Harding Graesser et al.
(2019) demonstrate with experiments on popula-
tions of agents that language can evolve and sim-
plify through the interactions of different commu-
nities.

Cogswell et al. (2019) build upon the emergent
language research by introducing cultural trans-
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mission as a pressure in referential games. They
use a pool of agents with a resetting mechanism
and show that this further encourages the emerg-
ing language to display compositional properties
and structure allowing it to generalize better. Pair-
ing agents with one another in a larger popula-
tion setting introduces cultural evolution, but it
is the pressure introduced by the partial resetting
which forces remaining agents to emerge a lan-
guage that is quickly learnable by a new agent.
While Cogswell et al. (2019) is the most related
work to ours, an important difference is that they
focus on cultural evolution only, without taking
into account the learning biases of the agents via
modelling architectural evolution.

3 Approach

In this paper, we introduce architectural evolution
in language emergence games and study the inter-
action between cultural and architectural evolution
with a range of different metrics. Below, we first
give a definition of the referential game we consider
(Subsection 3.1). We then briefly explain our Lan-
guage Transmission Simulator (Section 3.2 and
how we model cultural and architectural evolution
within it (Section 3.3 and 3.4 respectively).

3.1 Referential games

We study language emergence in a referential game
inspired by the signalling games proposed by Lewis
(1969). In this game, one agent (the sender) ob-
serves an image and generates a discrete message.
The other agent (the receiver) uses the message to
select the right image from a set of images contain-
ing both the sender image and several distractor
images. Since the information shown to the sender
agent is crucial to the receivers success, this setup
urges the two agents to come up with a communi-

cation protocol that conveys the right information.

Formally, our referential game is similar to
Havrylov and Titov (2017):

1. The meaning space of the game consists of a collec-
tion D of K images {do, d1, ..., dx }, represented by
z-dimensional feature vectors.

2. Ineach round 7 of the game, a target item d; is randomly
sampled from D, along with a set C' of n distractor
items.

3. The sender agent s of the game, parametrised by a neu-
ral network, is given item d;, and generates a discrete
message m; from a vocabulary V. The message is
capped to a max message length of L.

4. The receiver agent r, also parametrised by a neural
network, receives message m; and uses it to identify d;
in the union of d; and C.

We use z = 512, and n = 3 and train agents with
Gumbel-Softmax (Jang et al., 2017a) based on task-
success.

3.2 Language Transmission Simulator

In Language Transmission Simulator, depicted in
Figure 1, we simulate a population of communicat-
ing agents. In every training iteration, two random
agents are sampled to play the game. This forces
the agents to adopt a simpler language naturally: to
succeed they must be able to communicate or un-
derstand all opposing agents. In our setup, agents
are either sender or receiver, they do not switch
roles during their lifetime.

3.3 Cultural evolution in referential games

Following Cogswell et al. (2019), we simulate cul-
tural evolution by periodically replacing agents
in the population with newly initialised agents.
Cultural evolution is implicitly modelled in this
setup, as new agents have to learn to communicate
with agents that already master the task. Follow-
ing Cogswell et al. (2019), we experiment with
three different methods to select the agents that
are replaced: randomly (no selection pressure), re-
placing the oldest agents or replacing the agents
with the lowest fitness (as defined in Section 3.5).
We call these setups cu-random, cu—age and
cu-best, respectively.

ﬁgent Population
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5 Agent Replacement Task
2 L I )

q.)

c |r —

8 2 A1, AQ, Agz, .. AN { (A1, Ag) >

Figure 1: The Language Transmission Simulator:

Agent pairs are randomly sampled from each popula-
tion and trained. After [ training steps, a portion « of
the population is culled.

3.4 Architectural evolution in referential
games

To model architectural evolution, rather than peri-
odically replacing agents with randomly initialised
new agents, we instead mutate the most successful
agents and replace the worst agents with variations
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of the best agents, as outlined in Section 3.4.2. Note
that cultural evolution is still implicitly modelled
in this setup, as new agents still have to learn to
communicate with older agents. Therefore, we call
this setup with the term co-evolution.

34.1 Culling

We refer to the selection process and subsequent
mutation or re-initialisation step as culling. In bi-
ology, culling is the process of artificially remov-
ing organisms from a group to promote certain
characteristics, so, in this case, culling consists of
removing a subset of the worst agents and replac-
ing them with variations of the best architecture.
The proportion of agents from each population se-
lected to be mutated is determined by the culling
rate o, where a € [0,1). The culling interval [
defines the number of iterations between culling
steps. A formalisation of the LTE can be found in
appendix A.1.

3.4.2 Mutation Algorithm

Our mutation algorithm is an intentionally simple
implementation of a Neural Architectural Search
(NAS). NAS focuses on searching the architecture
space of networks, unlike many traditional evolu-
tionary techniques which often include parameter
weights in their search space. We opted to use
the DARTS (Differentiable Architecture Search)
RNN search space defined by Liu et al. (2018),
which has obtained state-of-the-art performance
on benchmark natural language tasks (Li and Tal-
walkar, 2019).

The DARTS search space includes recurrent
cells with up to N nodes, where each node
ni,na,...,ny can take the output of any preced-
ing nodes including ng, which represents the cell’s
input. All potential connections are modulated by
an activation function, which can be the identity
function, Tanh, Sigmoid or ReLU. Following Liu
et al. (2018) and Pham et al. (2018), we enhance
each operation with a highway bypass (Zilly et al.,
2016) and the average of all intermediate nodes is
treated as the cell output.

To sample the initial model, we sample a random
cell with a single node (/N = 1). As this node must
necessarily be connected to the input, the only vari-
ation stems from the possible activation functions
applied to the output of n, resulting in four pos-
sible starting configurations. We set a node cap of
N = 8. We mutate cells by randomly sampling an
architecture which is one edit step away from the

previous architecture. Edit steps are uniformly sam-
pled from i) changing an incoming connection, ii)
changing an output operation or iii) adding a new
node; the mutation location is uniformly sample
from all possible mutations.?

3.5 Fitness Criterion

The fitness criterion that we use in both the
cu-best and co-evolution setup is based
on task performance. However, rather than consid-
ering agents’ performance right before the culling
step, we consider the age of the youngest agent
in the population (defined in terms of number of
batches that it was trained) and for every agent
compute their performance up until when they had
that age. For any agent a; in population A this is
defined as:

Ta
fitness(a;) = Ti Z L(ah) (1)
A0

where 74 = minge 7 (a) is the age T (a) of the
youngest agent in the population, and E(aé) is the
loss of agent a; at time step ¢. This fitness criterion
is not biased towards older agents, that have seem
already more data and have simply converged more.
It is thus not only considering task performance but
also the speed at which this performance is reached.

4 Experiments

We test the LTE framework on a compositionally
defined image dataset, using a range of different
selection mechanisms.

4.1 Dataset

In all our experiments, we use a modified version
of the Shapes dataset (Andreas et al., 2015), which
consists of 30 by 30 pixel images of 2D objects,
characterised by shape (circle, square, triangle),
colour (red, green, blue), and size (small, big).
While every image has a unique symbolic descrip-
tion — consisting of the shape, colour and size of
the object and its horizontal and vertical position
in a 3x3 grid — one symbolic representation maps
to multiple images, that differ in terms of exact
pixels and object location. We use 80k, 8k, 40k im-
ages for train, validation and test sets, respectively.
Some example images are depicted in Figure 2.

%For a formal description of the mutation process, we refer
to Appendix A.2.
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Figure 2: The modified Shapes task consists of show-

ing an image the sender, and then letting the receiver

deduce from the sender’s message which image out of
the target and k distractors is the correct one.

We pre-train a CNN feature extractor for the
images in a two-agent setting of the task (see Ap-
pendix A.4 for more details).

4.2 Architecture and Training

For our co-evolution experiments, we use the
DARTS search space as described above. For all
cultural evolution approaches, we use an LSTM
(Hochreiter and Schmidhuber, 1997) for both the
sender and receiver architecture (see Appendix A.3
for more details). The sender and receiver models
have a hidden size of 64 for the recurrent layer and
an embedding layer of size 64. Further, we use a
vocabulary size V' of 4, with an additional bound
token serving as the indicator for beginning and
end-of-sequence. We limit the maximum length of
asentence L to 5.3

We back-propagate gradients through the dis-
crete step outputs (message) of the sender by using
the Straight-Through (ST) Gumbel-Softmax Esti-
mator (Jang et al., 2017b). We run all experiments
with a fixed temperature 7 = 1.2. We use the de-
fault Pytorch (Paszke et al., 2017) Adam (Kingma
and Ba, 2015) optimiser with a learning rate of
0.001 and a batch-size of 1024. Note that the opti-
miser is reset for every batch.

For all multi-agent experiments we use a pop-
ulation size of 16 senders and 16 receivers. The
culling rate « is set to 0.25 or four agents, and we
cull (re-initialise or mutate) every [ = 5k iterations.

3The values for V' and L were picked to provide a strong
communication bottleneck to promote the emergence of struc-
tured and compressed languages, following the intuitions from
Kottur et al. (2017) that natural language patterns do not
emerge ‘naturally’.

We run the experiments for a total of I = 500k
iterations, and evaluate the populations before each
culling step.

4.3 Evaluation

We use an range of metrics to evaluate both the
population of agents and the emerging languages.

Jaccard Similarity We measure the consistency
of the emerged languages throughout the popula-
tion using Jaccard Similarity, which is defined as
the ratio between the size of the intersection and
the union of two sets. We sample 200 messages per
input image for each possible sender-receiver pair
and average the Jaccard Similarity of the samples
over the population. A high Jaccard Similarity be-
tween two messages is an indication that the same
tokens are used in both messages.

Proportion of Unique Matches We compute
how similar the messages that different agents
emit for the same inputs by looking at all possi-
ble (sender, message) pairs for one input and assess
whether they are the same. This metric is 1 when
all agents always emit the same messages for the
same inputs.

Number of Unique Messages We compute the
average number of unique messages generated by
each sender in the population. An intuitive refer-
ence point for this metric is the number of images
with distinct symbolic representations. If agents
generate more messages than expected by this refer-
ence point, this demonstrates that they use multiple
messages for the images that are — from a task
perspective — identical.

Topographic Similarity Topographic similarity,
used in a similar context by Lazaridou et al. (2018),
represents the similarity between the meaning
space (defined by the symbolic representations) and
the signal space (the messages sent by an agent). It
is defined as the correlation between the distances
between pairs in meaning space and the distances
between the corresponding messages in the signal
space. We compute the topographic similarity for
an agent by sampling 5,000 pairs of symbolic in-
puts and corresponding messages and compute the
Pearson’s p correlation between the cosine simi-
larity of the one-hot encoded symbolic input pairs
and the cosine similarity of the one-hot encoded
message pairs.
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Average Population Convergence To estimate
the speed of learning of the agents in the population,
estimate the average population convergence. For
each agent, at each point in time, this is defined as
the agents average performance from the time it
was born until it had the age of the current youngest
agent in the population (analogous to the fitness
criterion defined in Section 3.5). To get the average
population convergence, we take we average those
values for all agents in the population.

Average Agent Entropy We compute the aver-
age certainty of sender agents in their generation
process by computing and averaging their entropy
during generation.

5 Results

We now present a detailed comparison of our cul-
tural and co-evolution setups. For each approach,
we averaged over four random seeds, the error bars
in all plots represent the standard deviation across
these four runs. To analyse the evolution of both
agents and languages, we consider the development
of all previously outlined metrics over time. We
then test the best converged languages and architec-
tures in a single sender-receiver setup, to assess the
impact of cultural and genetic evolution more inde-
pendently. In these experiments, we compare also
directly to a single sender-receiver baseline, which
is impossible for most of the metrics we consider in
this paper. Finally, we briefly consider the emerged
architectures from a qualitative perspective.

5.1 Task performance

We first confirm that all setups in fact converge to
a solution to the task. As can be seen in Figure 3,
all populations converge to a (close to perfect) so-
lution to the game. The cu—-age approach slightly
outperforms the other approaches, with a accuracy
that surpasses the 95% accuracy mark. Note that,
due to the ever changing population, the accuracy
at any point in time is an average of both ‘chil-
dren’ and ‘adults’, that communicate with different
members of the population.

6 Analysis

In this section we analyse the resulting behaviour
and success of agents in Language Transmission
Simulator. We first use standard approaches such
as average agent entropy and loss (convergence)
to measure the success of agents with respect to
their language and the task. Secondly, we use other

1.0
~0.9
0.8

0.7

" co-evolution cu-best cu-random cu-age

Figure 3: Average Population Accuracy of final popu-
lations.

metrics to analyse the emergent language itself in
terms of consistency and diversity by using Jaccard
Similarity, the proportion of unique matches, the
number of unique messages, and the topographic
similarity. Thirdly, we perform a qualitative anal-
ysis of the architecture that emerge from our Lan-
guage Transmission Simulator. Finally, we design
Frozen Experiments, in which we test the emerged
languages and architectures in a 1v1 setting with a
fresh agent. This allows us to compare and measure
the the improvement gains made by the architecture
and those made by the language which emerged.
We show through these experiments that the co-
evolution setting leads to a language that is both
more successful and easier to learn for a given new
agent.

6.1 Agent behaviour

To assess the behaviour of the agents over time,
we monitor their average message entropy con-
vergence speed. As can be seen in Figure 4, the
co-evolution setup results in the lowest aver-
age entropy scores, the messages that they assign to
one particular image will thus have lower variation
than in the other setups. Of the cultural evolution
setups, the lowest entropy score is achieved in the
cu—best setup.

Figure 5 shows the average population conver-
gence over time. Also in this case, we observe
a clear difference between cultural evolution only
and co-evolution, with an immediately much lower
convergence time for co-evolution and a slightly
downward trending curve.

6.2 Language Analysis

To check the consistencies of languages within a
population, we compare the Jaccard Similarity and
the Average Proportion of Unique Matches, which
we plot in Figure 6. This shows that, compared to
cultural evolution only, not only are the messages
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Figure 4: Average agent entropy over time.
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Figure 5: Average convergence for all cultural transmis-
sion modes and evolution.

in co-evolution more similar across agents (higher
Jaccard Similarity), but also that agents are consid-
erably more aligned with respect to the same inputs
(Iess unique matches).

To assess the level of structure of the emerged
languages, we plot the average Topographic Sim-
ilarity and the Average Number of Unique Mes-
sages generated by all senders (Figure 7). The co-
evolution condition again outperforms all cultural
only conditions, with a simpler language (the num-
ber of the unique messages closer to the symbolic
reference point) that is structurally more similar
to the symbolic representation of the input (higher
Topographical Similarity).

6.3 Architecture Analysis

In Figure 8 we show the co-evolution of an agent
and a sample of its language during three selected
iterations in the co-evolution setup. Strikingly, the
best sender architecture does not evolve from its
original form, which could point towards the lim-
itations of of our search strategy and space. On

Jaccard Similarity and Average Matches

0.8
=N,
— co-evolution
0.6 cu-best
— cu-random
cu-age
Metric

0.4 — avg_matches
--- jaccard_similarity —————" """

M@W
0.2

0 100000 200000 300000 400000 500000
Number of lterations

Figure 6: Average Jaccard Similarity and proportion of
message matches for all cultural transmission modes
and evolution

the contrary, the receiver goes through quite some
evolution steps and converges into a significantly
more complex architecture than its original form.
We observe a unification of language throughout
evolution in Figure 8, which is also supported by
Figure 7. The population of senders starts out 11
different unique messages and ends with only two
to describe the same input image. We will leave
more detailed analysis of the evolved architectures
for future work.

6.4 Frozen Experiments

With a series of experiments we test the a priori
suitability of the evolved languages and agents for
the task at hand, by monitoring the accuracy of new
agents that are paired with converged agents and
train them from scratch.

We focus, in particular, on training receivers
with a frozen sender from different setups, which
allows us to assess 1) whether cultural evolution
made languages evolve to be more easily picked
up by new agents 2) whether the genetic evolution
made architectures converge more quickly when
faced with this task. We compare the accuracy
development of:

e An LSTM receiver trained with a frozen
sender taken from cu-best;

¢ An evolved receiver trained with a frozen
evolved sender.

For both these experiments, we compare with two
baselines:

* The performance of a receiver agent trained
from scratch along with a receiver agent
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015 |
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Figure 7: Average Number of Unique Messages and
Topographic Similarity for all cultural evolution modes
and co-evolution. For comparison, we also plot the
number of unique messages for a symbolic solution that
fully encodes all relevant features of the image (since
we have three possible shapes and colours, two possi-
ble sizes, and a 3 x 3 grid of possible positions, this
symbolic reference solution has 3 x 3 X 2 X 9 = 162
distinct messages.

that has either the cu architecture or the
evolved co architecture (cu-baseline and
co-baseline, respectively);

* The performance of an agent trained
with an agent that is pretrained in the
single agent setup, with either the cu
architecture or an evolved architecture
(cu-baseline-pretrained and
co-baseline-pretrained).

Each experiment is run 10 times, keeping
the same frozen agent. The results confirm
cultural evolution contributes to the learnabil-
ity and suitability of emerging languages: the
cu-best accuracy (green line) converges sub-
stantially quicker and is substantially higher than
the cu-baseline-pretrained accuracy (or-
ange line). Selective pressure on the language ap-
pears to be important: the resulting languages are
only easier to learn in the cu-best setup.* In
addition, they show that the agents benefit also
from the genetic evolution: the best accuracies are
achieved in the co-evolution setup (red line). The
difference between the cu—baseline (blue) and
the co-baseline (brown) further shows that
even if the evolved architectures are trained from

*cu-age and cu-random are ommitted from the plot
for clarity reasons.

scratch, they perform much better than a baseline
model trained from scratch. The difference be-
tween the co-baseline-pretrained (only
genetic evolution, purple line) and the co-evolution
of agents and language line (red line) illustrates that
genetic evolution alone is not enough: while a new
evolved receiver certainly benefits from learning
from a (from scratch) pretrained evolved sender,
without the cultural transmission pressure, it’s per-
formance is still substantially below a receiver that
learns from an evolved sender whose language was
evolved as well.

7 Conclusion

In this paper, we introduced a language transmis-
sion bottleneck in a referential game, where new
agents have to learn the language by playing with
more experienced agents. To overcome such bot-
tleneck, we enabled both the cultural evolution of
language and the architectural evolution of agents,
using a new Language Transmission Simulator. Us-
ing a battery of metrics, we monitored their re-
spective impact on communication efficiency, de-
gree of linguistic structure and intra-population
language homogeneity. While we could find im-
portant differences in between cultural evolution
strategies, it is when we included architectural evo-
lution that agents scored best. In a second experi-
ment, we paired new agents with evolved languages
and agents and again confirmed that, while cul-
tural evolution makes a language easier to learn,
co-evolution leads to the best communication.

In future research, we would like to apply the
Language Transmission Simulator on new, more
complex tasks and further increase our understand-
ing of the properties of the emerged languages and
architectures. Recent research has also found that
relaxing the vocabulary size V' and sequence length
L constraints can lead to greater syntactic structure
in emergent languages (van der Wal et al., 2020).
We thus hope to investigate further relaxation of
hyper-parameters and other neuro-evolution tech-
niques in future work.
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population’s message description of the same input through iterations. The bold messages represent the message
outputted by the best sender whose architecture is pictured above. The count of each message represents the
number of agents in the population which uttered this exact sequence.
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Figure 9: Receiver accuracies trained with different
types of frozen senders.
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A Appendix

A.1 Language Transmission Engine

We formalise our Language Transmission process
in the pseudo code shown in Algorithm 1. We se-
lect hyper-parameters [ as the number of iterations
or batches shown between culling steps, and I as
the total number of iterations.

Algorithm 1 Language Transmission Engine

S+ {So, S1.uey SN}
R« {ro,m1...,TN }
11
while 7 < I do
for batch b in D do
Sample § from .S
Sample 7 from R
train(s, 7, b)
if i mod [ = 0O then
cull(S, R)
end if
1—1+1
end for
end while

A.2 Mutation Algorithms Pseudo-code

The genotype mutation is described in pseudo-code
by algorithm 2, and takes as input a genotype con-
taining nodes describing the cell. The genotype
is mutated by either changing the input connec-
tion or primitive (output activation function) for a

Algorithm 2 Genotype-level Mutation

procedure mg(genotype)

g < copy(genotype)

a<+ U(1,3)

n <« U(1,len(g))

if a = 1 then
p < U[ReLU, I, tanh, o]
n.activation < p

end if

if a = 2 then
r<«U(l,n)
n.connection <— r

end if

if a = 3 then
n' < new_node()
p < U[ReLU, I, tanh, o]
r < U(1,len(g))
n’.activation < p
n'.connection < r
g.append(n’)

end if

return g

end procedure

randomly sampled node n, or adding a new node
altogether. See section 3.4.2 for explanations on
the workings of the DARTS cell structure.

Algorithm 3 Population-level Mutation

procedure mutate(P)
p + argmin
p < m(P)
for p; in p do
pi.genotype < mg(p’.genotype)
end for
end procedure

(P)

convergence

In order to mutate a population P using 7 as a
replacement policy, we use the process outlined in
algorithm 3.

A.3 Agent Architecture
A.3.1 Sender Architecture

The sender architecture comprises of a linear layer
input mapping the input feature size (512) to the
hidden size. The image feature vector is there-
fore mapped to the same dimension as the RNN
layer, where it is used as the initial hidden state.
When training, for each step of the sender RNN we
apply the cell and use the straight-through Gumbel-
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Softmax trick to be able back-propagate gradients
through the discrete message output. During eval-
uation however, we sample the categorical distri-
bution at each step to produce each token in the
sentence.

A.3.2 Receiver Architecture

The receiver architecture is simpler and takes as an
input the message outputted by the sender and out-
puts a vector of input feature size (512). A single
embedding matrix is used to encode the sender’s
message. During training the message is linearly
transformed using the embedding matrix, while
during the evaluation pass the discrete message out-
puts of the sender are used to map to the specific
embedding dimensions. The embedded message is
then passed to the RNN layer, and the final state
of the RNN is linearly mapped back to the feature
size. Doing so allows us to obtain a prediction
for each image feature (distractors and true image),
by comparing the alignment between the receiver
output and the respective feature vectors.

A.4 Feature Extraction

In order to obtain image features, we pre-trained
a convolutional model on the task using the raw
image as input. Due to the input size requirements
of the convolutional model, we resize the images
linearly to be 128 by 128 (height, width) by 3 (RGB
channels). We used early stopping conditions on
the validation accuracy, an embedding size of 256,
and hidden size of 512. The two agents are oth-
erwise trained with the same parameters as other
experiments: vocab size and max sentence length
of 5, Adam optimizer with learning rate of 0.001.

For the visual module itself, we used a similar ar-
chitecture to that in Choi et al. (2018) albeit smaller.
We used a five-layer convolution network with 20
filters, and a kernel size and stride of 3 for all lay-
ers. For every convolutional layer, ReLU activation
was applied on the output, after a Batch normaliza-
tion step with no bias parameter. The linear layer
which followed the convolutional layers had output
dimensions of 512 and a ReL.U activation function.
This allows us to obtain image features of size 512,
which we then used for all experiments.

A.5 Additional Figures and Analysis
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Figure 10: Average Population Accuracy for all Itera-
tions
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