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Abstract

Large Transformer-based language models
can aid human authors by suggesting plausi-
ble continuations of text written so far. How-
ever, current interactive writing assistants do
not allow authors to guide text generation in
desired topical directions. To address this lim-
itation, we design a framework that displays
multiple candidate upcoming topics, of which
a user can select a subset to guide the gener-
ation. Our framework consists of two compo-
nents: (1) a method that produces a set of can-
didate topics by predicting the centers of word
clusters in the possible continuations, and (2) a
text generation model whose output adheres to
the chosen topics. The training of both compo-
nents is self-supervised, using only unlabeled
text. Our experiments demonstrate that our
topic options are better than those of standard
clustering approaches, and our framework of-
ten generates fluent sentences related to the
chosen topics, as judged by automated metrics
and crowdsourced workers.

1 Introduction

Recently, Transformer-based language models
(LMs) have achieved impressive performance in
language generation tasks (Radford et al., 2019;
Dai et al., 2019) such as open-domain story genera-
tion (See et al., 2019a). When writing with the LM,
users often desire an intuitive and effective way to
control what a LM is going to generate (Keskar
et al., 2019). To address this need, interactive writ-
ing assistants provide options to reveal possible
developments of the story and generate continua-
tions guided by the user-selected options.

Interactive writing assistants have wide applica-
tions in creative writing (Roemmele and Gordon,
2015; Clark et al., 2018; Akoury et al., 2020), ed-
ucation (Luo et al., 2015), and gaming (Walton,
2020). Nevertheless, the existing systems’ options
usually do not provide fine-grained control and/or

Step 2: Might say these topics

Step 1: Let’s see what 
language models would say

Step 3: Please 
talk more about 
these topics

1  book  books  novels
2  Essays  Perspectives  Perspective
3  University  faculty  undergraduate
4  Reid  Sen.  McConnell
5  humanity  life  spirituality
6 2011 2010 2009
7  know  sure  want
8  insistence  disdain  dismissive
9  election  elections  Democratic

10  U.S.  States  United

Input Prompt: “Barack 
Obama writes a new book”

Output Continuation:  “: The Future of a Democratic 
Election. The book tells the story of the 2008 election.”

Transformer
-based 

Language 
Models
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Step 4: Let me try. 
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continuation sound?

Figure 1: Given an input prompt, the Transformer-
based LM provides K = 10 topics that might be men-
tioned next and each topic is represented by M = 3
words. The user could guide the generation process by
choosing a subset of topics.

require substantial human labor. In some prior
work (Keskar et al., 2019; Tu et al., 2019), users
choose among a static set of predefined attributes
(e.g., sentiment) that only provide coarse-grained
control. Other work (Roemmele and Gordon, 2015;
Clark et al., 2018) presents users with multiple
generated continuations, which requires substan-
tial reading effort and might not contain topics that
users want to see. Finally, options could be nodes in
a plot graph that are handcrafted (Luo et al., 2015)
or derived from a collaboration between humans
and machine (Li et al., 2013), but such choices are
usually limited due to the high cost of preparing
the options.

To address these limitations, we propose an in-
teractive writing framework that provides a set of
topics and guides the text generation by the user-
chosen topics. The topic options are generated
dynamically based on the input prompt to pro-
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Input Prompt: Barack Obama writes a new book

: The Future of a Democratic Election. The 
book tells the story of the 2008 election. 

Topic: election, elections, Democratic 
Topic: book, books, novels Topic: humanity, life, spirituality

on spirituality and the role of 
religion in society 

Topic: God, Christ, eternal

, entitled  My Living With God , and 
writes that he will give the  gift of grace

. In it he describes why many 
Americans believe in political parties.

Topic: understand, know, realize 
Word: story

Word: zombie

about the United States entitled I 
Don't Care...You Bet I'm a Zombie.

Topic: American, America, U.S. 
Topic: political, ideology, politics

. In the United States, many people 
know the story of the human race

Figure 2: Examples of our generated options and continuations. We highlight the words in the continuation that
are related to the chosen topics or to the specified word.

vide fine-grained control, and our models are self-
supervised without the need to define the attributes
or collect annotations. As depicted in Figure 1, a
user can peek at the most probable K topics (shown
as bags of words) appearing after the input prompt
and control the generation by choosing the topics.

In Figure 2, we compare multiple generated sen-
tences conditioned on different chosen topic(s) or
specified word(s). For example, if the user chooses
a topic about humanity, life, and spirituality, our
system continues the input prompt “Barack Obama
writes a new book” with “on spirituality and the
roles of religion in society”. Then, we can use the
generated text as the new input prompt and update
the set of topics to include other more relevant top-
ics such as God, Christ, and eternal. The process
can be repeated to create a plot tree.

A user can also control the generation by spec-
ifying word(s) if the user wants to see the words
that are not in the topic list or seeks a transition
to a word that is not directly related to the input
prompt. For example, a user can ask our system to
generate a sentence about zombie. Consequently,
the continuation of “Barack Obama writes a new
book” becomes “about the United States entitled I
Don’t Care...You Bet I’m a Zombie”.

The system is realized by two components: an
option generator and a conditional text generator.
Given a prompt, the option generator suggests a set
of K topics. After a user chooses a subset of the
topics and specifies some words, the embedding of
every word or topic will guide the conditional text
generator to produce the continuation that is both
consistent with the existing prompt and relevant to
the chosen topics and words.

Both components are self-supervised and use
pretrained GPT2 models (Radford et al., 2019) to

encode the input prompt. During training, the op-
tion generator predicts the cluster centers of fu-
ture words, which are in the continuation of the
prompt, based on the contextualized embeddings
from GPT2. The conditional text generator fine-
tunes GPT2 to predict the next words given the
prompt and a few subsequent words. Since both
components’ input and output only come from the
prompt and its continuation, training the system
only requires a raw corpus, word tokenizers, and a
list of stop words. This makes the proposed method
suitable for open-domain story generation and eas-
ily being fine-tuned for a specific domain.

In experiments, we demonstrate that our system
recommends high-quality topics and often generate
sentences that follow the chosen topics. We com-
pare our option generator with global topic models
such as LDA (Blei et al., 2001) or local topic mod-
els such as clustering the words in the input prompt.
The results show that the proposed method gener-
ates significantly more topics that are plausible and
promote the narrative. Moreover, we compare our
conditional text generator with PPLM (Plug and
Play Language Models) (Dathathri et al., 2020) and
demonstrate that our generation is more fluent and
relevant to the chosen topics. Our code is available
at https://github.com/iesl/interactive_LM.

2 Method

The proposed framework consists of two compo-
nents: option generator and conditional text gen-
erator. In Figure 3, we illustrate the two compo-
nents and their interaction. First, given the prompt
x1, ..., xI inputted by a user, the option generator
at the bottom of the figure outputs K topics. After
the user chooses two topics about book and elec-
tion and specifies one extra word story, the topics

https://github.com/iesl/interactive_LM
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Figure 3: Our model architectures for (a) conditional
text generator and (b) option generator. During testing,
the information flows from the bottom to the top.

and word are passed to our text generator as the
generation guidance. Accordingly, the generator
continues to write the next token ŷ1.1

In the following subsections, we introduce our
model designs and the way to train each component.
More implementation details are described in the
appendix.

2.1 Option Generator

When we do not have labeled attributes in a corpus,
we can create options by clustering all the words in
a corpus into topics (Tu et al., 2019). The clustering
could be done by topic modeling approaches such
as LDA (Blei et al., 2001). The resulting topics
are static (i.e., the clustering is performed globally

1The framework is flexible. For example, the GPT2 en-
coders in the two components could be shared. Besides topics,
the option generator could be extended to predict likely at-
tributes in the continuation such as positive sentiment and
event frames (Tu et al., 2019) if the corresponding label data
are available in the training corpus.

without considering the prompt). However, the
prompt might have a narrow focus and the related
words of interest are all clustered into a single topic.

A simple remedy is to cluster only the words
in the prompt rather than all the words in the cor-
pus. The topics are created dynamically and locally
given a prompt and can capture more fine-grained
aspects in the continuations. However, the top-
ics derived from the prompt might provide less
inspiration because the users have seen the prompt.
Another major drawback of the approach is that
the generated topics might encourage the LM to
generate repetitive sentences or make a narrative
circle inside a loop.

Motivated by the challenges, we propose an op-
tion generator that predicts the cluster centers based
on the prompt instead of clustering the words in
the prompt during testing.

2.1.1 Model Prediction

The goal of our option generator is to predict the
K cluster centers of words in the possible continu-
ations and use the cluster centers as the topics user
could choose from. As in Figure 3 (b), the option
generator uses GPT2 to encode the input prompt
x1, ..., xI and passes the output embedding to K
different linear layers L1, ..., LK . To model the
dependency of clusters, a Transformer (Vaswani
et al., 2017) takes the K embeddings as input and
predicts the cluster centers c1, ...cK in GloVe (Pen-
nington et al., 2014) space. During testing, each
predicted cluster center is normalized by its L2
norm, and we use the M closest words in the
normalized GloVe space to represent the topic Ti,
which users can choose.

We choose to learn the cluster centers in GloVe
space rather than GPT2 or BERT (Devlin et al.,
2019) space because the non-contextualized word
embeddings are easier to visualize. Users can eas-
ily understand the meaning of a cluster center by
seeing nearby words. We normalize GloVe space in
this work to make the squared L2 distance equal to
twice the cosine distance between two embeddings.

Our architecture is similar to the one in Chang
et al. (2021), but we use a pretrained GPT2 en-
coder rather than train a BERT-like Transformer
from scratch. Another difference is that we ignore
the connection between the second Transformer
and the output of GPT2 to save GPU memory for
handling a longer input prompt.
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Figure 4: Training our two components using the same sentence. (a) We randomly pick n = 3 words in the actual
continuation as our conditions for the text generator, and the null labels mean their predicted probabilities are
ignored in our loss. (b) We visualize 5 out of K = 10 generated topics in a normalized GloVe space. Red words
are the ones that appear in the continuation and pull the nearby cluster centers closer during training.

2.1.2 Model Training

In Figure 4 (b), we visualize our training proce-
dure. For each input prompt in the training corpus,
we run a forward pass through the Transformers
and get predicted cluster centers c1, ...cK . Next,
we collect 50 words in the continuation (except
stop words) as positive examples and match the
words with cluster centers as in the E-step of the
EM algorithm (Dempster et al., 1977). We mini-
mize the distances between the centers and their
nearby positive examples by backpropagating the
gradients through the matching and updating our
Transformer models. Furthermore, we randomly
sample some words as negative examples and max-
imize the distances between the cluster centers and
their nearby embeddings from negative examples.

Using Figure 4 (b) as an example, the orange
cluster center is pulled closer toward the embed-
ding of 2008, which appears in the continuation.
The green cluster center is pushed away from the
embedding of north, a randomly sampled word.
Since each output embedding ck is pulled by only
the nearby embeddings of words in the continua-
tion, the output embedding will naturally become
the cluster center of the nearby continuation word
embeddings. Notice that the related topics like
Democrats and Republicans are not observed in the

prompt and continuation, but our model can predict
a red cluster center close to them because the model
can learn from other similar input prompts whose
continuation mentions words like Democrats.

Chang et al. (2021) discover that non-negative
sparse coding (NNSC) (Hoyer, 2002) could en-
courage the Transformers to predict more diverse
and relevant topics compared with Kmeans, so we
adopt NNSC as our clustering loss, and its formu-
lation could be found in Chang et al. (2021).

2.2 Conditional Text Generator
After the user chooses topic(s) or specifies word(s),
each topic or word is converted to a GloVe em-
bedding. The component aims to generate the text
given the input prompt and the GloVe embeddings
of the topics or words we prefer to see in the con-
tinuation.

Users only see the M words closest to the kth
predicted cluster center ck from our option genera-
tor, so we compute the kth topic embedding as

tk =

∑M
m=1 cos(ewm, ck)ewm

||
∑M

m=1 cos(ewm, ck)ewm||
, (1)

where ewm is the normalized GloVe embedding of
the mth closet word and cos(ewm, ck) is the cosine
similarities between the mth word embedding and
the embedding ck.
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2.2.1 Model Prediction
During testing, the topic embeddings tk or em-
bedding of the specified words are inserted into
GPT2 encoder before xI , the last word piece in the
prompt. The inserted embeddings nudge the GPT2
to generate the sentences containing the desired
words with a higher probability.

As Figure 3 (a) shows, the GloVe embeddings
are first passed through a linear layer to make their
dimension become the same as the hidden state
size of GPT2. Then, the transformed embeddings
are added with special positional embeddings pf

I
,

which are different from those for the prompt pw
i

.
The special positional embedding tells GPT2 that
the inserted embeddings have a different meaning
and where the conditional generation starts.

The GPT2 encoder’s output goes through a soft-
max layer, which computes the probability of each
token being observed as the first word piece in the
continuation y1. We adopt top-k sampling (Fan
et al., 2018), which reduces the chance of sampling
words with low probability, to pick the next word,
and autoregressively sample one token ŷo at a time
to generate the continuation ŷ1, ..., ŷO.

2.2.2 Model Training
We train the generator using the continuation
of a prompt and some randomly selected non-
stop words in the continuation as its generation
conditions. Since the continuation contains the
randomly-selected words, the generator would be
heavily penalized if it ignores the conditions by
assigning low probabilities to the selected words in
all the continuation positions.

An example is illustrated in Figure 4 (a). Given
an input prompt in the training set, we randomly
pick a number n from 0 to K and sample n words
from the next O = 25 words (except stop words).
Next, the normalized GloVe embeddings of n
words are inserted to the GPT2 encoder before the
last word piece in the prompt, and we ignore the
output probabilities corresponding to the inserted
positions during training. To speed up the training,
we conduct the future word insertion in multiple
positions of each training text sequence.

We insert the future words just before the text
that might contain the words rather than at the be-
ginning as in the classic seq2seq model, because
we do not want the model to learn to generate the
continuation based on the future topics that have
not yet be specified by the users (e.g., The GPT2
should not know that it will see election in the fu-

ture when it learns to generate Barack Obama ...
during training).

By allowing the LM to see the upcoming words
earlier, we leak partial label information to the LM
input. Consequently, GPT2 learns to utilize the
information and generate the sentence containing
the desired words to achieve a lower perplexity
loss. Notice that the training method allows us to
specify our topical preference without significantly
scarifying generation efficiency and fluency, but it
cannot guarantee to generate all the desired topics,
especially when we specify multiple ones.

One concern of the method is that the LM cannot
see all possible sets of topics or words users might
specify during training. Besides, each GloVe em-
bedding used to supervise LM comes from a single
word, but we ask the LM to condition on average
GloVe embedding of the top M words during test-
ing. Nevertheless, we observe that the LM is often
able to generalize well in our experiments because
similar words have similar GloVe embeddings, lots
of training instances could be easily prepared by
the self-supervised method, and our option gener-
ator usually provides the topics mentioned in the
continuation in our training corpus.

3 Experiments

We evaluate two components separately, and both
evaluations include automated metrics and human
judgment. Throughout the evaluation, the number
of topics K = 10 and the length of generations
is 50 word pieces. We find that fixing K = 10
works well in our experiments. If the possible
continuations cover more than 10 topics, our option
generator tends to output the important topics. If
they cover fewer topics, our option generator tends
to output the related topics that are not explicitly
mentioned in the prompt or the duplicated topics.
More experiment setup details could be found in
the appendix.

3.1 Datasets

We use 90% of English Wikipedia 2016 as our train-
ing set for both components, 5% as our validation
set to determine the hyperparameters such as the
number of epochs, and the remaining 5% as our
test set to perform the automated evaluation.

For human evaluation, we collect labels from
Amazon Mechanical Turk (MTurk). We randomly
sample sentences from the training set of STS
benchmark (STSb) (Cer et al., 2017) as our input
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prompts. Compared with Wikipedia, the sentences
from STSb are easier to understand for annotators
because a large portion of sentences in Wikipedia
involves terminologies, depends on a longer con-
text, or might even just be a list of names.

In STSb, we sample 24 sentences as our prompts,
and each method generates one continuation for
each input prompt. Each generated continuation or
topics will be scored by three different workers.

3.2 Option Generator Evaluation
We evaluate the topics from different option genera-
tors by judging whether the topics will appear in the
continuation and whether the topics would promote
the narrative. The goal is to have topics that are
relevant and provide new information. The topics
that are too similar to the prompt words might be
redundant and not helpful because the users have
already seen the prompt.

3.2.1 Automatic Evaluation Metrics
• Sim: If the generated topics T can help users to

write the continuation, the embedding of every
non-stop word in the actual continuation should
be similar to the embeddings of a generated topic.
Thus, we compute

Sim(Ȳ , T ) =
O′∑
o=1

K
max
k=1

(tk)T eȳo, (2)

where Ȳ = {ȳo}O
′

o=1 is a set of non-stop words in
the continuation and O′ = 25. tk is the normal-
ized embedding of kth topic in T from equation 1
and eȳo is the oth word in Ȳ .

• Sim Short: When computing Sim, we use the in-
put prompts containing around 180 words on av-
erage. To examine the topic quality at the start of
writing, where the authors might need assistance
the most, we also report Sim(Ȳ , T ) on short in-
put prompts (with 35 words on average).

• Sim Diff: The options that are helpful to users
should be sufficiently different from the words
in the input prompt to promote the narrative
and avoid generating repeated content. Thereby,
we also evaluate methods using Sim Diff =
Sim(Ȳ , T ) - Sim(X̄, T ), where X̄ = {x̄i}I

′
i=1

are the non-stop words in the input prompt.

3.2.2 Human Evaluation
Our questionnaire shows the prompt and asks
which generated topics are likely to appear in

Scope Method Sim Sim Short Sim Diff

Global
Sample 14.63 14.42 0.16
LDA 36.86 36.02 -2.82

Kmeans 40.65 39.91 -3.40

Local

Sample 41.50 41.23 -12.51
NNSC 46.70 42.80 -15.94

Kmeans 47.94 43.89 -16.12
Ours 48.38 46.29 0.45

Table 1: Comparison of the option generators using au-
tomatic metrics. The best numbers within each scope
are highlighted.

Scope Method L TP L&TP

Global
LDA 5.76 ± 0.50 6.24 ± 0.33 5.26 ± 0.31

Kmeans 6.94 ± 0.36 6.13 ± 0.30 5.96 ± 0.31

Local
Kmeans 8.65 ± 0.16 5.31 ± 0.50 5.14 ± 0.50

Ours 7.85 ± 0.25 6.96 ± 0.26 6.75 ± 0.28

Table 2: Comparison of option generators using human
judgment (mean ± standard error). L and TP refer to
likelihood and topic promotion, respectively.

a reasonable continuation and which topics pro-
mote the narrative. For each method, we re-
port the average number of its topics that are
likely to appear (L), promote the topic (TP), and
both (L&TP). For example, an MTurk worker is
shown three topics generated by a method given
a prompt: ABC. The worker thinks A is likely
to appear in the continuation and AB promote
the topic. Then, L=|{A}|=1, TP=|{AB}|=2, and
L&TP=|{A} ∩ {AB}|=|{A}|=1 for this prompt.

3.2.3 Option Generator Baselines
We compare our generator with two types of meth-
ods.2 The first type performs the clustering glob-
ally and selects the most relevant topics to the input
prompt from the static set of clusters. We cluster
all the words into J = 150 topics by LDA (Blei
et al., 2001) (LDA-global) and into J = 1000
topics by Kmeans on the normalized GloVe em-
bedding space (Tu et al., 2019) (Kmeans-global).
We also randomly sample K words from the whole
vocabulary as our cluster centers (Sample-global).

Similar to equation 1, we find the M words with
the closest embeddings to each cluster center to
represent the topic and compute the topic embed-
ding tj as the weighted average embedding of M
words in the jth topic. Among all J cluster cen-
ters, we pick the K topics with the closest tj to the

2Another alternative is to generate many continuations and
cluster the words in the generation. However, the method takes
time, which might be prohibited by limited computational
resources and the real-time interaction requirement.
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Input Prompt The study also found that skin cancer nearly tripled in Norway and Sweden since the 1950s.
LDA-global Kmeans-local Ours

1 population, households 6 company, companies 1 Norway, Sweden 6 also, however 1 research, scientific 6 1980s, 1970s
2 patients, treatment 7 Norwegian, Norway 2 tripled, doubled 7 since, Since 2 tissues, tissue 7 even, though
3 psychology, research 8 story, book 3 nearly, almost 8 Sweden, Finland 3 patients, diagnosis 8 susceptibility, pathogenic
4 police, prison 9 hospital, Hospital 4 cancer, skin 9 study, studies 4 DNA, gene 9 decreased, increased
5 chemical, carbon 10 Icelandic, Iceland 5 1950s, 1940s 10 found, discovered 5 orange, purple 10 Sweden, Norway

Table 3: Comparison of all K topics for the input prompt using M = 2 words closest to each topic.

Input Prompt The study also found that skin cancer nearly tripled in Norway and Sweden since the 1950s.
Generator

Generated Text
Option Text

LDA-global Ours A study of the Norwegian police has confirmed the cancer case. The law in Norway was the subject of the
Kmeans-local Ours The study also found that skin cancer nearly tripled in Norway and Sweden since the 1950s. As well, skin

Ours PPLM In this study, a study was conducted conducted in Italy and in Finland. From the 1990s to the 1970s, there
None GPT2 The study also revealed that only 20% of the deaths in Norway were caused by a sudden cardiac response
Ours Ours Recent studies have shown that melanin causes a decrease in genetic susceptibility in people in Norway,

Table 4: The continuations that are generated by conditioning on all of K topics from different option generators.
The input prompt comes from STSb.

prompt embedding, where the prompt embedding
is the average embedding of all words in the input
prompt.

The second type of methods discovers the K
topics from the input prompt. We cluster non-
stop words in the prompt using non-negative sparse
coding (Hoyer, 2002) (NNSC-local) and Kmeans
(Kmeans-local). We also sample K non-stop
words from the prompt and call it Sample-local.
Similar to equation 1, we represent each topic us-
ing M words and compute the weighted average
of their embeddings tk as the input of our text gen-
erator. Notice that the locally clustering methods
produce similar results when the prompts come
from STSb due to their short lengths, so we only
test Kmeans-local in our human evaluation.

3.2.4 Results
In Table 1, we show that local methods generate
the options more relevant to the input prompt than
the global methods due to significantly higher Sim
and Sim Short. Our method performs better com-
pared to other local methods, especially in Sim Diff,
which highlights the high novelty of our generated
topics. The improvement on Sim Short is larger
than that on Sim because our method could suggest
the related topics that are not explicitly mentioned
in the short prompt (e.g., U.S. in Figure 1).

The human evaluation results are presented in
Table 2. Our method wins in terms of generat-
ing relevant topics that promote the narrative. The
Kmeans-local performs better in L because most
of the words in the input prompts could be men-
tioned again in the next sentence. However, it often
leads to the redundant topics that are too similar to

the prompt.
Table 3 compares the options generated by dif-

ferent methods while Table 4 compares the text
generated using different option generators and text
generators. More examples are presented in the ap-
pendix. In Table 3, we can see that most topics in
Kmeans-local do not promote the narrative, which
makes the generated continuation become a copy
of the input prompt in Table 4. We will quantita-
tively evaluate the generated continuations using
different option generators in the appendix. No-
tice that the high redundancy problem is hard to be
solved by a conditional text generator because the
relatedness between the prompt and the generated
text is hard to be controlled (See et al., 2019b).

3.3 Conditional Text Generator Evaluation
To demonstrate our text generator’s effectiveness,
we use our option generator to prepare the topic
embeddings and randomly select n topics as our
conditions to simulate the user’s choice, where n
is a random number from 1 to K. The sentences
generated by different methods are compared.

3.3.1 Automatic Evaluation Metrics
We match the union of M × K top words in the
chosen topics with the words in the generated con-
tinuations and count the number of tokens that are
matched exactly (token), the number of matched
word types (word), and the number of topics that
contain at least one matched word (topic) to mea-
sure the relevancy between the continuations and
the chosen topics. Notice that the scores are under-
estimated because the generation might mention
words in different morphological variations or other
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Text Automatic Metrics Inference Human Judgement
Generation Relevancy Hit Quality Time Relevancy Fluency

Method Token Word Topic PPL (↓) Dist-1 Dist-2 s (↓) Recall Precision Score
PPLM 1.48 0.99 0.77 18.49 40.29 80.83 17.74 30.56 ± 2.96 56.01 ± 4.41 3.83 ± 0.13
Ours 2.36 1.79 1.40 16.39 37.98 79.65 1.02 41.46 ± 3.47 56.41 ± 4.41 4.07 ± 0.10
GPT2 1.27 0.84 0.64 14.24 39.80 80.22 1.00 24.49 ± 2.77 48.69 ± 4.61 4.15 ± 0.11

Table 5: Comparison of conditional text generators. The numbers in Dist-1, Dist-2, Recall, and Precision are
percentages. Lower perplexity (PPL) and inference time are better. The better performances between PPLM and
our method are highlighted. In human evaluation, we report the mean ± standard error of each method.

words related to the topics.
The fluency of the generated text is measured

using the perplexity (Serban et al., 2016) of the
original GPT2 (with 345M parameters) without
being fine-tuned on Wikipedia. Dist-n (Li et al.,
2016) is the ratio between the number of unique
n-grams and the number of all n-grams in the con-
tinuations, where n=1 or 2. Higher Dist-n implies
more diverse generations. The average inference
time per input prompt is also presented.

3.3.2 Human Evaluation
We present the prompt and the generated continu-
ation and ask the worker to score the generation’s
fluency from 1 (not fluent at all) to 5 (very fluent).
Next, we show K topics and ask which topics are
mentioned in the generation. Treating the worker’s
choices as prediction and the topics our model con-
ditions on as ground truth, we report the average
precision and recall of the prediction.

3.3.3 Conditional Text Generator Baselines
We compare our method with PPLM (Plug and
Play Language Models) (Dathathri et al., 2020) due
to its strong performance against the weighted de-
coding approach from Ghazvininejad et al. (2017)
when the condition is a bag of words.

The condition for PPLM is the union of the top
M words in the chosen topics and each word’s
weight is neglected. We use our generation model
without conditioning on any word (i.e., n = 0)
during testing3 as the base model of PPLM. We
also present the performance of the base model
itself as a reference to know the significance of our
improvement (denoted as GPT2).

3.3.4 Results
Table 5 indicates that our model outperforms
PPLM in all metrics except in Dist-1 and Dist-2.
We suspect that our model generates slightly less

3We find the model performs similarly compared with the
GPT2 with no condition during training.

diverse sentences in order to make the generation
more relevant to the given topics.

The generation might mention a topic even if it
is not chosen as a condition, so we achieve similar
precision compared to PPLM in human evalua-
tion. The recall of PPLM means that only around
30% of given topics are mentioned. The low recall
indicates the difficulty of mentioning multiple ran-
domly selected topics in the next 50 word pieces
while keeping the sentence fluent. By contrast,
achieving 40% on recall demonstrates the effective-
ness of our conditional text generator.

Compared with PPLM, our model requires an
additional training step but achieves low inference
time and high relevancy to the given topics/words
once the training is finished. The benefits make it
preferable in our interactive writing application.

4 Related Work

Different interactive writing assistants provide dif-
ferent forms of options to let users express their
preferences. The options could be manually de-
fined classes (e.g., sentiment) (Keskar et al., 2019;
Dathathri et al., 2020), semantic frames (Tu et al.,
2019), or event structures such as (subject, verb,
object, modifier) (Martin et al., 2018; Tambwekar
et al., 2019; Ammanabrolu et al., 2020). The forms
of options allow users to control the attributes of
the generated text but require labels or classifiers
that map the text to the attributes/options.

The options could also be a single query word at
the beginning (Austin, 2019), the article title (Yan,
2016), politeness (Niu and Bansal, 2018) or speci-
ficity (See et al., 2019b) of the text, or the length of
the generated sentence (Tu et al., 2019). However,
the options cannot provide fine-grained control on
topical directions of the generated contents.

A related research direction is the multi-stage
story generation. To make a long story more co-
herent, recent work proposes to generate a skele-
ton and then generate the full text guided by
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the skeleton. The skeleton could be a sequence
of SRL frames (Fan et al., 2019), a sequence
of event structure (subject, verb, object, prepo-
sition, modifier) (Ammanabrolu et al., 2020), a
story premise (Fan et al., 2018), or a story sum-
mary (Chen et al., 2019). Users can revise the
skeleton to control the generated text, but the ap-
proaches assume the existence of the skeleton ex-
tractor or labels in the training corpus. Besides,
the systems cannot suggest options given the par-
tial text, which is one of the main focuses of our
interactive writing assistant.

The skeleton could also be multiple keyphrases.
The keyphrases are extracted based on word fre-
quency (Ippolito et al., 2019; Tan et al., 2020; Wu
et al., 2020), an off-the-shelf keyword extraction
method (Peng et al., 2018; Goldfarb-Tarrant et al.,
2019; Yao et al., 2019; Rashkin et al., 2020; Zhang
et al., 2020), a sentence compression dataset and
reinforcement learning (Xu et al., 2018), or image
caption datasets and ConceptNet (Lin et al., 2020).
Most of the studies focus on modeling the long-
term dependency among the keyphrases and/or
forcing the generation to contain the keyphrases.
Instead, we focus on allowing users to determine
the topical directions of the generation. Compared
with conditioning on keyphrases, our interactive
writing assistant is especially helpful when users
do not know the exact phrases they want to see or
when the given keyphrase extractor does not detect
the desired topics.

5 Conclusion

We propose an interactive writing assistant that
generates topic options given an input prompt and
generates the continuation of the prompt given the
topics chosen by a user. We decompose the frame-
work into two components and propose a novel
model for each component. The automated evalua-
tion and human evaluation indicate that our system
generates many topics that are related to but differ-
ent from the prompt, and generates the sentences
that are fluent and relevant to the chosen topics.
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