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Abstract

Linguistically informed analyses of language
models (LMs) contribute to the understand-
ing and improvement of these models. Here,
we introduce the corpus of Chinese linguistic
minimal pairs (CLiMP), which can be used
to investigate what knowledge Chinese LMs
acquire. CLiMP consists of sets of 1,000
minimal pairs (MPs) for 16 syntactic con-
trasts in Mandarin, covering 9 major Mandarin
linguistic phenomena. The MPs are semi-
automatically generated, and human agree-
ment with the labels in CLiMP is 95.8%. We
evaluate 11 different LMs on CLiMP, covering
n-grams, LSTMs, and Chinese BERT. We find
that classifier—noun agreement and verb com-
plement selection are the phenomena that mod-
els generally perform best at. However, mod-
els struggle the most with the bd construction,
binding, and filler-gap dependencies. Over-
all, Chinese BERT achieves an 81.8% average
accuracy, while the performances of LSTMs
and 5-grams are only moderately above chance
level.

1 Introduction

Language models (LMs) are crucial parts of natu-
ral language processing (NLP) systems for a large
variety of tasks, including summarization, machine
translation, and dialog generation. More recently,
they have become popular in the form of pretrained
models,! which are then fine-tuned on downstream
tasks and often obtain state-of-the-art performance
(Peters et al., 2018; Devlin et al., 2019; Conneau
et al., 2020). However, which linguistic phenom-
ena language models can or cannot learn is still
poorly understood for many languages.

Resources for the syntactic evaluation of LMs,
such as BLiMP (Warstadt et al., 2020) have focused

1Throughout this paper, we adopt a broad definition of

LMs, which includes language representation models which
have been trained on a masked language modeling objective.

mainly on English, and non-English resources
currently only cover a small set of phenomena
(Mueller et al., 2020; Gulordava et al., 2018; Rav-
fogel et al., 2018). In order to spur the analysis and
subsequent improvement of LMs in Chinese, we
introduce the corpus of Chinese linguistic minimal
pairs (CLiMP), which can be used to evaluate LMs’
knowledge of Chinese grammar.

CLiMP consists of 16 individual datasets that are
semi-automatically generated from grammar tem-
plates. Each set—or paradigm—contains 1,000
minimal pairs (MPs). Together, they cover 9
core linguistic phenomena in Chinese. Human
agreement on this corpus is 95.8%, confirming
that CLiMP represents robust contrasts in Chinese
grammar. High performance on CLiMP thus im-
plies high correlation with human acceptability
judgments across these phenomena.

We use CLiMP to study Chinese BERT (Devlin
et al., 2019),2 6 LSTM (Hochreiter and Schmidhu-
ber, 1997) LMs, and 4 5-gram LMs. We evaluate
for each MP whether the LM assigns a higher prob-
ability to the grammatical or the ungrammatical
sentence. Our results show that Chinese BERT is
closest to human performance, achieving an 81.8%
accuracy on average over all phenomena, while the
performances of LSTMs and 5-grams, regardless
of the training data size, are only moderately above
chance level. Classifier—noun agreement and verb
complement selection are the phenomena that mod-
els generally perform best at, suggesting that Chi-
nese LMs are better at acquiring knowledge of local
selectional restrictions. The bd construction, bind-
ing, and filler-gap dependencies are the phenomena
models have the most difficulties with. This indi-
cates that they struggle to learn hierarchical syntax
and to identify long-distance dependencies.

Zhttps://github.com/google-
research/bert/blob/master/multilingual.md
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2 Related Work
2.1 Language Models

LMs assign probabilities to sequences of words (Ju-
rafsky and Martin, 2009). Recently, they have be-
come commonly used as pretrained models, which
can be fine-tuned for downstream NLP tasks (Pe-
ters et al., 2018; Devlin et al., 2019; Conneau et al.,
2020). Strictly speaking, LMs compute the proba-
bilities of words based only on past context. BERT
(Devlin et al., 2019), however, is trained using a
masked language modeling objective: it predicts
words based on past and future tokens. Wang and
Cho (2019) show that BERT is a Markov random
field language model that can assign sentences a
pseudo-log-likelihood score, which is computed
by summing the conditional log probabilities of
all tokens in the sentence, as well as generate text.
Shin et al. (2019) and Salazar et al. (2020) apply
pseudo-log-likelihood scores to sentence ranking
and LM evaluation.

2.2 Evaluation of Linguistic Knowledge

Numerous methods exist for probing syntactic
knowledge of neural network models in English
(Hewitt and Manning, 2019; Tenney et al., 2019),
and a growing body of work evaluates the syntac-
tic knowledge of neural models by testing whether
they can judge the grammatical acceptability of sen-
tences. One common version of this task uses MPs
to evaluate LMs’ linguistic knowledge (Linzen
et al., 2016; Marvin and Linzen, 2018; Warstadt
et al., 2020; Wilcox et al., 2018).

A MP is a pair of sentences that only differ in
acceptability due to a single edit, as in (1) and (2).
Native speakers can be asked to choose which sen-
tence in each pair sounds more grammatical. Semi-
automatically generating MPs can yield a larger set
of controlled sentences, providing sufficient data
for model evaluation (Linzen et al., 2016; Marvin
and Linzen, 2018; Ettinger et al., 2018).

I =& ®EEGTE 1 T
Wangxin bd zixingché réng le
SUBJ. BA.OBJ. V. PST.
“Xin Wang threw away a bike.”
(2 F& W AGE T
Waéngxin bei zixingche réng le
SUBIJ. PASS. OBJ. V. PST.
“Xin Wang was thrown away by a bike.”

It is possible to model acceptability in a to-
tally unsupervised way using LMs. The model

assigns a probability to each sentence in a MP,
and the one with the higher score is predicted
as correct, and the model’s predictions can be
evaluated against human judgments (Marvin and
Linzen, 2018; Warstadt et al., 2020). Supervised
approaches are also possible (Warstadt et al., 2019),
but can be less informative on LMs’ linguistic
knowledge acquisition due to the bias introduced
by training on acceptability judgment labels.

Some prior work evaluates the linguistic knowl-
edge of different non-English models (Ravfogel
et al., 2018; Gulordava et al., 2018; Mueller et al.,
2020). However, these efforts focus mainly on
subject-verb agreement, which is absent in Chi-
nese, and the knowledge of Chinese LMs has not
yet been explicitly studied.

Finally, the linguistic abilities of English BERT
have been investigated in a a lot of prior work,
e.g., Clark et al. (2019); Vig (2019); Hewitt and
Manning (2019). We refer the reader to Rogers
et al. (2021) for an overview.

3 CLiMP

Our main contribution is CLiMP, a corpus of
Chinese MPs designed to evaluate Chinese LMs.
CLiMP consists of 1,000 MPs for each of 16 gram-
matical contrasts, covering 9 major Chinese lin-
guistic phenomena. Example MPs for each phe-
nomenon are shown in Table 1.

3.1 Data Generation

We generate data from grammar templates for ev-
ery paradigm we incorporate. Our templates set
lexical, syntactic, and semantic constraints for each
paradigm, aiming at building robust contrasts and
keeping the sentence length the same within each
MP. We then build an annotated vocabulary, and
generate sentences by sampling words from it. (1)
and (2) show an MP together with the template?
used to create it.

3.2 Vocabulary

We translate Warstadt et al.’s (2020) English vocab-
ulary, containing 3,000 English words with mor-
phological, syntactical, and semantic annotations.
We add words and features specific to Chinese lin-
guistic phenomena to our vocabulary, including
classifiers, verb complements, action verbs, and

3The template example is only for demonstrative purposes.
More information is encoded for the actual data generation.
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coverbs. Our final vocabulary contains 3,456 words
and 84 features.

We show the frequency of words in CLiMP’s
vocabulary in the Chinese Internet Corpus* in Fig-
ure 1. 1,055 of the words in CLiMP are within the
5,000 most frequent words in the Chinese Internet
Corpus.

Distribution of word frequency ranks in vocabulary
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Figure 1: Comparison of word frequencies in CLiMP
and the Chinese Internet Corpus.

3.3 Linguistic Phenomena

CLiMP covers 9 major linguistic phenomena in
Mandarin Chinese, cf. Table 1. They are picked
from a comprehensive Chinese grammar book by
Po-Ching and Rimmington (2015). Following Po-
Ching and Rimmington’s discussion, we now ex-
plain the phenomena not present in English. The
bd construction is an SOV construction involv-
ing the particle bd, which precedes the object and
moves the object to a position before the main verb.
It is only grammatical with a subset of transitive
verbs. Coverbs are verb-like items that precede the
main verb in a serial verb construction. They al-
most invariably have to be used in conjunction with
other verbs in a sentence. They share some prop-
erties with prepositions, but are not syntactically
interchangeable with them. Classifiers obligato-
rily appear with nouns when those are modified
by numerals or adjectives. Mandarin has dozens
of classifiers, and nouns select the classifier they
combine with. Verb complements follow a verb,
often expressing a result or manner of an event.
Not all verbs can be used with all complements,
making certain combinations ungrammatical. NP
head finality is present in Mandarin noun phrases.
The relative clause precedes noun phrases.

3.4 Data Validation

To verify whether the MPs in our dataset show clear
contrasts, we conduct two rounds of human valida-

*http://corpus.leeds.ac.uk/frqc/internet-zh.num

tion with 22 annotators. They are all native speak-
ers of Chinese, 14 females and 8 males, whose ages
range from 20 to 48. All of them have at least a
high school degree.

In our first human validation, each human anno-
tator is assigned a subset (100 MPs) of a paradigm.
We let them perform the same forced-choice task
as our models: decide for each MP which sentence
seems more acceptable. We discard one paradigm,
the coverb-direction paradigm, after this validation,
because its human validation accuracy is below
85%. The average human agreement for the re-
maining paradigms is 95.8%.

In the second human validation, we sample 15
MPs from each of the remaining paradigm, result-
ing in a dataset consisting of 240 MPs. 16 annota-
tors complete the same forced-choice task on this
dataset. We count a MP as valid if more than half
of the annotators agree with its label. The human
agreement on this dataset is 97.1%, showing that
our data creation results in valid examples.

3.5 Comparison with BLiMP

BLiMP consists of 67 datasets, each containing
1,000 MPs and organized by phenomenon into 12
categories. CLiMP only contains 16 datasets due to
the less inflectional nature of Mandarin Chinese. 3
phenomena are covered by both corpora: anaphor
agreement, binding, and filler-gap. The human
agreement for these three phenomena in BLiMP is
97.5%, 87.3%, and 86.9%, respectively. The cor-
responding accuracies in CLiMP are 94.5%, 99%,
and 100%, respectively. The overall human agree-
ment for BLIMP is 88.6%, which is 7.2% lower
than for CLiMP.

4 Models and Methods

We use accuracy for evaluation. A MP in CLiMP is
classified correctly if a LM assigns a higher prob-
ability to the grammatical sentence than to the un-
grammatical one. We evaluate statistical and neural
LMs, including masked LMs. Corpora which con-
tain 0.4M, 2M, and 21.5M sentences are used for
further exploration. We also investigate the effect
of different tokenizations.?

Chinese BERT BERT (Devlin et al., 2019) is
a transformer-based neural model (Vaswani et al.,
2017). Here, we evaluate Chinese BERT.® This

SWe use character tokenization and word tokenization
(https://github.com/fxsjy/jieba).

®https://github.com/google-
research/bert/blob/master/multilingual.md
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Phenomenon N  Acceptable Example

Unacceptable Example

EE2 BT #EC

Anaphor

t 1 Jane.F shock-PST herself.
agreemen "Jane shocked herself’
TR BT RTE s ik ECE-
Binding 1 Yang.Fcure WuM after admire-PST herself
"Yang admired herself after she cured Wu.’
. i B AREH T
construction 1 Wong.M BA bike throw PST
'Wong threw away the bike.’
FUE O’ RE BT WM
Coverb 3  Lee.M ride truck arrive-PST coffee shop

"Lee went to the coffee shop by truck.

T¥ IR LKW BHiad-r .
Wong.F PROG sell May.F clean-PRF-ADJ trolley

NP head finality 1

‘Wong is selling the trolley that Mel has cleaned.’

FEE ERE-T EC-

Jane.F  shock-PST himself.

"Jane shocked himself.

B AT RTER ZE Mk fEC -
Yang.F cure WuM after admire-PST himself

"Yang admired himself after she cured Wu.’

E % BOEH T -

Wong.M PASS bike throw PST

"Wong was thrown away by the bike.!

FE T FE 2T s

LeeM at truck arrive-PST coffee shop

’Lee went to the coffee shop at truck.’

FB IR S HEFE OIROHE EET-.
Wong.F PROG sell trolley May.F clean-PRF-ADJ
‘Wong is selling the trolley that Mel has cleaned.’

AR IEE i — A ZARER. KN IEE Fid — B ZAREER -
Classifier 2 Jay.M PROG pass one CL:INSTITUTION art gallery Jay.M PROG pass one CL:LENGTH art gallery
"Jay is passing through an art gallery.’ "Jay is passing through an art gallery.
BHiE, W JTE £ X . R, | OFE R0 EYE.
Filler gap 1 Thelibrary, I drive to-PRF this place The library, I drive to-PRF the museum
‘The library, I have driven to this place.’ ‘The library, I have driven to the museum.’
X BE W O ER-T. Xee BE OB TFRET .
Passive 1 These patient PASS transfer-PST These patient PASS fall-PST
"These patients were transferred.’ "These patients were fell.
Vet ES NS S DL R = EM W wE T T 08%.

complement

"Wong’s article frightened Bao badly.

5 Wong.F POSS article frighten badly PST Bao.F.

Wong.F POSS article frighten openly PST Bao.F.
"Wong’s article frightened Bao openly.

Table 1: Nine Chinese linguistic phenomena covered by CLiMP with acceptable and unacceptable sentence ex-
amples. Minimal differences are underlined. The second line of each example shows a gloss, the third line is an
English translation. N represents how many paradigms (each with 1,000 examples) are within each phenomena.

model has 12 layers, 768 hidden units, 12 attention
heads, and 110M parameters. The training dataset
contains 25M sentences. We assign probabilities to
sentences with this model by masking the words in
a sentence one by one, computing the probability
of each masked word, and, finally, multiplying the
probabilities of all words (Wang and Cho, 2019;
Salazar et al., 2020).”

LSTM LMs We further evaluate 6 LSTM
(Hochreiter and Schmidhuber, 1997) LMs. These
model have 2 layers, 200 hidden units, and 2 atten-
tion heads. We train them using Pytorch’s word
language model code® on 3 differently-sized Chi-
nese Wikipedia corpora: 0.4M, 2M, and 21.5M
sentences. We further compare word-level and
character-level models (cf. Table 2). For evalu-
ation, we employ code adapted by Warstadt et al.
(2020) from Gulordava et al. (2018).”

n-gram LMs Finally, we experiment with 4 dif-
ferent 5-gram LMs, which have been trained on
0.4M and 2M sentences from Chinese Wikipedia.
For each corpus size, we train one word-based and
one character-based LM. Those models are imple-

"https://github.com/xu-song/bert-as-language-model

8https://github.com/pytorch/examples/tree/master/
word_language_model

*https://github.com/sheng-fu/colorlessgreenRNNs

mented using KenLM.!'°

5 Results

All results are shown in Table 2.

Phenomenon-specific Results Our LMs per-
form best on classifier—noun agreement and verb
complement selection: Chinese BERT’s accuracy
is only 6.8% and, respectively, 3% lower than that
of humans on these two phenomena. LSTMs and 5-
grams remain around 30% behind humans, but still
perform better on these phenomena than on others
in CLiMP. This indicates that Chinese LMs acquire
local selection knowledge better than the linguistic
knowledge needed to master other phenomena.

Our LMs stuggle most with the bd construction,
binding, and filler-gap dependencies. All models
perform close to chance level for binding, suggest-
ing that they lack the hierarchical knowledge neces-
sary to correctly resolve the structural relationship
between a reflexive and its binder. Similarly, most
models perform near chance on filler-gap depen-
dencies. This suggests that they do not robustly
represent long-distance dependencies.'!

https://kheafield.com/code/kenlm/
T A caveats applies: because Mandarin lacks wh-movement,
we test filler-gap dependencies using a topicalization construc-
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Model Overall Clsfrr V.Cp. Hd.Fi. Theba. Coverb Ana.Agr. Pass. Bind. Fi.Gap
Human 95.8 99.7  96.0 100.0 850 92.5 94.5 91.0 99.0 100.0
Chinese BERT 81.8 92.9 93.0 53.1 69.0 87.9 86.2 67.7 50.8 62.4
LSTM-21.5M-word  62.8 7577 740 814 10.0 47.0 63.1 68.4 50.1 415
LSTM-21.5M-char  60.7 56.1 64.9 89.1 32.1 432 57.0 67.9 50.0 68.8
LSTM-2M-word 66.0 778 738 750 484 434 67.0 68.0 500 592
LSTM-2M-char 60.4 68.4 68.1 86.3 29.0 28.5 68.1 68.4 50.1 61.9
LSTM-2M-word 60.6 699 654 703 41.1 38.8 66.3 72,7 500 552
LSTM-2M-char 63.2 68.9 69.7 83.9 25.0 45.6 67.7 743 50.0 64.4
5-gram-2M-word 59.0 70.1 71 55.2 15.6 39.2 67.7 72,0 49.6 400
5-gram-2M-char 65.7 70.6 78.8  68.3 30.6 539 65.8 648 516 573
5-gram-0.4M-word  55.9 664 695 463 6.0 37.0 69.1 778 49.1 252
5-gram-0.4M-char  60.0 71.5 65.4 70.5 19.3 46.5 68.8 68.7 50.2 48.4

Table 2: Percentage accuracy of all humans and models on CLiMP. Random guessing yields an accuracy of 50%.
Bold numbers indicate the phenomenon each model is best at. Numbers in model names (21.5, 2, 0.4) refer to the

number of sentences in the training corpus.

On the head-final construction, Chinese BERT
performs surprisingly poorly as compared to the
other models: only 53.1% accuracy as compared
to an average accuracy of 81% by the LSTMs. The
coverb construction, in contrast, is easy for Chi-
nese BERT: it achieves 87.9% accuracy, while the
highest accuracy among all other models is 47%.

Model-specific Results Comparing across mod-
els, Chinese BERT achieves by far the highest over-
all accuracy with 81.8%. Our different LSTMs
all perform worse, but obtain surprisingly similar
scores: from 60.4% to 66.0%. The performances
of our 5-grams range from 55.9% to 65.7%. Keep-
ing tokenization and corpus size constant, three out
of four 5-grams are outperformed by LSTMs. Thus,
we overall find that neural models have advantages
as compared to statistical models.

Comparing among the LSTMs, we find similarly
to Hu et al. (2020) that the corpus size does not
have much influence on the overall performance,
with the caveat that these models perform close
to chance. In contrast, a larger corpus size does
result in a better performance in 5-grams. We
also compare the effect of different tokenizations:
Character-based 5-grams demonstrate better per-
formance than word-based ones. For LSTMs, how-
ever, using characters only results in a better per-
formance for our smallest corpus size (0.4M).

Compared to English LMs (Warstadt et al.,
2020), the human—model gap is much bigger for
Chinese models. While neither models nor datasets
are directly comparable between our and previous
work, this still suggests that more analyses and
developments are needed for non-English models.

tion more common in speech, and less likely to appear in the
training corpora.

6 Conclusion

We introduced CLiMP, a suite of diagnostic test
sets aimed at evaluating which syntactic phenom-
ena Chinese LMs learn, and used it to evaluate
11 different models. All LMs appeared to have
learned local selectional restrictions, but struggled
with argument structure alternations, hierarchical
structure, and long-distance dependencies. Chi-
nese BERT performed best on CLiMP overall.
However, it obtained a 14% lower accuracy than
humans, suggesting there is still much room for
improvement. We hope that CLiMP will serve
as a linguistically informed resource for bench-
marking and analyzing future progress on Chi-
nese LMs. CLiMP is available at https://nala-

cub.github.io/resources.

7 Acknowledgments

We would like to thank the students from CU Boul-
der’s CSCI/LINGS5832 in Spring 2020 for their
feedback on this research. We are also grateful
for the feedback of the anonymous reviewers.

References

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276-286, Florence, Italy. Association
for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In

2788


https://nala-cub.github.io/resources
https://nala-cub.github.io/resources
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440-
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Allyson Ettinger, Ahmed Elgohary, Colin Phillips, and
Philip Resnik. 2018. Assessing composition in sen-
tence vector representations. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 1790-1801, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195-1205, New
Orleans, Louisiana. Association for Computational
Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4129-4138, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox,
and Roger Levy. 2020. A systematic assessment
of syntactic generalization in neural language mod-
els. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 1725-1744, Online. Association for Compu-
tational Linguistics.

Dan Jurafsky and James H. Martin. 2009. Speech
and language processing: An introduction to natu-
ral language processing, computational linguistics,
and speech recognition. Pearson Prentice Hall, Up-
per Saddle River, N.J.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521—
535.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192—-1202,
Brussels, Belgium. Association for Computational
Linguistics.

Aaron Mueller, Garrett Nicolai, Panayiota Petrou-
Zeniou, Natalia Talmina, and Tal Linzen. 2020.
Cross-linguistic syntactic evaluation of word predic-
tion models. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5523-5539, Online. Association for
Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
22272237, New Orleans, Louisiana. Association
for Computational Linguistics.

Yip Po-Ching and Don Rimmington. 2015. Chinese: A
comprehensive grammar. Routledge.

Shauli Ravfogel, Yoav Goldberg, and Francis Tyers.
2018. Can LSTM learn to capture agreement? the
case of basque. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpret-
ing Neural Networks for NLP, pages 98-107, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2021. A Primer in BERTology: What We Know
About How BERT Works. Transactions of the As-
sociation for Computational Linguistics, 8(0):842—
866.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 2699-2712, Online. Association for Compu-
tational Linguistics.

Joonbo Shin, Yoonhyung Lee, and Kyomin Jung. 2019.
Effective sentence scoring method using BERT for
speech recognition. In Asian Conference on Ma-
chine Learning, pages 1081-1093.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, £ ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all

2789


https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/C18-1152
https://www.aclweb.org/anthology/C18-1152
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/2020.acl-main.490
https://doi.org/10.18653/v1/2020.acl-main.490
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/W18-5412
https://doi.org/10.18653/v1/W18-5412
https://transacl.org/index.php/tacl/article/view/2257
https://transacl.org/index.php/tacl/article/view/2257
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998-6008. Cur-
ran Associates, Inc.

Jesse Vig. 2019. A multiscale visualization of atten-
tion in the transformer model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
37-42, Florence, Italy. Association for Computa-
tional Linguistics.

Alex Wang and Kyunghyun Cho. 2019. BERT has
a mouth, and it must speak: BERT as a Markov
random field language model. In Proceedings of
the Workshop on Methods for Optimizing and Eval-
uating Neural Language Generation, pages 30-36,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
nananey, Wei Peng, Sheng-Fu Wang, and Samuel
Bowman. 2020. BLiMP: The Benchmark of Lin-
guistic Minimal Pairs for English. Transactions

of the Association for Computational Linguistics,
8(0):377-392.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625-641.

Ethan Wilcox, Roger Levy, Takashi Morita, and
Richard Futrell. 2018. What do rnn language mod-
els learn about filler—gap dependencies? In Proceed-
ings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 211-221.

2790


https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/W19-2304
https://doi.org/10.18653/v1/W19-2304
https://doi.org/10.18653/v1/W19-2304
https://transacl.org/ojs/index.php/tacl/article/view/2013
https://transacl.org/ojs/index.php/tacl/article/view/2013

