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Abstract

Much recent work suggests that incorporat-
ing syntax information from dependency trees
can improve task-specific transformer models.
However, the effect of incorporating depen-
dency tree information into pre-trained trans-
former models (e.g., BERT) remains unclear,
especially given recent studies highlighting
how these models implicitly encode syntax.
In this work, we systematically study the util-
ity of incorporating dependency trees into pre-
trained transformers on three representative in-
formation extraction tasks: semantic role label-
ing (SRL), named entity recognition, and rela-
tion extraction.

We propose and investigate two distinct strate-
gies for incorporating dependency structure: a
late fusion approach, which applies a graph
neural network on the output of a transformer,
and a joint fusion approach, which infuses syn-
tax structure into the transformer attention lay-
ers. These strategies are representative of prior
work, but we introduce additional model de-
sign elements that are necessary for obtaining
improved performance. Our empirical anal-
ysis demonstrates that these syntax-infused
transformers obtain state-of-the-art results on
SRL and relation extraction tasks. However,
our analysis also reveals a critical shortcom-
ing of these models: we find that their perfor-
mance gains are highly contingent on the avail-
ability of human-annotated dependency parses,
which raises important questions regarding the
viability of syntax-augmented transformers in
real-world applications.1

1 Introduction

Dependency trees—a form of syntactic represen-
tation that encodes an asymmetric syntactic rela-
tion between words in a sentence, such as sub-

1Our code is available at: https://github.com/
DevSinghSachan/syntax-augmented-bert

ject or adverbial modifier—have proven very use-
ful in various NLP tasks. For instance, features
defined in terms of the shortest path between
entities in a dependency tree were used in rela-
tion extraction (RE) (Fundel et al., 2006; Björne
et al., 2009), parse structure has improved named
entity recognition (NER) (Jie et al., 2017), and
joint parsing was shown to benefit semantic role
labeling (SRL) (Pradhan et al., 2005) systems.
More recently, dependency trees have also led to
meaningful performance improvements when in-
corporated into neural network models for these
tasks. Popular encoders to include dependency tree
into neural models include graph neural networks
(GNNs) for SRL (Marcheggiani and Titov, 2017)
and RE (Zhang et al., 2018), and biaffine attention
in transformers for SRL (Strubell et al., 2018).

In parallel, there has been a renewed interest in
investigating self-supervised learning approaches
to pre-training neural models for NLP, with recent
successes including ELMo (Peters et al., 2018),
GPT (Radford et al., 2018), and BERT (Devlin
et al., 2019). Of late, the BERT model based on
pre-training of a large transformer model (Vaswani
et al., 2017) to encode bidirectional context has
emerged as a dominant paradigm, thanks to its
improved modeling capacity which has led to state-
of-the-art results in many NLP tasks.

BERT’s success has also attracted attention to
what linguistic information its internal representa-
tions capture. For example, Tenney et al. (2019)
attribute different linguistic information to different
BERT layers; Clark et al. (2019) analyze BERT’s
attention heads to find syntactic dependencies;
Hewitt and Manning (2019) show evidence that
BERT’s hidden representation embeds syntactic
trees. However, it remains unclear if this linguistic
information helps BERT in downstream tasks dur-
ing finetuning or not. Further, it is not evident if
external syntactic information can further improve

https://github.com/DevSinghSachan/syntax-augmented-bert
https://github.com/DevSinghSachan/syntax-augmented-bert
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BERT’s performance on downstream tasks.

In this paper, we investigate the extent to which
pre-trained transformers can benefit from integrat-
ing external dependency tree information. We per-
form the first systematic investigation of how de-
pendency trees can be incorporated into pre-trained
transformer models, focusing on three representa-
tive information extraction tasks where dependency
trees have been shown to be particularly useful
for neural models: semantic role labeling (SRL),
named entity recognition (NER), and relation ex-
traction (RE).

We propose two representative approaches to in-
tegrate dependency trees into pre-trained transform-
ers (i.e., BERT) using syntax-based graph neural
networks (syntax-GNNs). The first approach in-
volves a sequential assembly of a transformer and a
syntax-GNN, which we call Late Fusion, while the
second approach interleaves syntax-GNN embed-
dings within transformer layers, termed Joint Fu-
sion. These approaches are inspired by recent work
that combines transformers with external input, but
we introduce design elements such as the alignment
between dependency tree and BERT wordpieces
that lead to obtaining strong performance. Compre-
hensive experiments using these approaches reveal
several important insights:

• Both our syntax-augmented BERT models
achieve a new state-of-the-art on the CoNLL-
2005 and CoNLL-2012 SRL benchmarks when
the gold trees are used, with the best variant out-
performing a fine-tuned BERT model by over 3
F1 points on both datasets. The Late Fusion ap-
proach also provides performance improvements
on the TACRED relation extraction dataset.

• These performance gains are consistent across
different pre-trained transformer approaches
of different sizes (i.e. BERTBASE/LARGE and
RoBERTaBASE/LARGE).

• The Joint Fusion approach that interleaves GNNs
with BERT achieves higher performance im-
provements on SRL, but it is also less stable and
more prone to errors when using noisy depen-
dency tree inputs such as for the RE task, where
Late Fusion performs much better, suggesting
complementary strengths from both approaches.

• In the SRL task, the performance gains of both
approaches are highly contingent on the availabil-
ity of human-annotated parses for both training
and inference, without which the performance

gains are either marginal or non-existent. In the
NER task, even the gold trees don’t show perfor-
mance improvements.

Although our work does obtain new state-of-the-
art results on SRL tasks by introducing dependency
tree information from syntax-GNNs into BERT,
however, our most important result is somewhat
negative and cautionary: the performance gains are
only substantial when human-annotated parses are
available. Indeed, we find that even high-quality
automated parses generated by domain-specific
parsers do not suffice, and we are only able to
achieve meaningful gains with human-annotated
parses. This is a critical finding for future work—
especially for SRL—as researchers routinely de-
velop models with human-annotated parses, with
the implicit expectation that models will generalize
to high-quality automated parses.

Finally, our analysis provides indirect evidence
that pre-trained transformers do incorporate suffi-
cient syntactic information to achieve strong per-
formance on downstream tasks. While human-
annotated parses can still help greatly, with our
proposed models it appears that the knowledge
in automatically extracted syntax trees is largely
redundant with the implicit syntactic knowledge
learned by pre-trained models such as BERT.

2 Models

In this section, we will first briefly review the trans-
former encoder, then describe the graph neural
network (GNN) that learns syntax representations
using dependency tree input, which we term the
syntax-GNN. Next, we will describe our syntax-
augmented BERT models that incorporate such
representations learned from the GNN.

2.1 Transformer Encoder

The transformer encoder (Vaswani et al., 2017) con-
sists of three core modules in sequence: embedding
layer, multiple encoder layers, and a task-specific
output layer. The core elements in these mod-
ules are different sets of learnable weight matrices
that perform linear transformations. The embed-
ding layer consists of wordpiece embeddings, posi-
tional embeddings, and segment embeddings (De-
vlin et al., 2019). After embedding lookup, these
three embeddings are added to obtain token embed-
dings for an input sentence. The encoder layers
then transform the input token embeddings to hid-
den state representations. The encoder layer con-
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Figure 1: Block diagram illustrating syntax-GNN ap-
plied over a sentence’s dependency tree. In the example
shown, for the word “have”, the graph-attention sub-
layer aggregates representations from its three adjacent
nodes in the dependency graph.

sists of two sublayers: multi-head dot-product self-
attention and feed-forward network, which will be
covered in the following section. Finally, the out-
put layer is task-specific and consists of one layer
feed-forward network.

2.2 Syntax-GNN: Graph Neural Network
over a Dependency Tree

A dependency tree can be considered as a multi-
attribute directed graph where the nodes represent
words and the edges represent the dependency re-
lation between the head and dependent words. To
learn useful syntax representations from the depen-
dency tree structure, we apply graph neural net-
works (GNNs) (Hamilton et al., 2017; Battaglia
et al., 2018) and henceforth call our model syntax-
GNN. Our syntax-GNN encoder as shown in Fig-

ure 1 is a variation of the transformer encoder
where the self-attention sublayer is replaced by
graph attention (Veličković et al., 2018). Self-
attention can also be considered as a special case
of graph-attention where each word is connected
to all the other words in the sentence.

Let V = {vi ∈ Rd}i=1:N v denote the input node
embeddings andE = {(ek, i, j)k=1:N e} denote the
edges in the dependency tree, where the edge ek is
incident on nodes i and j. Each layer in our syntax-
GNN encoder consists of two sublayers: graph
attention and feed-forward network.

First, interaction scores (sij) are computed for
all the edges by performing dot-product on the
adjacent linearly transformed nodes embeddings

sij = (viWQ)(vjWK)>. (1)

The terms viWQ and viWK are also known as
query and key vectors respectively. Next, an at-
tention score (αij) is computed for each node by
applying softmax over the interaction scores from
all its connecting edges:

αij =
exp(sij)∑

k∈Ni
exp (sik)

, (2)

where Ni refers to the set of nodes connected to ith

node. The graph attention output (zi) is computed
by the aggregation of attention scores followed by
a linear transformation:

zi = (
∑
j∈Ni

αij(vjWV))WF. (3)

The term vjWV is also referred to as value vec-
tor. Subsequently, the message (zi) is passed to
the second sublayer that consists of two layer fully
connected feed-forward network with GELU acti-
vation (Hendrycks and Gimpel, 2016).

FFN(zi) = GELU(ziW1 + b1)W2 + b2 . (4)

The FFN sublayer outputs are given as input to
the next layer. In the above equations WK, WV,
WQ, WF, W1, W2 are trainable weight matrices
and b1, b2 are bias parameters. Additionally, layer
normalization (Ba et al., 2016) is applied to the
input and residual connections (He et al., 2016) are
added to the output of each sublayer.

2.2.1 Dependency Tree over Wordpieces
As BERT models take as input subword units (also
known as wordpieces) instead of linguistic tokens,
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Figure 2: Block diagrams illustrating our proposed
syntax-augmented BERT models. Weights shown in
color are pre-trained while those not colored are either
non-parameterized operations or have randomly initial-
ized weights. The inputs to each of these models are
wordpiece embeddings while their output goes to task-
specific output layers. In subfigure 2b, N× indicates
that there are N layers, with each of them being passed
the same set of syntax-GNN hidden states.

this also necessitates to extend the definition of a
dependency tree to include wordpieces. For this,
we introduce additional edges in the original de-
pendency tree by defining new edges from the first
subword (head word) of a token to the remaining
subwords (tail words) of the same token.

2.3 Syntax-Augmented BERT

In this section, we propose parameter augmen-
tations over the BERT model to best incorpo-
rate syntax information from a syntax-GNN. To
this end, we introduce two models— Late Fusion
and Joint Fusion. These models represent novel
mechanisms—inspired by previous work—through
which syntax-GNN features are incorporated at dif-
ferent sublayers of BERT (Figure 2). We refer
to these models as Syntax-Augmented BERT (SA-
BERT) models. During the finetuning step, the new
parameters in each model are randomly initialized
while the existing parameters are initialized from
pre-trained BERT.

Late Fusion: In this model, we feed the BERT
contextual representations to the syntax-GNN en-
coder i.e. syntax-GNN is stacked over BERT (Fig-
ure 2a). We also use a Highway Gate (Srivastava
et al., 2015) at the output of the syntax-GNN en-
coder to adaptively select useful representations
for the training task. Concretely, if vi and zi are
the representations from BERT and syntax-GNN
respectively, then the output (hi) after the gating
layer is computed as,

gi = σ(Wgvi + bg) (5)

hi = gi � vi + (1− gi)� zi, (6)

where σ is the sigmoid function 1/ (1 + e−x) and
Wg is a learnable parameter. Finally, we map the
output representations to linguistic space by adding
the hidden states of all the wordpieces that map to
the same linguistic token respectively.

Joint Fusion: In this model, syntax represen-
tations are incorporated within the self-attention
sublayer of BERT. The motivation is to jointly at-
tend over both syntax- and BERT representations.
First, the syntax-GNN representations are com-
puted from the input token embeddings and its
final layer hidden states are passed to BERT. Sec-
ond, as is shown in Figure 2b, the syntax-GNN hid-
den states are linearly transformed using weights
PK, PV to obtain additional syntax-based key and
value vectors. Third, syntax-based key and value
vectors are added with the BERT’s self-attention
sublayer key and value vectors respectively. Fourth,
the query vector in self-attention layer now attends
over this set of keys and values, thereby augment-
ing the model’s ability to fuse syntax information.
Overall, in this model, we introduce two new set of
weights per layer {PK, PV}, which are randomly
initialized.

3 Experimental Setup

3.1 Tasks and Datasets

For our experiments, we consider information ex-
traction tasks for which dependency trees have been
extensively used in the past to improve model per-
formance. Below, we provide a brief description
of these tasks and the datasets used and refer the
reader to Appendix A.1 for full details.

Semantic Role Labeling (SRL) In this task, the
objective is to assign semantic role labels to text
spans in a sentence such that they answer the query:
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Who did what to whom and when? Specifically, for
every target predicate (verb) of a sentence, we de-
tect syntactic constituents (arguments) and classify
them into predefined semantic roles. In our exper-
iments, we study the setting where the predicates
are given and the task is to predict the arguments.
We use the CoNLL-2005 SRL corpus (Carreras
and Màrquez, 2005) and CoNLL-2012 OntoNotes2

dataset, which contains PropBank-style annota-
tions for predicates and their arguments, and also
includes POS tags and constituency parses.

Named Entity Recognition (NER) NER is the
task of recognizing entity mentions in text and
tagging them to entity categories. We use the
OntoNotes 5.0 dataset (Pradhan et al., 2012), which
contains 18 named entity types.

Relation Extraction (RE) RE is the task of pre-
dicting the relation between the two entity mentions
in a sentence. We use the label corrected version of
the TACRED dataset (Zhang et al., 2017; Alt et al.,
2020), which contains 41 relation types as well as a
special no_relation class indicating that no relation
exists between the two entities.

3.2 Training Details
We select bert-base-cased to be our reference pre-
trained baseline model.3 It consists of 12 layers,
12 attention heads, and 768 model dimensions. In
both the variants, the syntax-GNN component con-
sists of 4 layers, while other configurations are kept
the same as bert-base. Also, for the Joint Fusion
method, syntax-GNN hidden states were shared
across different layers. It is worth noting that as our
objective is to assess if the use of dependency trees
can provide performance gains over pre-trained
transformer models, it is important to tune the hy-
perparameters of these baseline models to obtain
strong reference scores. Therefore, for each task,
during the finetuning step, we tune the hyperpa-
rameters of the default bert-base model and use
the same hyperparameters to train the SA-BERT
models. We refer the reader to Appendix A.2 for
additional training details.

4 Results and Analysis

In this section, we present our main empirical anal-
yses and key findings.

2conll.cemantix.org/2012/data.html
3bert-base configuration was preferred due to computa-

tional reasons and we found that bert-cased provided substan-
tial gains over bert-uncased in the NER task.

Test Set P R F1

Baseline Models (without dependency parses)

SA+GloVe† 84.17 83.28 83.72
SA+ELMo† 86.21 85.98 86.09
BERTBASE 86.97 88.01 87.48

Gold Dependency Parses

Late Fusion 89.17 91.09 90.12
Joint Fusion 90.59 91.35 90.97

Table 1: SRL results on the CoNLL-2005 WSJ test
set averaged over 5 independent runs. † marks results
from Strubell et al. (2018).

Test Set P R F1

Baseline Models (without dependency parses)

SA+GloVe† 82.55 80.02 81.26
SA+ELMo† 84.39 82.21 83.28
Deep-LSTM+ELMo‡ - - 84.60
Structure-distilled BERT∗ - - 86.39
BERTBASE 85.91 87.07 86.49

Gold Dependency Parses

Late Fusion 88.06 90.32 89.18
Joint Fusion 89.34 90.44 89.89

Table 2: SRL results on the CoNLL-2012 test set
averaged over 5 independent runs. † marks results
from Strubell et al. (2018); ‡ mark result from Peters
et al. (2018); ∗ mark result from Kuncoro et al. (2020).

4.1 Benchmark Performance

To recap, our two proposed variants of the Syntax-
Augmented BERT models in Section 2.3 mainly
differ at the position where syntax-GNN outputs
are fused with the BERT hidden states. Following
this, we first compare the effectiveness of these
variants on all the three tasks, comparing against
previous state-of-the-art systems such as (Strubell
et al., 2018; Jie and Lu, 2019; Zhang et al., 2018),
which are outlined in Appendix B due to space
limitations. For this part we use gold dependency
parses to train the models for SRL and NER, and
predicted parses for RE, since gold dependency
parses are not available for TACRED.

We present our main results for SRL in Table 1
and Table 2, NER in Table 3, and RE in Table 4.
All these results report average performance over
five runs with different random seeds. First, we
note that for all the tasks, our bert-base baseline is
quite strong and is directly competitive with other
state-of-the-art models.

We observe that both the Late Fusion and Joint
Fusion variants of our approach yielded the best
results in the SRL tasks. Specifically, on CoNLL-

conll.cemantix.org/2012/data.html
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Test Set P R F1

Baseline Models (without dependency parses)

BiLSTM-CRF+ELMo† 88.25 89.71 88.98
BERTBASE 88.75 89.61 89.18

Gold Dependency Parses

DGLSTM-CRF+ELMo† 89.59 90.17 89.88
Late Fusion 88.75 89.19 88.97
Joint Fusion 88.58 89.31 88.94

Table 3: NER results on the OntoNotes-5.0 test set
averaged over 5 independent runs. † marks results
from Jie and Lu (2019).

Test Set P R F1

Baseline Models (without dependency parses)

BERTBASE 78.04 76.36 77.09

Stanford CoreNLP Dependency Parses

GCN† 74.2 69.3 71.7
GCN+BERTBASE

† 74.8 74.1 74.5
Late Fusion 78.55 76.29 77.38
Joint Fusion 70.22 75.12 72.52

Table 4: Relation extraction results on the revised TA-
CRED test set (Alt et al., 2020), averaged over 5 in-
dependent runs. † marks results reported by Alt et al.
(2020).

2005 and CoNLL-2012 SRL, Joint Fusion im-
proves over bert-base by an absolute 3.5 F1 points,
while Late Fusion improves over bert-base by 2.65
F1 points. On the RE task, the Late Fusion model
improves over bert-base by approximately 0.3 F1

points while the Joint Fusion model leads to a drop
of 4.5 F1 points in performance (which we suspect
is driven by the longer sentence lengths observed in
TACRED). On NER, the SA-BERT models lead to
no performance improvements as their scores lies
within one standard deviation to that of bert-base.

Overall, we find that syntax information is most
useful to the pre-trained transformer models in the
SRL task, especially when intermixing the interme-
diate representations of BERT with representations
from the syntax-GNN. Moreover, when the fusion
is done after the final hidden layer of the pre-trained
models, apart from providing good gains on SRL,
it also provides small gains on RE task. We further
note that, as we trained all our syntax-augmented
BERT models using the same hyperparameters as
that of bert-base, it is possible that separate hy-
perparameter tuning would further improve their
performance.

4.2 Impact of Parsing Quality

In this part, we study to what extent parsing quality
can affect the performance results of the syntax-
augmented BERT models. Specifically, following
existing work, we compare the effect of using parse
trees from three different sources: (a) gold syntac-
tic annotations4; (b) a dependency parser trained
using gold, in-domain parses5; and (c) available
off-the-shelf NLP toolkits.6 In previous work, it
was shown that using in-domain parsers can pro-
vide good improvements on SRL (Strubell et al.,
2018) and NER tasks (Jie and Lu, 2019), and the
performance can be further improved when gold
parses were used at test time. Meanwhile, in many
practical settings where gold parses are not read-
ily available, the only option is to use parse trees
produced by existing NLP toolkits, as was done
by Zhang et al. (2018) for RE. In these cases, since
the parsers are trained on a different domain of
text, it is unclear if the produced trees, when used
with the SA-BERT models, can still lead to per-
formance gains. Motivated by these observations,
we investigate to what extent gold, in-domain, and
off-the-shelf parses can improve performance over
strong BERT baselines.
Comparing off-the-shelf and gold parses. We
report our findings on the CoNLL-2005 SRL
(Table 5), CoNLL-2012 SRL (Table 6), and
OntoNotes-5.0 NER (Table 7) tasks. Using gold
parses, both the Late Fusion and Joint Fusion mod-
els obtain greater than 2.5 F1 improvement on SRL
tasks compared with bert-base while we don’t ob-
serve significant improvements on NER. We further
note that as the gold parses are produced by expert
human annotators, these results can be considered
as the attainable performance ceiling from using
parse trees in these models.

We also observe that using off-the-shelf parses
from the Stanza toolkit (Qi et al., 2020) provides
little to no gains in F1 scores (see Tables 5 and 7).
This is mainly due to the low in-domain accuracy of
the predicted parses. For example, on the CoNLL-

4We use Stanford head rules (de Marneffe and Manning,
2008) implemented in Stanford CoreNLP v4.0.0 (Manning
et al., 2014) to convert constituency trees to dependency trees
in UDv2 format (Nivre et al., 2020).

5The difference between settings (a) and (b) is during test
time. In (a) gold parses are used for both training and test
instances while in (b) gold parses are used for training, while
during test time, parses are extracted from a dependency parser
which was trained using gold parses.

6In this setting, the parsers are trained on general datasets
such as the Penn Treebank or the English Web Treebank.
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Test Set P R F1

Stanza Dependency Parses (UAS: 84.20)

Late Fusion 86.85 88.06 87.45
Joint Fusion 86.87 87.85 87.36

In-domain Dependency Parses (UAS: 92.66)

LISA+GloVe† 85.53 84.45 84.99
LISA+ELMo† 87.13 86.67 86.90
Late Fusion 86.80 87.98 87.39
Joint Fusion 87.09 87.95 87.52

Gold Dependency Parses

Late Fusion 89.17 91.09 90.12
Joint Fusion 90.59 91.35 90.97

Table 5: SRL results with different parses on the
CoNLL-2005 WSJ test set averaged over 5 independent
runs. † marks results from Strubell et al. (2018).

2005 SRL test set the UAS is 84.2% for the Stanza
parser, which is understandable as the parser was
trained on the EWT corpus which covers a different
domain.

In a more fine-grained error analysis, we also ex-
amined the correlation between parse quality and
performance on individual examples on CoNLL-
2005 (Figures 3a and 3b), finding a mild but signifi-
cant positive correlation between parse quality and
relative model performance when training and test-
ing with Stanza parses (Figure 3a). Interestingly,
we found that this correlation between parse quality
and validation performance is much stronger when
we train a model on gold parses but then evaluate
with noisy Stanza parses (Figure 3b). This suggests
that the model trained on noisy parses tends to rely
less on the noisy dependency tree inputs, while
the model trained on gold parses is more sensitive
to the external syntactic input. This correlation is
further reinforced by our manual error analysis pre-
sented in Appendix C (Figures 4 and 5), where we
show how the erroneous edges in the Stanza parses
can lead to incorrect predictions of the SRL tags.
Do in-domain parses help? Lastly, for the setting
of using in-domain parses, we only evaluate on
the SRL task, since on the NER task even using
gold parses does not yield substantial gain. We
train a biaffine parser (Dozat and Manning, 2017)
on the gold parses from the CoNLL-2005 train-
ing set and obtain parse trees from it at test time.
We observe that while the obtained parse trees are
fairly accurate (with a UAS of 92.6% on the test
set), it leads to marginal or no improvements over
bert-base. This finding is also similar to the re-
sults obtained by Strubell et al. (2018), where their

Test Set P R F1

Stanza Dependency Parses (UAS: 82.73)

Late Fusion 85.74 87.18 86.45
Joint Fusion 85.94 87.05 86.49

In-domain Dependency Parses (UAS: 93.60)

Late Fusion 86.06 86.90 86.48
Joint Fusion 85.75 86.92 86.33

Gold Dependency Parses

Late Fusion 88.06 90.32 89.18
Joint Fusion 89.34 90.44 89.89

Table 6: SRL results with different parses on the
CoNLL-2012 test set.

Test Set P R F1

Stanza Dependency Parses (UAS: 83.91)

Late Fusion 88.83 89.42 89.12
Joint Fusion 88.56 89.38 88.97

In-domain Dependency Parses (UAS: 96.10)

DGLSTM-CRF+ELMo† – – 89.64

Gold Dependency Parses

DGLSTM-CRF+ELMo† 89.59 90.17 89.88
Late Fusion 88.75 89.19 88.97
Joint Fusion 88.58 89.31 88.94

Table 7: NER results with different parses on the
OntoNotes-5.0 test set averaged over 5 independent
runs. † marks results from Jie and Lu (2019).

LISA+ELMo model only obtains a relatively small
improvement over SA+ELMo. We hypothesize
that as the accuracy of the predicted parses further
increases, the F1 scores would be closer to that
from using the gold parses. One possible reason
for these marginal gains from using the in-domain
parses is that as they are still imperfect, the errors
in the parse edges is forcing the model to ignore
the syntax information.

Overall, we conclude that parsing quality has a
drastic impact on the performance of the Syntax-
Augmented BERT models, with substantial gains
only observed when gold parses are used.

5 Generalizing to BERT Variants

Our previous results used the bert-base setting,
which is a relatively small configuration among pre-
trained models. Devlin et al. (2019) also proposed
larger model settings (bert-large7, whole-word-
masking8) that outperformed bert-base in all the
benchmark tasks. More recently, Liu et al. (2019)

724 layers, 16 attention heads, 1024 model dimensions
8https://bit.ly/3l7rbXx

https://bit.ly/3l7rbXx
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(a) When models are trained using Stanza and gold parses,
we observe a small positive correlation between F1 difference
and UAS, suggesting that as UAS of Stanza parse increases,
the model makes less errors. The slope of the fitted linear
regression model is 0.075 and the intercept is -9.27.
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(b) Inference is done using Stanza parses on a model trained
with gold parses. The slope of the fitted linear regression
model is 0.345 and the intercept is -38.9.

Figure 3: Correlation between parse quality and differ-
ence in F1 scores on CoNLL-2005 SRL WSJ dataset.

proposed RoBERTa, a better-optimized variant of
BERT that demonstrated improved results. A re-
search question that naturally arises is: Is syntactic
information equally useful for these more powerful
pre-trained transformers, which were pre-trained
in a different way than bert-base? To answer this,
we finetune these models—with and without Late
Fusion—on the CoNLL-2005 SRL task using gold
parses and report their performance in Table 8.9

As expected, we observe that both bert-large
and bert-wwm models outperform bert-base, likely
due to the larger model capacity from increased
width and more layers. Our Late Fusion model
consistently improves the results over the underly-
ing BERT models by about 2.2 F1. The RoBERTa
models achieve improved results compared with
the BERT models. And again, our Late Fusion
model further improves the RoBERTa results by
about 2 F1. Thus, it is evident that the gains from
the Late Fusion model generalize to other widely
used pre-trained transformer models.

9We use the Late Fusion model with gold parses in this
section, as it is computationally more efficient to train than
Joint Fusion model.

Gold Parses P R F1

BERT

BERTLARGE 88.14 88.84 88.49
Late Fusion 89.86 91.57 90.70

BERTWWM 88.04 88.87 88.45
Late Fusion 89.88 91.63 90.75

RoBERTa

RoBERTaLARGE 89.14 89.90 89.47
Late Fusion 90.89 92.08 91.48

Table 8: SRL results from using different pre-trained
models on the CoNLL-2005 WSJ test set averaged
over 5 independent runs. WWM indicates the whole-
wordpiece-masking.

6 Generalizing to Out-of-Domain Data

In real-world applications, NLP systems are of-
ten used in a domain different from training. And
it was previously shown that many NLP systems,
such as information extraction systems, suffer from
substantial performance degradation when applied
to out-of-domain data (Huang and Yates, 2010).
While it is evident that syntax trees may help mod-
els generalize to out-of-domain data (Wang et al.,
2017), since the inductive biases introduced by
these trees are invariant across domains, it is un-
clear if this hypothesis holds for more recent pre-
trained models. To study this, we run experiments
on SRL with the CoNLL-2005 SRL corpus because
this is where we have access to both in-domain and
out-of-domain test data using the same annotation
schema. The training set of this corpus contains
WSJ articles from the newswire domain and the test
set consists of two splits: WSJ articles (in-domain)
and Brown corpus10 (out-of-domain). For train-
ing, we use both BERT and RoBERTa pre-trained
models and leverage gold parses in syntax-GNN
models.

From the results in Table 9, the utility of syntax-
GNN is evident, as we find that the Late Fusion
model always improves over its corresponding
BERT and RoBERTa baselines by 2-3% relative F1,
with RoBERTa-large based Late Fusion achieving
the best F1 on both WSJ and Brown datasets. We
also compare the performance across both domains,
with the last column showing the relative drop in
the F1 score between WSJ and Brown datasets.
We observe that the performance of all models
drops substantially on the Brown set. However,
compared with randomly initialized transformer

10contains text from 15 genres (Francis and Kucera, 1979)
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WSJ Test Brown Test

Gold Parses F1 % ∆ F1 % ∆ % ∇

Baseline Models

SA+GloVe† 84.5 73.1 13.5
LISA+GloVe† 86.0 1.8 76.5 4.7 11.0

BERT

BERTBASE 87.5 81.5 6.9
Late Fusion 90.1 3.0 83.9 2.9 6.9

BERTLARGE 88.5 82.5 6.8
Late Fusion 90.8 2.6 84.6 2.5 6.8

RoBERTa

RoBERTaLARGE 89.5 84.0 6.1
Late Fusion 91.5 2.2 85.5 1.8 6.6

Table 9: Out-of-domain SRL results on the CoNLL-
2005 WSJ and Brown test sets. † marks results re-
ported in Strubell et al. (2018). %∆ denotes the relative
gain in F1 over pre-trained models when using Late Fu-
sion model, %∇ denotes the relative drop in F1 when
a model trained on WSJ dataset is tested on the Brown
dataset.

models, where the results can drop by 13%, both
syntax-fused and pre-trained models lead to better
generalization as the relative error drop reduces
to 6–7%. We see that using Late Fusion does not
lead to a better out-of-domain generalization, when
compared to strong pre-trained transformers with-
out using parse trees. Lastly, we find that among all
pre-trained models, RoBERTa-large and its syntax-
fused variant Late Fusion achieves the lowest out-
of-domain generalization error.

7 Related Work

Our work is based on finetuning large pre-trained
transformer models for NLP tasks, and is closely
related to existing work on understanding the syn-
tactic information encoded in them, which we have
earlier covered in Section 1. Here we instead focus
on discussing related work that studies incorporat-
ing syntax into neural NLP models.

Relation Extraction Neural network models
have shown performance improvements when
shortest dependency path between entities was in-
corporated in sentence encoders: Liu et al. (2015)
apply a combination of recursive neural networks
and CNNs; Miwa and Bansal (2016) apply tree-
LSTMs for joint entity and relation extraction;
and Zhang et al. (2018) apply graph convolutional
networks (GCN) over LSTM features.

Semantic Role Labeling Recently, several ap-
proaches have been proposed to incorporate de-
pendency trees within neural SRL models such as
learning the embeddings of dependency path be-
tween predicate and argument words (Roth and
Lapata, 2016); combining GCN-based dependency
tree representations with LSTM-based word rep-
resentations (Marcheggiani and Titov, 2017); and
linguistically-informed self-attention in one trans-
former attention head (Strubell et al., 2018). Kun-
coro et al. (2020) directly inject syntax information
into BERT pre-training through knowledge distilla-
tion, an approach which improves the performance
on several NLP tasks including SRL.

Named Entity Recognition Moreover, syntax
has also been found to be useful for NER as it
simplifies modeling interactions between multiple
entity mentions in a sentence (Finkel and Man-
ning, 2009). To model syntax on OntoNotes-5.0
NER task, Jie and Lu (2019) feed the concatenated
child token, head token, and relation embeddings to
LSTM and then fuse child and head hidden states.

8 Conclusion

In this work, we explore the utility of incorporating
syntax information from dependency trees into pre-
trained transformers when applied to information
extraction tasks of SRL, NER, and RE. To do so,
we compute dependency tree embeddings using a
syntax-GNN and propose two models to fuse these
embeddings into transformers. Our experiments
reveal several important findings: syntax represen-
tations are most helpful for SRL task when fused
within the pre-trained representations, these per-
formance gains on SRL task are contingent on the
quality of the dependency parses. We also notice
that these models don’t provide any performance
improvements on NER. Lastly, for the RE task,
syntax representations are most helpful when incor-
porated on top of pre-trained representations.
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A Experimental Setup

A.1 Task-Specific Modeling Details

Semantic Role Labeling (SRL): We model
SRL as a sequence tagging task using a linear-chain
CRF (Lafferty et al., 2001) as the last layer. During
inference, we perform decoding using the Viterbi
algorithm (Forney, 1973). To highlight predicate
position in the sentence, we use indicator embed-
dings as input to the model.

Named Entity Recognition (NER): Similar to
SRL, we model NER as a sequence tagging task,
and use a linear-chain CRF layer over the model’s
hidden states. Sequence decoding is performed
using the Viterbi algorithm.

Relation Extraction (RE): As is common in
prior work (Zhang et al., 2018; Miwa and Bansal,
2016), the dependency tree is pruned such that the
subtree rooted at the lowest common ancestor of en-
tity mentions is given as input to the syntax-GNN.
Following Zhang et al. (2018), we extract sentence
representations by applying a max-pooling opera-
tion over the hidden states. We also concatenate the
entity representations with sentence representation
before the final classification layer.

A.2 Additional Training Details

During the finetuning step, the new parameters in
each model are randomly initialized while the ex-
isting parameters are initialized from pre-trained
BERT. For regularisation, we apply dropout (Sri-
vastava et al., 2014) with p = 0.1 to attention co-
efficients and hidden states. For all datasets, we
use the canonical training, development, and test
splits. We use the Adam optimizer (Kingma and
Ba, 2015) for finetuning.

We observed that the initial learning rate of 2e-5
with a linear decay worked well for all the tasks.
For the model training to converge, we found that
10 epochs were sufficient for CoNLL-2012 SRL
and RE and 20 epochs were sufficient for CoNLL-
2005 SRL and NER. We evaluate the test set per-
formance using the best-performing checkpoint on
the development set.

For evaluation, following convention we report
the micro-averaged precision, recall, and F1 scores
in every task. For variance control in all the experi-
ments, we report the mean of the results obtained
from five independent runs with different seeds.

B Additional Baselines

Besides BERT models, we also compare our re-
sults to the following previous work, which had
obtained good performance gains on incorporating
dependency trees with neural models:
• For SRL, we include results from the SA (self-

attention) and LISA (linguistically-informed self-
attention) model by Strubell et al. (2018). In
LISA, the attention computation in one attention-
head of the transformer is biased to enforce de-
pendent words only attend to their head words.
The models were trained using both GloVe (Pen-
nington et al., 2014) and ELMo embeddings.

• For NER, we report the results from Jie and Lu
(2019), where they concatenate the child token,
head token, and relation embeddings as input to
an LSTM and then fuse child and head hidden
states.

• For RE, we report the results of the GCN model
from Zhang et al. (2018) where they apply graph
convolutional networks on pruned dependency
trees over LSTM states.

C Manual Error Analysis

In this section, we present several examples from
our manual error analysis of the predictions from
the Late Fusion model when it is trained on CoNLL-
2005 SRL WSJ dataset using gold and Stanza
parses. Specifically, we show how the incorrect
edges present in the parse tree can induce wrong
SRL tag predictions. In Figure 4, we observe two
examples where the model when trained with gold
parses outputs perfect predictions but the when
trained with Stanza parses outputs two incorrect
SRL tags due to one erroneous edge present in the
dependency parse. In Figure 5, we show an exam-
ple of a longer sentence where due to the presence
of four erroneous edges in the Stanza parse, the
model makes a series of incorrect predictions of
the SRL tags.
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Olivetti reportedly began shipping these tools in 1984 .

B-A0 B-AM-ADV B-V B-A1 I-A1 I-A1 B-AM-TMP I-AM-TMP O

The Janus Group had a similar recording for investors .

B-A0 I-A0 I-A0 B-V B-A1 I-A1 I-A1 B-AM-PNC I-AM-PNC O

(a) Predicted SRL tags using Gold parses

Olivetti reportedly began shipping these tools in 1984 .

B-A0 B-AM-ADV B-V B-A1 I-A1 I-A1 I-A1 I-A1 O

The Janus Group had a similar recording for investors .

B-A0 I-A0 I-A0 B-V B-A1 I-A1 I-A1 I-A1 I-A1 O

(b) Predicted SRL tags using Stanza parses

Figure 4: Examples of sentences with their predicted SRL tags when the Late Fusion model is trained using gold
parses (4a) and Stanza parses (4b). While the predicted SRL tags using the gold parses are accurate, the erroneous
edges in the Stanza parses (highlighted in bold) leads to incorrect SRL tags predictions (highlighted in orange
color).
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