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Abstract

Spotting a lie is challenging but has an enor-
mous potential impact on security as well as
private and public safety. Several NLP meth-
ods have been proposed to classify texts as
truthful or deceptive. In most cases, however,
the target texts’ preceding context is not con-
sidered. This is a severe limitation, as any com-
munication takes place in context, not in a vac-
uum, and context can help to detect deception.
We study a corpus of Italian dialogues contain-
ing deceptive statements and implement deep
neural models that incorporate various linguis-
tic contexts. We establish a new state-of-the-
art identifying deception and find that not all
context is equally useful to the task. Only the
texts closest to the target, if from the same
speaker (rather than questions by an interlocu-
tor), boost performance. We also find that
the semantic information in language models
such as BERT contributes to the performance.
However, BERT alone does not capture the im-
plicit knowledge of deception cues: its contri-
bution is conditional on the concurrent use of
attention to learn cues from BERT’s represen-
tations.

1 Introduction
“The sky is bright green” is easily identified as false
statement under normal circumstances. However,
following “Look at this surreal painting,” the assess-
ment changes. Spotting falsehoods and deception
is useful in many personal, economic, legal, and
political situations – but it is also extremely compli-
cated. However, the reliability of communication
is the basis of the social contract, with implications
on personal, economic, legal, and political levels.
There has been a growing interest in automatic de-
ception detection from academia and industry in
recent years (see section 9).

One of the main research lines tries to increase
the collection of deception cues in terms of number

and variety. For example, several successful studies
show how to exploit multi-modal signals, jointly an-
alyzing verbal, video, and audio data (Pérez-Rosas
et al., 2015). For the same reason, several early
studies tried to identify deception cues through
manual feature annotation, like irony or ambigu-
ity (Fitzpatrick and Bachenko, 2012). While these
approaches offer a broad and interpretable descrip-
tion of the phenomenon, their main limitation lies
in data collection and preprocessing difficulty.

Surprisingly, so far, little attention has been
paid to expanding the targets’ linguistic context,
which is the easiest source of additional cues and
data. Even in dialogues, which by definition are
exchanges between different speakers/writers, the
main focus is typically on the target text. None
consider the preceding statements, be they issued
by the same speaker of an interlocutor.

We hypothesize that linguistic context can be
useful for text classification. Based on a data set of
dialogues in Italian Courts, we train models that in-
corporate knowledge both from the target sentence
and different configurations of the previous ones.
We use Hierarchical Transformers and neural mod-
els based on BERT for text-pair representations and
compare with the previous state-of-the-art methods
and other non-contextual neural models, including
BERT for single text representation.

We distinguish different kinds of context, de-
pending on the window size and the speaker’s iden-
tity (same one as of the target sentence or different).
We find that context carries useful information for
deception detection, but only if it is narrow and
produced by the same author of the target text.

We also find that BERT’s semantic knowledge
helps the classification, but only when it is com-
bined with neural architectures suitable to discover
stylistic patterns beyond the texts’ content that are
potentially associated with deception.

To our knowledge, this is the first study that tests
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these methods on data collected from real, high-
stakes conditions for the subjects and not from a
laboratory or game environment.

Contributions The contributions of this paper
are as follows:

• We evaluate ways to incorporate contextual
information for detecting deception on real-
life data.

• We significantly outperform the previous state-
of-the-art results.

• We show that language models are useful for
the task, but they need the support of meth-
ods dedicated to detect deception’s stylomet-
ric features.

2 Dataset
We use the DECOUR dataset (Fornaciari and Poe-
sio, 2012), which includes courtroom data tran-
scripts of 35 hearings for criminal proceedings held
in Italian courts. This provides a unique source of
real deception data. The corpus is in Italian. It
consists of dialogues between an interviewee and
some interviewers (such as the judge, the prosecu-
tor, the lawyer). Each dialogue contains a sequence
of utterances of the different speakers. These ut-
terances are called turns. By definition, adjacent
turns come from different speakers. Each turn con-
tains one or more utterances. Each utterance by the
interviewee is labeled as True, False or Uncertain.
The utterances of the other speakers are not labeled.
Table 1 shows some corpus and labels’ statistics.

Role Turns Utterances tokens

Interviewee 2094 3015 42K
Interviewers 2373 3124 87K

4467 6139 129K

Labels: True Uncertain False Tot.

Number: 1202 868 945 3015

Table 1: DECOUR’s statistics

The authors anonymized the data and released
them here.

3 Experimental conditions
Fornaciari and Poesio (2013) use binary classifica-
tion (false utterances versus the true and uncertain
ones, aggregated together into one class of non-
false utterances, see section 2, Table 1). To avoid

overfitting training and testing on utterances from
the same hearing, they use leave-one-out cross-
validation, where each fold constitutes one hearing.
In these settings, in each fold one hearing is used
as test set, one as development, and the others as
training set. For the sake of comparison, we fol-
lowed the same approach. We ran five epochs of
training for each fold, selecting the model with the
best F-score in the development set.

We also identify seven kinds of different contexts
that should help the classification task, together
with the target utterance. They are as follows:

1 previous utterance - 1prev. We consider the
first utterance preceding the target, regardless
of the speaker who issued the statement.

2 previous utterances - 2prev. Same as above,
but here we collect the first two sentences
before the target.

3 previous utterances - 3prev. In this case, we
collect the three previous utterances, again
regardless of the speaker.

Speaker’s previous utterance - s-utt. In this con-
dition, we consider the utterance preceding
the target only if the speaker is the same inter-
viewee. If another speaker issues the previous
utterance, it is not collected, and the target
utterance remains without context.

Speaker’s previous utterances - s-utts. Similarly
to the previous condition, we only collect the
interviewee’s utterances, but if the target utter-
ance is preceded by more than one utterance
(within the same turn), they are all collected.
In other words, we collect all the turn’s utter-
ances until the target one.

Speaker’s previous utterances + turn - s-utturn.
In these conditions, we consider all the possi-
ble speaker’s utterances and the previous turn,
which belongs to another speaker. If there are
no previous speaker’s utterances, we only col-
lect the previous turn. This would make the
instance equal to those created according to
the last condition.

Previous turn - turn. We collect the whole previ-
ous turn, regardless of the possible previous
speaker’s utterances. This is the only condi-
tion where, by definition, the context is not
produced by the interviewee him/herself.

https://fornaciari.netlify.app
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4 Metrics and baselines
We evaluate the model on four metrics: accuracy,
precision, recall and, F-measure. While accuracy is
a standard metric, its informative power is limited
when the data set is imbalanced, and the class of
interest is the minority class, like in this case. In
fact, the majority class’s performance conceals the
real performance on the minority one. Even so, it
can be a problematic baseline to beat, as the simple
heuristic of always predicting the majority class
can result in high accuracy. In DECOUR, non-false
utterances are the majority class with 68.66% of
the instances. Therefore, this is the accuracy we
would obtain always predicting the majority class.
We use this majority-class prediction as a baseline.
For the models’ overall evaluation, we rely on the
F-measure, which reflects the real proficiency of
the models balancing the correct predictions in the
two classes.

Besides the majority class prediction, which
reaches an F-measure of 40.71, we also compare
our models with the previous state-of-the-art. We
use the highest performance in F-measure from For-
naciari and Poesio (2013). In that experiment, they
jointly used Bag-Of-Words - BOW features and
the lexical features provided by the LIWC (Pen-
nebaker et al., 2001) and applied an SVM classifier
(Drucker et al., 1997). The accuracy of that model
is 70.18% and the F-measure 62.98 (table 2).

5 Methods
We perform the classification with several neural
models. For all the models that do not rely on
the BERT contextual embeddings (Devlin et al.,
2018), we used the pre-trained Fast Text embed-
dings (Joulin et al., 2016) as initialization weights,
and we fine-tuned them during the training process.
We did not fine-tune the contextual BERT embed-
dings for reasons of computational load. However,
the high number of the models’ parameters required
a low learning rate, which we manually adjusted to
1.e− 4, and a small batch size, which was 8. The
drop-out probability was 0.1.

5.1 Neural baselines

We add two neural baselines: a Multi-Layer Percep-
tron (MLP) and a Convolutional Neural Network
(CNN).

The MLP did not beat the SVM’s performance.
The CNN’s F-measure was better than that of the
SVM, but not significantly. Also, the CNN proved
to be less effective than the attention-based models

that did not exploit contextual information (table 2).
Therefore we did not feed the MLP and the CNN
with contextual information and kept them as ad-
ditional neural baselines. However, to obtain their
best performance possible, we carried out a com-
prehensive hyper-parameters search. For the MLP,
we found the best results with trainable FastText
embeddings followed by two hidden layers. For
the CNN, we used 3 Convolutional-MaxPooling
layers with 32, 64, and 128 channels, respectively,
and windows’ sizes of 2, 4, and 6.

5.2 Transformers-based models

Based on the success of the Transformer architec-
ture in NLP (Vaswani et al., 2017), we used them
to create two kinds of models, hierarchical and non-
hierarchical. We adopted a non-hierarchical struc-
ture to analyze the target sentence alone, and we
implemented Hierarchical Transformers to encode
the target sentence and the contextual information
jointly.

In the Hierarchical model, the input is not a sin-
gle utterance but a series of utterances. We pad
the maximum number of sentences to 5. This limit
allows us to collect the whole text from about the
98% of the turns in DECOUR. However, as we
will see in sections 6 and 8, considering a broader
context would not have been useful.

Not considering the batch, the Hierarchical
Transformers take as input a 3D tensor of Doc-
uments by Words by Embeddings. Each Words
by Embeddings matrix is passed to a multi-layer,
multi-head Transformer that provides a represen-
tation of each utterance, returning as output a ten-
sor of the same shape of the input. A following
fully-connected layer reduces the embeddings’ di-
mension. The documents’ representations are then
concatenated into a 2D tensor and passed to an-
other multi-layer, multi-head Transformer, which
provides the overall document representation. An-
other fully connected layer is used to reduce the
tensor’s last dimension, which is then reshaped to a
row vector. This vector is fed into the last fully con-
nected layer that provides the prediction. Figure 1
shows such an architecture

With the Hierarchical Transformer, we run the
experiments for the seven contexts described in
section 3. Again, we tuned our hyper-parameters.
In the hierarchical models, we used six layers and
six heads Transformers for the encoders both at
utterance and at documents level. For the non-
hierarchical model, two layers and two heads were
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Figure 1: Hierarchical Transformers structure.

sufficient to obtain the best development set results.

5.3 BERT-based models

Finally, we perform the classification using BERT
base (Devlin et al., 2018) for Italian.1 We set up
three kinds of models:

BERT + dense layer This is the simplest network,
and we use it for predictions on the target
utterance alone. We feed the BERT mean
pooled output into a fully connected layer that
performs the prediction.

BERT + Transformers This is a more expressive
network, where the BERT output is passed to
a multi-layer, multi-head Transformer. The
Transformer’s representation is then passed to
a fully connected layer that outputs the predic-
tion. We adopted Transformers with six layers
and six heads, like the Hierarchical Transform-
ers models. Similarly to the BERT + Dense
model, we only feed this network with the
target sentence.

text-pair BERT + Transformers The last net-
work is structurally equal to the previous one,
but in this case, we use BERT in its text-pair
modality. Wet set the target sentence’s size to
100 words and for the contexts to 400. The
context is the concatenation of the selected
texts, padded or truncated at the head. We
would lose only the part of the text farthest
from the target sentence in case of truncation.
However, the corpus mostly contains brief
statements: padding to 100 and 400 guaran-
tees a minimum data loss. With this model,
we test the seven contexts described above.

6 Results
The results are drawn in table 2.

1https://huggingface.co/dbmdz/
bert-base-italian-cased

The first group of experiments contains the base-
lines from the literature and simple neural net-
works. The second and the third group show the
Transformers-based and the BERT-based models,
respectively. We report Accuracy, Precision, Re-
call, and the F-measure. As a benchmark for the
significance test, we use the literature baseline from
Fornaciari and Poesio (2013) The asterisks repre-
sent the significance levels, computed via bootstrap
sampling for p ≤ .05 and p ≤ .01. Following
Søgaard et al. (2014), who recommend avoiding
too small sample sizes, we set our sample at 50%
of the corpus.

6.1 Overview

The results show that the SVM’s performance is a
strong baseline. Only a few models beat its accu-
racy, and none significantly. The same holds for
precision. The recall is the metric where most neu-
ral models outperform SVM (significantly in five
cases), even though the price they pay is a lower
precision of the predictions. As a result, only four
models of the 16 Transformer- and BERT-based
ones show an F-Measure significantly better than
SVM, corresponding to a significant improvement
in the recall and better accuracy, albeit not signifi-
cant. Also, a couple of deep neural models perform
poorly. We will discuss them in the next sections.

6.2 Non-contextualized models

Two of the best models consider only the target
sentence: the non-hierarchical Transformer and
the one using BERT for single text, followed by
the Transformers architecture. Despite our effort
in the hyper-parameters exploration, including the
use of a very low learning rate and regularization
methods such as drop-out, we could not prevent
that model from strong, early overfitting at a low
level of performance. It seems that a single fully
connected layer is unable to manage the complexity
of this task, as we will discuss in section 8.

https://huggingface.co/dbmdz/bert-base-italian-cased
https://huggingface.co/dbmdz/bert-base-italian-cased


2703

Model Condition Accuracy Precision Recall F-Measure

Majority class 68.66% 34.33% 50.00% 40.71%
SVM (Fornaciari and Poesio, 2013) 70.18% 64.42% 62.41% 62.98%
MLP no context 67.16% 61.75% 61.65% 61.70%
CNN no context 69.75% 64.98% 65.15% 65.06%

Transformers. no context 70.98% 66.41% 66.64 ** 66.52% *
Hierarchical Transformers. 1 prev 68.72% 64.06% 64.51% 64.25%
Hierarchical Transformers. 2 prev 67.56% 63.04% 63.70% 63.29%
Hierarchical Transformers. 3 prev 68.13% 63.52% 64.08% 63.75%
Hierarchical Transformers. s-utt 68.36% 64.22% 65.20% 64.54%
Hierarchical Transformers. s-utts 68.36% 63.98% 64.74% 64.26%
Hierarchical Transformers. s-uttturn 68.39% 63.82% 64.39% 64.05%
Hierarchical Transformers. turn 67.16% 53.53% 50.95% 46.17%

BERT + Dense layer no context 69.09% 63.37% 51.78% 45.60%
BERT + Transformers no context 70.41% 66.23% 67.10% ** 66.57% *
text-pair BERT + Transformers 1prev 68.66% 64.63% 65.70% * 64.97%
text-pair BERT + Transformers 2prev 66.14% 62.77% 64.18% 62.98%
text-pair BERT + Transformers 3prev 64.91% 61.38% 62.60% 61.55%
text-pair BERT + Transformers s-utt 71.34% 66.97% 67.46% ** 67.19% *
text-pair BERT + Transformers s-utts 71.61% 66.84% 66.44% * 66.63% *
text-pair BERT + Transformers s-uttturn 66.50% 62.17% 62.98% 62.42%
text-pair BERT + Transformers turn 68.76% 64.39% 65.14% 64.67%

Table 2: Baselines, Hierarchical Transformers and text-pair BERT + Transformers models’ performance in the
different conditions (see section 3). In bold the significant results against SVM, with ∗∗ : p ≤ 0.01; ∗ : p ≤ 0.05

6.3 Contextualized models

The contextualized models show similar trends
within the Transformer- and the BERT- based mod-
els. They are more evident and result in higher
performance in the BERT models but are visible in
the Hierarchical Transformers as well.

None of the Hierarchical Transformers shows an
F-measure better than that of the non-hierarchical
Transformer model, and they are better than the
SVM baseline, but not significantly. We also see
that the performance slowly degrades when the
context is expanded from one to three utterances,
regardless of the speaker of those utterances (green
histogram in table 2). The same consideration
holds for the subject’s previous utterance, all their
previous utterances, these utterances plus the pre-
vious turn, or the previous turn alone. In this last
case, the fall of performance is remarkable. The
model struggles to recognize the false utterances,
and the recall is around 50%.

The BERT-based models confirm the loss of per-
formance with context from 1 to 3 utterances, re-
gardless of the speaker. In this case, the F-measure

slope in the three conditions is even more pro-
nounced than in the case of the Hierarchical Trans-
formers.

The best results come from the two models,
which rely on the contexts where only the inter-
viewee’s utterances are considered. These models
are significantly better than SVM in terms of F-
measure, and they have the highest performance
even in terms of precision and accuracy. The best
model is even significantly better than the one that
uses convolutions, both for F1 and for recall, with
p < .05.

In the conditions where another speaker’s previ-
ous turn is included in the models, the performance
worsens, similarly to the Hierarchical Transformers
models tested in the same conditions.

7 The language of deception

We adopt two methods to depict the deceptive lan-
guage: 1) we compute the Information Gain (IG)
of word n-grams (Forman, 2003), and 2) we apply
the Sampling and Occlusion (SOC) algorithm (Jin
et al., 2019).

Information Gain measures the entropy of (se-
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quences of) terms between the different classes.
The more imbalanced the presence of such terms
for one label class at the other’s expense, the higher
the IG value. Table 3 shows the tri-grams with the
highest IG values, divided according to the class of
which they are indicative, i.e., where they are more
frequently found. While we computed the IG score
from uni-grams to penta-grams, we show only
tri-grams that, for illustration, represent the best
trade-off between meaningful and frequent chunks
of text.

These n-grams show that deceptive statements
abound with negations: mostly of not remembering,
but also not knowing and not having done. In con-
trast, truthful statements tend to be more assertive
and focused on concrete details of time and cir-
cumstances. The IG signal’s strength also suggests
that sincere expressions are much more varied than
deceptive ones, which are repeated more often and
seem to be particularly stereotyped.

Even though the patterns detected by the neural
models are not necessarily interpretable in terms of
human common sense, we also use SOC to high-
light the words that the models find to be the most
influential for their output.

SOC gives a post-hoc explanation of the weight
of specific words in a sentence for the classification
task by considering the prediction difference after
replacing each word with a MASK token (Jin et al.,
2019). Since the outcomes depend on the context
words, but Jin et al. (2019) are interested in the
single words’ relevance, they do not use the whole
context but sample words from it. In this way, they
reduce the context’s weight, emphasizing that of
the word itself.

Figure 2 shows two examples of correctly clas-
sified sentences, one deceptive and one truthful.
The model interprets the red words as indicative
of deception, the blue ones of truthfulness. They
are coherent with the intuition provided by the IG.
However, they cannot be interpreted as representa-
tive of our most complex models’ inner functioning,
as SOC relies on a standard BERT-based classifier.

8 Discussion
Our results show that the Transformers-based mod-
els, in the hierarchical and non-hierarchical form,
obtain good results in the classification task. Even
the non-hierarchical model is significantly better
than the previous state-of-the-art.

However, the BERT-based models are those that
show the best and the worst results. The worst ones

come from the BERT for single-text and a simple
dense output layer. On the other hand, when the
fully connected layer is substituted by multi-layer,
multi-head Transformers, while the BERT output is
the same, the performance improves substantially
(non-contextual models, red histograms in table 2).

We also ran experiments with text-pair BERT +
Dense layer. We do not report the details since they
do not add to the results: performance is low, while
text-pair BERT with Transformers gives the best
outcomes (blue histograms).

These results suggest that:

1. BERT does not embody the knowledge nec-
essary for detecting deception. The input rep-
resentations of a single fully connected layer
are not expressive enough to cope with the
task’s complexity. This makes sense: BERT
is not trained on texts and on a task (to predict
the masked words) to train it to recognize de-
ception. The cues of deception are essentially
stylometric (section 7) and need a dedicated
neural architecture to learn them. This is just
the case of the Transformers that we associate
with BERT. Thanks to their positional em-
beddings, they can identify the texts’ relevant
parts, which the task requires. This aspect
also explains the SVM’s performance based
on n-grams and CNNs. Its convolutional lay-
ers essentially explore patterns in the n-gram
embeddings.

2. When it is combined with architectures that
detect deception cues, such as the Transform-
ers, BERT’s knowledge becomes an added
value that allows the models to reach the best
performance. Therefore, the key to success
is to combine the power of transfer learning
models that bring a robust semantic knowl-
edge base and attention mechanisms to ex-
plore sequences, detecting patterns more com-
plex than those identified by simple, fully con-
nected layers.

3. On the other hand, when the contextual knowl-
edge in BERT embeddings is missing, we see
an over-estimation of the stylometric features
coming from the context. For example, in
the Hierarchical Transformers case, the mod-
els rely only on the texts’ information, which
prevents the hierarchical models from outper-
forming the non-hierarchical ones. Therefore,
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True tri-gram Translation IG*100 False tri-gram Translation IG*100

in quel periodo at that time 3.245 non ricordo . I don’t remember. 21.858
non ho capito I don’t understand 2.884 non lo so I don’t know 10.831
è vero che it is true that 2.884 non l’ ho I didn’t 09.257
mi sembra che it seems to me that 2.884 non mi ricordo I didn’t remember 08.674
tant’ è vero so much so that 2.523 non posso dire I cannot say 07.789
in carcere , in prison, 2.162 il mio amico my friend. 07.627
c’ è la there is the 2.162 io l’ ho I did. 06.843
e niente , ultimately, 2.162 lo ricordo . ...remember it. 06.677
ho capito . I understand. 2.162 mi ricordo proprio I just remember 06.674
di sı̀ . (I think) so. 2.162 l’ ho allontanato I pushed him away 06.674

Table 3: Information Gain (rescaled by 100 to avoid tiny values) of tri-grams indicative of truth (left) and deception
(right)

Figure 2: Output of the SOC algorithm. The red terms predict deception, the blue ones predict truthfulness.

we speculate that BERT’s contextual knowl-
edge works as a regularizer, which provides
the Transformer with previously weighted in-
puts, according to the sentences’ meaning.

Our results concerning BERT’s usefulness with
context are different from those obtained by Peskov
et al. (2020), who work on Diplomacy board-game
deception data. Their study associated BERT to
LSTM-based contextual models, and they did not
find a BERT contribution in their model’s perfor-
mance. They tried to fine-tune it, and they hypoth-
esized that the lack of performance improvement
was motivated by the “relatively small size” of the
training data. This hypothesis could be correct, but

our outcome allows us to formulate another hypoth-
esis. Their data set concerns an online game, where
the range of topics in the dialogues is presumably
restricted and specific. This limitation would not
allow BERT’s broad knowledge to give a concrete
contribution. In contrast, the data set we use comes
from real life. The number of possible topics in
Court is the widest. Under such conditions, it is
reasonable that BERT’s semantic information can
play a much more relevant role: this gives a dif-
ferent intuition about the kind of use-cases where
BERT can be useful.

Regarding the use of contexts to improve decep-
tion detection, it turns out that they can be useful,
but they need to be carefully handled. In fact, not
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any context helps. It is not advisable to generically
“collect something” before the target text. To select
the previous sentence(s), regardless of the speaker,
means to incorporate noise that is more harmful
than helpful for the task.

Our best models are those that only consider
the utterances of the speaker him/herself. More-
over, even in that case, the context’s contribution
improves according to its proximity to the target
sentence. The overall performance model that only
uses the speaker’s first previous utterance is slightly
better than that of the models considers all of them.
This evidence is made even stronger by the ob-
servation that, in most cases, there is no previous
speaker’s utterance, as he/she responds with a sin-
gle utterance to a statement or question of an in-
terlocutor. To be precise, only 921 utterances of
3015 are preceded by another utterance by the same
subject. So in more than two-thirds of the cases,
the target utterance has no context from the same
speaker and has to be considered standing alone,
similarly to non-contextualized models. In other
words, meaningful context is often absent but can
contribute remarkably to reach better performance,
which suggests that context is crucial for the task.

In other words, the fact that the additional infor-
mation, even if present in less than one-third of the
cases, is enough to outperform the other models
and to reach the best results suggests that this is the
way to obtain the best help from the context when
present.

The loss of performance when the contexts in-
clude the previous turn is also coherent with the
results with the contexts based on a given num-
ber of previous utterances: incorporating the state-
ments/questions of the other persons does not help
detect deception. If any, the right cues for detecting
deception are in the target sentence itself or just
nearby.

Also, the contextual information’s usefulness is
conditioned by using the right models. BERT and
the trainable Transformers need to be used together.
The attention mechanism that follows BERT is
the trainable part of the network and detects the
stylometric patterns of deception. However, we
speculate that the BERT’s contextual word repre-
sentations act as a regularizer, which reduces the
probability that the information from outside the
target sentence, carried by non-contextual embed-
dings, is overestimated.

9 Related work

The first computational linguistics study on decep-
tion detection was Newman et al. (2003). They
asked subjects to write truthful and deceptive es-
says and evaluated them using the Linguistic En-
quiry and Word Count (LIWC), a lexicon that as-
signs texts several linguistic and psychological
scores. LIWC is a popular tool in deception de-
tection, also used in Fornaciari and Poesio (2013),
which we compare to.

There are two main research lines: one relies
on artificially produced data, often using crowd-
sourcing services, and the other focuses on data
sets from real-life situations. The common bot-
tleneck for data set creation is the availability of
ground truth, i.e., knowing the truth behind a sub-
ject’s statements. For this reason, many studies rely
on data collected in laboratory conditions (Ott et al.,
2011). While these studies allow us to gain intu-
itions about the deceptive language features, there
are no real or relevant consequences for the liars.
Their validity concerning high-stakes conditions
is therefore unclear. Artificially created texts are
likely not interchangeable with those from natural
conditions (Fornaciari et al., 2020).

The notion of deception itself is used in a broad
sense and includes studies that focus on a different
kind of deception. A popular area, for example,
concerns the detection of fake news (Oshikawa
et al., 2018; Girgis et al., 2018) The field is expand-
ing to include models that does not detect deceit
strictly speaking, but trolls in social media (Adda-
wood et al., 2019).

Pérez-Rosas et al. (2015) is more similar to our
study. They collected videos from public court tri-
als and built a multi-modal model that relies on
verbal (unigrams and bigrams) and non-verbal fea-
tures (Decision Trees (DT) and Random Forest
(RF)). Krishnamurthy et al. (2018) used the same
data set, but with neural models to represent video,
audio, and textual features. In particular, they ex-
tracted verbal features relying on pre-trained word
embeddings and Convolutional Neural Networks.
They reached an accuracy of 96.14%. These stud-
ies are particularly interesting for the type of data
set and the multi-modal approach. However, nei-
ther take the linguistic context of the statements
into consideration.

Levitan et al. (2018) used the data set of Levitan
et al. (2015), where 170 pairs of subjects play a
“lying game”. This study addresses deception in di-
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alogues. I.e., the texts are structured as a sequence
of turns, each containing one or more statements
of a single participant. For the analysis, the authors
selected several easily interpretable linguistic fea-
tures, allowing the authors to draw a description of
the deceptive language and feed a Random Forest
classifier. This considers both single and multiple
turns, finding that the last ones allowed to reach
the best performance in their data set (F1-score of
72.33%). However, this is a laboratory experiment
that is not a high-stakes scenario for the partici-
pants: this limits the possibilities of comparison
with our study.

From a methodological point of view, our study
is similar to that by Peskov et al. (2020). They col-
lect data from an online negotiation game, where
the participants’ success depends on their ability to
lie. They use state-of-the-art neural models, which
also consider contextual information. However,
subjects are not in a high-stakes condition in their
study, so their findings are not directly comparable
to our use case.

10 Conclusion
In this paper, we explore the performance of lan-
guage models in detecting lies using a unique data
set that contains sentences that come from real hear-
ings created by Fornaciari and Poesio (2013) and
anonymized for a research setting. We show that
context is key to creating models that can detect de-
ception and that BERT with some added attention
layers can effectively beat different baselines.

However, there is no evidence that the decep-
tion cues derive from dialogic interaction, as the
most useful contributions come from the speaker
him/herself. To examine in depth this aspect is a
line for future research.

11 Ethical statement and limitations
Applying predictive models in a legal and law en-
forcement context can be problematic, especially of
the historical training data is biased towards certain
groups (Angwin et al., 2016).

Therefore, we do not propose general-purpose
models for deception detection. They only refer
to the context of hearings in court, and they can
be applied, at best, to similarly ruled events, for
example texts coming from police interrogations.
However, as statistical models, they do incorporate
linguistic biases that are possibly present in the
training data (Shah et al., 2020). This should be
considered for a fair and respectful interpretation

of the results.
It is also important to point out that the model

predictions have no absolute certainty but are intrin-
sically probabilistic. As such, they are only meant
to support investigations and to inform a judge’s
decisions. They cannot be a substitute for expert
evaluations or for a due legal process.
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