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Abstract

Traditional data augmentation aims to increase
the coverage of the input distribution by gener-
ating augmented examples that strongly resem-
ble original samples in an online fashion where
augmented examples dominate training.

In this paper, we propose an alternative
perspective—a multi-task view (MTV) of data
augmentation—in which the primary task
trains on original examples and the auxil-
iary task trains on augmented examples. In
MTV data augmentation, both original and
augmented samples are weighted substantively
during training, relaxing the constraint that
augmented examples must resemble original
data and thereby allowing us to apply stronger
levels of augmentation.

In empirical experiments using four common
data augmentation techniques on three bench-
mark text classification datasets, we find that
the MTV leads to higher and more robust per-
formance improvements than traditional aug-
mentation.

1 Introduction

Most data augmentation techniques aim to generate
augmented examples for training that are similar
to original data. In computer vision, operations
such as flipping, cropping, and color jittering are
both widely used and highly effective—it is self-
evident that augmented examples closely resemble
original data, and so we generate augmented data in
an online fashion during each minibatch such that
no original, unmodified examples are seen during
training (Krizhevsky et al., 2012; Zagoruyko and
Komodakis, 2016; Huang et al., 2017).

In language, on the other hand, even slight mod-
ifications can cause significant semantic changes,
and so it is not always clear whether augmented ex-
amples resemble original data. Despite this uncer-
tainty, many augmentation techniques in NLP still

Traditional Data Augmentation

 Intuition: Increase coverage of input distribution by
using augmented examples for training.

* Guideline: Augmented examples should be similar to
original data.

* Training: Dominated by augmented examples that are
generated stochastically.

Multi-Task View (MTYV) of Data Augmentation

 Intuition: Auxiliary task of classifying augmented ex-
amples acts as regularization for the primary task of
classifying original examples.

* Guideline: It might be a good idea for augmented sam-
ples to resemble original data, but they can be anything
that boosts performance.

* Training: Both original and augmented data receive
substantive weighting during training.

Table 1: Summary of traditional data augmentation ver-
sus MTV data augmentation.

generate examples stochastically and ignore origi-
nal data (Zhang et al., 2015; Sennrich et al., 2016a;
Xie et al., 2017; Li et al., 2017; Kobayashi, 2018;
Wang et al., 2018). When it is unclear whether
augmented examples resemble original data—as
is often the case—is it wise to neglect the original
training data?

Our paper questions this practice by proposing to
include original data during training. Specifically,
we make two contributions:

1. We propose a multi-task view of data augmen-
tation (MTV data augmentation), which trains
on both original and augmented examples and
therefore allows us to relax the constraint that
augmented examples must resemble original
data. The MTV facilitates augmentation using a
higher strength parameter.

2. We show empirically that four common data
augmentation techniques provide higher and
more robust performance gains using the MTV
compared with traditional augmentation.
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2 Traditional Data Augmentation]

Situation. During regular training, the canonical
maximum likelihood objective minimizes the cost
of the original training set J:

JO(H) = Ex,y~ﬁ(X,Y) [_ logPO(y|m)]7

where p( X, Y') is the empirical distribution of train-
ing pairs x,y and pg(y|z) is the parameterized
model that we aim to learn (e.g., a neural network).
As p(X,Y) is typically the observed data, it will
likely have some mismatch with the true data distri-
bution p(X, Y'). When the mismatch is dramatic—
for instance, when p(X,Y") does not sufficiently
cover the training space—model performance will
likely suffer.

Remedy. In practice, we often use data augmen-
tation to mitigate the inadequacy of p(X,Y") by
providing additional training data. We generate
an augmented distribution q(X,Y) and now min-
imize the cost of this augmented training set Jyy,:

Ja“g(e) = Ex,y~q(f(,?) [_ logpﬁ(ylx)] :

As we now optimize solely on q(X,Y), our goal
is to find (Z, ¢) pairs that are likely to fall in the
true distribution p. Assuming the smoothness of p,
similar (x, y) pairs will have similar probabilities,
and therefore if an augmented example is more sim-
ilar to an observed example, it is more likely to be
sampled under the true distribution. In other words,
good augmented examples resemble the observed
data, and we aim to find them. Conversely, if an
augmented example diverges too far from any ob-
served data, it is likely invalid and thus harmful for
training; we don’t want to train on these examples.

The majority of prior work follows this frame-
work of augmented examples resembling real data.
As popular techniques, semantic noising substi-
tutes tokens with synonyms (Wang and Yang, 2015;
Zhang et al., 2015; Li et al., 2017); Pervasive
Dropout randomly removes words from the input
sequence (Sennrich et al., 2016a); and SwitchOut
(for machine translation) replaces some words in
both source and target sentences with other words
from their corresponding vocabularies (Wang et al.,
2018).

Moreover, most of these techniques perform aug-
mentation on every training example in an online
fashion, implicitly assuming that augmented exam-
ples so closely resemble original data that directly

'We closely follow the intuition and notation of Wang et
al. (2018)

training on original examples is not even worth
considering. As we shall see in the next section,
adding in these original examples during training
might actually be a worthwhile idea.

3 MTYV Data Augmentation

Multi-task optimization jointly trains on a primary
task and one or more auxiliary tasks—the intuition
is that requiring an algorithm to also learn an aux-
iliary task can act as better regularization than pe-
nalizing all complexity uniformly. Prior work has
found that multi-task models work particularly well
when the tasks are similar, but can also improve
performance even on unrelated tasks (Paredes et al.,
2012; Hajiramezanali et al., 2018).

We propose a multi-task view of data augmenta-
tion that has a primary task that optimizes regular
training on original examples and an auxiliary task
that optimizes training on augmented data. This
MTYV jointly optimizes the primary and auxiliary
task(s) using a weighted cost function so that both
original and augmented data receive substantial
weight during training:

J(H) =70 JO(H) + Yaug * Jaug(e) )

where 70 is the weight of original data and 7, is
the weight of augmented data, and v + Yaug = 1.
In this context, observe that vanilla training uses
7o =1 and 7, =0, and traditional data augmenta-
tion uses 7o =0 and vy, =1.

The MTV gives us an important freedom that
is not offered by the traditional data augmenta-
tion framework. Since traditional data augmen-
tation only trains on augmented examples, per-
formance suffers detrimentally when augmented
data differs too much from the true distribution—
therefore, most studies aim to generate augmented
examples that resemble original data. MTV data
augmentation, however, jointly trains on both orig-
inal and augmented data, thereby allowing us to
relax the constraint that original and augmented
examples come from the same distribution. In fact,
accepting that the original and augmented distribu-
tions might differ or could even be unrelated—as
work in multi-task learning has done (Paredes et al.,
2012; Hajiramezanali et al., 2018; Rai and Daumé,
2010)—liberates us to apply stronger levels of data
augmentation, which, as we will demonstrate in
the next section, leads to higher and more robust
performance.

2889



4 Experiments

This section compares multi-task view augmenta-
tion to traditional augmentation for various datasets
and augmentation techniques.

4.1 Experimental Setup

Datasets. We conduct experiments on three text
classification tasks often used as benchmarks (Kim,
2014): (1) Stanford Sentiment Treebank (SST2)
(Socher et al., 2013) of movie reviews classified
as positive/negative, (2) subjectivity/objectivity
dataset (SUBJ) (Pang and Lee, 2004), where sen-
tences are classified as either subjective or objec-
tive, and (3) question type dataset (TREC) (Li and
Roth, 2002), in which questions ask for either a
description, entity, abbreviation, human, location,
or number.

Models and Experimental Procedures. For text
classification, we use BERT (Devlin et al., 2019)
(bert-base-uncased from HuggingFace) to
extract features by averaging the last hidden states
of the input tokens. To reduce the number of model
hyperparameters and save computation time, we
classify these features using a linear SVM trained
for 1000 epochs.2 Since training data size depends
on the amount of augmented data, we adjust the
number of training epochs so that all models re-
ceive the same number of updates. All experi-
ments are run for five random seeds. Our baseline
models without data augmentation achieved 84.5%,
93.1%, and 83.9% accuracy respectively on the
SST2, SUBJ, and TREC tasks.

Augmentation Techniques. In this paper, we
experiment with four simple and common data
augmentation techniques studied in Wei and Zou
(2019): (1) Token Substitution (Zhang et al.,
2015) replaces words with WordNet (Miller, 1995)
synonyms; (2) Pervasive Dropout (Sennrich et al.,
2016a) applies word-level dropout; (3) Token In-
jection (Wei and Zou, 2019) insert a synonym of
a random token in the sequence into a random po-
sition in that sequence; (4) Positional Shuffling
(Wei and Zou, 2019) randomly chooses two tokens
and swaps their positions. For all four techniques,
a parameter « indicates augmentation strength by
dictating how many perturbations are performed.
For a given «, we perform n =« ! perturbations,
where [ is the sequence length.

*This setup is not state-of-the-art but allows for experi-
ments to be performed on CPU.

Aug. Technique ~ |MTV Best a| Avg. Boost (Ayry)

Token Substitution ‘); %035 é?ZZ (+(),-8%)
Pervasive Dropout ‘)/( 8i éggj (+()_-7%)
Token Injection ‘)/( %055 g;gj (+1 ,-5%)
Positional Shuffling '); %&5 ;;;‘Z’; (+1.1%)

Table 2: Average performance boost on three text clas-
sification tasks for four augmentation techniques us-
ing the best-performing augmentation strength from
a € {0.05,0.1,0.2,0.3,0.4,0.5}. Traditional data aug-
mentation works best at low «, whereas MTV data aug-
mentation provides the strongest performance for high
a. Apyry indicates additional boost from using the
MTYV compared with traditional augmentation.

4.2 Stronger augmentation for more gains

Table 2 summarizes results for data augmen-
tation in the MTV using 7o =", =0.5 com-
pared with traditional augmentation for the best-
performing augmentation strength from o €
{0.05,0.1,0.2,0.3, 0.4,0.5}. 1In the traditional
framework, pervasive dropout had the strongest per-
formance boost of 1.8% using a=0.1. The MTV,
however, allowed for stronger augmentation (i.e.,
a = 0.3) that resulted in all four techniques to
achieving boosts of more than 2.0%.

Perhaps strikingly, token injection and positional
shuffling, which are less intuitive and not as com-
monly used as token substitution and pervasive
dropout, achieve the strongest gains (> 1.0%) from
using the MTV. One potential reason for this is that,
compared with token substitution and pervasive
dropout, token injection and positional shuffling
are non-destructive in that they do not remove any
of the original words, and so the nature of examples
augmented at high « could be more conducive for
the MTV.

4.3 More-robust gains at high o

When using data augmentation with high «, high
levels of noising are employed and augmented
data are therefore more likely to diverge from
their original examples. Figure 1 takes a closer
look at how performance is affected by varying a.
Whereas traditional augmentation often negatively
affected performance at high «, the multi-task view,
which jointly optimizes the original distribution,
had robust performance gains at high augmentation
strengths.
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Figure 1: Performance boosts on three tasks using the traditional and multi-task view (MTV) frameworks for
four data augmentation techniques: Token Substitution (Zhang et al., 2015) (A), Pervasive Dropout (Sennrich
et al., 2016a) (B), Token Injection (Wei and Zou, 2019) (C), Positional Shuffling (Wei and Zou, 2019) (D). In
the traditional framework, improvements are largest when augmentation strength « is small, with performance
deteriorating for large a. The MTYV, on the other hand, jointly optimizes for both original and augmented data,
leveraging higher « to provide higher and more robust performance gains.

Performance Gain (Avg of Four Techniques)
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Figure 2: Performance boost (%) with varying aug-
mentation strengths o and weights of original data o
during training. Traditional data augmentation (yel-
low solid box in lower left) uses modest augmenta-
tion strength (a=0.05,1) with no original examples
for training (7o =0). The MTV data augmentation ap-
proach (green dashed box) suggests substantive weight-
ing of original examples (e.g., 7o =0.5) which allows
for much stronger augmentation (e.g., & = 0.3).

4.4 Choosing 7o and v,,g Weighting

As our experiments so far have used the MTV with
balanced weighting of original and augmented data
(70 ="Yaug =0.5), in this section we explore differ-
ent weightings of 7o and ~,,,. Figure 2 shows
these results averaged over all three datasets and

all four augmentation techniques. Traditional data
augmentation, which uses modest augmentation
strength (e.g., a € {0.05,0.1}) and does not train
on original data (yp=0.0), achieves reasonable
performance gains. As expected, when stronger
augmentations were applied (e.g., o = 0.4), train-
ing with only augmented data hurts performance.
When training on both augmented and original data,
however, performance improved with stronger aug-
mentation and remained robust for varying augmen-
tation strengths 0.2 < a < 0.5 and original data
weights 0.3 < yo < 0.7.

5 Further Related Work

Prior work on data augmentation, to our knowl-
edge, generally follows the traditional data aug-
mentation framework. In addition to the methods
mentioned in §2, Xie et al. (2017) replaced words
with samples from the unigram frequency distribu-
tion; Yu et al. (2018) translated English sentences
to French and back to English (backtranslation);
and Kobayashi (2018) replaced words with other
words based on a language model. All these meth-
ods could potentially be formulated in the MTV.
Some prior work has also drawn connections be-
tween seeing data augmentation as multiple tasks.
Similar to how we optimize augmented data as a
separate task, Meyerson and Miikkulainen (2018)
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created fake tasks by using multiple distinct de-
coders to train a shared structure to solve the same
problem in different ways. In machine translation,
Sennrich et al. (2016b) used monolingual train-
ing examples as parallel examples with an empty
source side, noting that their setup could be seen
as multi-task learning with the tasks as translation
with known sources and language modeling with
unknown sources. Compared with these papers that
create multiple tasks in very specialized scenarios,
the multi-task view that we have presented here can
be used for any type of text data augmentation.

To be clear, our study is not the first to mix orig-
inal and augmented data in training. For instance,
Wang and Yang (2015) use a ratio of 1:5 original
to augmented examples, but this weight of original
data is much smaller than the 0.3 < o < 0.7
that we advocate for. Sennrich et al. (2016b)
also include original data when training with back-
translation augmentation, but the given ratios of
original and augmented data they use appear to
dictated by the speed of their back-translation mod-
els rather than an intentionally-motivated design
choice. We see our work as the first to explicitly for-
mulate the MTV, advocate for a joint optimization
function, and comprehensively explore its implica-
tions on common text augmentation techniques.

As a limitation, our study has focused on label-
preserving augmentation techniques, and our line
of reasoning may not apply when augmentation
techniques intentionally change the label. More-
over, we have only studied text classification with
simple models using task-agnostic augmentation
techniques. Future work in this direction could
experiment with larger-scale models or study task-
specific augmentation.

6 Conclusions

We have proposed a multi-task view that gives
both original and augmented examples substantial
weight during training, contrasting prior work that
performs stochastic data augmentation and ignores
original training data. For four common augmenta-
tion techniques, we found experimentally that this
alternative view allows for stronger levels of aug-
mentation, which in turn leads to better and more
robust performance than traditional augmentation.
We hope our paper inspires future work using text
data augmentation to think more explicitly about
how much augmented examples resemble original
data and consider substantive weighting of origi-

nal data when using data augmentation to improve
model performance.

To close, we leave the enthusiastic reader with
one last thought. Most existing text data aug-
mentation techniques have obediently followed the
paradigm from computer vision of generating aug-
mented examples that are similar to the original
data. Who’s to say that’s how data augmentation
ought to work in NLP? In this paper, we’ve shown
how to search for relative freedom from this con-
straint, simply by taking a different view of the
underlying assumptions. Now, a bigger question
arises on the horizon—what new text augmentation
techniques are unlocked when augmented data are
not forced to resemble the original?
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