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Abstract
Open Information Extraction (OIE) systems
seek to compress the factual propositions of a
sentence into a series of n-ary tuples. These
tuples are useful for downstream tasks in natu-
ral language processing like knowledge base
creation, textual entailment, and natural lan-
guage understanding. However, current OIE
datasets are limited in both size and diver-
sity. We introduce a new dataset by converting
the QA-SRL 2.0 dataset to a large-scale OIE
dataset (LSOIE). Our LSOIE dataset is 20 times
larger than the next largest human-annotated
OIE dataset. We construct and evaluate sev-
eral benchmark OIE models on LSOIE, provid-
ing baselines for future improvements on the
task. Our LSOIE data, models, and code are
made publicly available.1

1 Introduction

Open Information Extraction (OIE) (Banko et al.,
2007) aims to automatically extract all factual
propositions of a sentence into a series of n-ary
tuples. For example, the sentence “the cook baked
and ate the cake” would produce two extractions
representing the two basic propositions of the sen-
tence: (the cook, ate, the cake) and (the cook,
baked, the cake). In OIE, extraction arguments
are required to be contiguous spans from the sen-
tence and the resulting tuple should be intelligible
as natural text when read in order. The schema-
free nature of OIE provides a flexible framework
in which to capture semantic relations between en-
tities in natural language text. Open Information
Extraction tuples are useful to a variety of down-
stream tasks including knowledge base creation
(Zhang et al., 2019), textual entailment (Levy et al.,
2014), and other natural language understanding
tasks (Mausam, 2016).

1Our LSOIE dataset, models, and code can be
found at https://github.com/Jacobsolawetz/
large-scale-oie.

Domains #Sent. #Ext.

OIE2016 Wiki, Newswire 3,180 8,477
AW-OIE Wiki, Wikinews 3,300 17,165
LSOIE-wiki Wiki, Wikinews 24,296 56,662
LSOIE-sci Science 47,998 97,550

Ext. / Sent. Vocab Ordered

OIE2016 2.7 13,863
AW-OIE 5.2 15,853
LSOIE-wiki 2.3 46,617
LSOIE-sci 2.0 51,668

Table 1: OIE dataset metrics. Our new dataset LSOIE
has substantially more text available than prior work,
and includes a new science domain. Our dataset con-
version process leverages the scope of the QA-SRL 2.0
bank and improves upon previous methodology.

Open Information Extraction relations may be
explicitly stated by verbal predicates, or implicitly
stated through nominalizations. In this paper, we
focus only on explicit extractions. With the orig-
inal goal of OIE as web scale information extrac-
tion (Banko et al., 2007), an OIE system can focus
solely on explicit extractions because the redun-
dancy of language will inevitably display implicit
information elsewhere.

The interest in OIE has grown: both in terms of
the types of models that can be applied to tackle
OIE (Cui et al., 2018; Stanovsky et al., 2018; Jiang
et al., 2019), and in terms of the downstream ap-
plications to which OIE can be applied (Mausam,
2016; Zhang et al., 2019). As the interest in OIE
grows, however, so too should the scale of the cor-
pora available for training and evaluating OIE mod-
els.

In this paper, we expand the reach and quality
of OIE data by developing a new dataset, LSOIE,
which is built by converting the QA-SRL BANK 2.0
dataset (FitzGerald et al., 2018) to the task of OIE.
Our new dataset contains almost ten times as many
extractions and about 20 times as many sentences
as previous OIE datasets built from human anno-

https://github.com/Jacobsolawetz/large-scale-oie
https://github.com/Jacobsolawetz/large-scale-oie
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Figure 1: An example annotated sentence from QA-SRL 2.0 (FitzGerald et al., 2018). In this case, the annotations
are derived from the question and answers: - Where does someone provide something? In Asian countries. Who
provides something? physicians. What is being provided? drugs. The extracted tuple in our new LSOIE dataset
is (physicians, provide, drugs, in Asian countries).

tations (see Table 1). We benchmark LSOIE with
several models, providing baseline results for fu-
ture research. Our LSOIE dataset, models, and code
are publicly available.

2 Background

2.1 OIE Datasets
Available OIE corpora fall into three categories: (1)
converted from crowdsourcing, (2) model-derived,
and (3) directly crowdsourced.

Converted from crowdsourcing: Stanovsky
and Dagan (2016) created the OIE2016 dataset by
converting the crowd-annotated QA-SRL (He et al.,
2015) dataset’s question-answer pairs to OIE ex-
traction relations. Similarly, Stanovsky et al. (2018)
generated the AW-OIE dataset by converting the
crowd-annotated Question Answer Meaning Repre-
sentation (QAMR) dataset’s question-answer pairs.

The OIE2016 and AW-OIE datasets were the first
datasets used for supervised OIE. These datasets
provided the basis for supervised approaches in
NLP, but they are small and extractions lack accu-
racy, as they are converted in the order that question
answer pairs appear in the base dataset.

Model-derived: Cui et al. (2018) and Jia et al.
(2018) generate large derivative training datasets
by running rules-based models and keeping high
confidence extractions for downstream tasks. Simi-
larly, Gashteovski et al. (2019) introduce the largest
OIE dataset to date (over 340M triples) by deriving
extractions from MinIE Gashteovski et al. (2017)
with the goal of automatically constructing a knowl-
edge base. While model-derived datasets are useful
for knowledge base construction, using them for
downstream tasks teaches the new model to repli-
cate the behavior of the original, often noisy, base
model.

Directly crowdsourced: Bhardwaj et al. (2019)
point out that the evaluation framework used in
Stanovsky and Dagan (2016) is rather noisy and the
tuple matching algorithm is overly lenient because
it only looks at lexical overlap for the whole extrac-
tion, ignoring the ordering of arguments. Bhardwaj
et al. (2019) provide an alternative evaluation set

that has been crowdsourced specifically for OIE,
annotating 1,282 sentences. While this dataset is
useful for the evaluation of OIE systems, its format
differs from other work in OIE - the predicate entry
in CARB (Bhardwaj et al., 2019) tuples contains
context that is often broken into separate tuples by
other OIE systems.

2.2 The QA-SRL Bank 2.0

In QA-SRL, each predicate-argument relationship
in a sentence is labeled manually with a question-
answer pair. FitzGerald et al. (2018) design a large-
scale crowdsourcing annotation pipeline to incen-
tivize extensive and accurate coverage. Relative to
the original QA-SRL annotations (He et al., 2015),
which were collected from 10 hired freelance work-
ers, the new QA-SRL dataset achieves similar preci-
sion (95.7% versus 97.5%) and lower recall (72.4%
versus 86.6%). Relative to Propbank (Palmer et al.,
2005), an expert annotation system designed to cap-
ture all semantic roles in a sentence. the QA-SRL

2.0 authors find that their work 95% precision and
85% recall. FitzGerald et al. (2018) then build a
supervised QA-SRL parser and extend the reach
of their dataset by over-generating new candidate
question-answer pairs and passing them through
their validation process.

The QA-SRL paradigm is well-suited to be a pre-
cursor to OIE extractions, as it captures predicate-
argument relations in a schema-free way.

3 The LSOIE Dataset

Our work expands upon and addresses the short-
comings present in Stanovsky and Dagan (2016)
and Stanovsky et al. (2018). We apply a similar
conversion processes used for OIE2016 on the QA-
SRL BANK 2.0 dataset. In addition, we implement
novel conversion heuristics to ensure data quality
and order arguments. The result is LSOIE, an OIE
dataset that is much larger and diverse than prior
work.
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Figure 2: The distribution of token level tags (listed
clockwise) in the LSOIE dataset. P denotes the extrac-
tion’s predicate, A0-AN denote the extraction’s argu-
ments, and O denotes that a given token does not be-
long to the extraction.

3.1 LSOIE Conversion Process
We produce LSOIE via conversion from QA-SRL

in the same manner as Stanovsky and Dagan
(2016), with several important changes to adapt
their method to the QA-SRL BANK 2.0.

A QA-SRL annotation for a predicate p consists
of a list of questions Q = {q0, . . . , qn}, and a set of
answer spans Ai = {ai0, . . . , aini} for each ques-
tion qi. For each tuple (a0, . . . , ak) in the Cartesian
product×n

i Ai, we produce the extraction tuple
(a0, p, a1, . . . , ak).

In our example extraction in Figure 1, the tar-
get predicate p is provide. The list of questions Q
is [Where does someone provide something?, Who
provides something?, What is being provided?] The
list of arguments A is [In Asian countries, physi-
cians, drugs]. The converted extraction tuple is
(physicians, provide, drugs, in Asian countries).

To ensure data quality and as a result of differ-
ences between the original QA-SRL dataset and the
QA-SRL BANK 2.0, we had to make two important
changes to the algorithm:

Answer Filtering: The original QA-SRL

dataset has a single set of mutually-exclusive an-
swer spans for each question, written by a single
annotator. In contrast, the QA-SRL BANK 2.0 has
answer judgments from three annotators for each
question, some providing answer sets and others
marking the questions as invalid. To consolidate
these, we only include questions marked as valid
by all three annotators. Then, for each question,
we iteratively draw the longest remaining answer

Bats are the only mammals that can truly fly.
(Bats, fly)

Greece moved up three to be ranked tenth.
(Greece, ranked, tenth)

A popular student, in 1915 Mao was
elected secretary of the Students Society.

(Mao, elected, secretary of the Students Society, in 1915)

The proposed amendment already passed both houses in 2011.
(The proposed amendment, passed, both houses, in 2011)

In polygynous species, males try to
monopolize and mate with multiple females.

(males, monopolize, multiple females)

Animals adapted to live in the desert are called xerocoles.
(Animals, adapted, to live in the desert)

Table 2: Example sentences with example extractions.
Note that only one example extraction is shown here,
though a sentence can yield multiple extractions.

span that does not overlap with a previously drawn
answer span, until there are none left.

In answer filtering, our primary motivation was
to clean the raw version of crowd workers’ answer
responses in the QA-SRL 2.0 dataset, where ques-
tions can be posed that are not valid or the answer
to them is ambiguous. We found it advantageous
for dataset quality to require a strict agreement
between all annotators. In choosing the longest
answer span, we were motivated to not miss rele-
vant portions of the argument, as individual crowd
workers occasionally annotated a limited portion of
the answer span that did not encapsulate the whole
semantic meaning of the derived argument.

Argument Ordering: Stanovsky and Da-
gan (2016)’s original algorithm relies on the origi-
nal, annotator-written order of QA-SRL questions,
which may or may not produce a sensible argu-
ment ordering. Furthermore, in the QA-SRL BANK

2.0, the original order in which the questions were
written is unavailable.

So, to determine argument order, we use a heuris-
tic based on the relative order between answer
spans for each question in their source text. We
consider the abstract form of questions, which in-
cludes verb tense without information about its
lemma. For a given question qi in an extraction,
let qix represent the percentage of predicates in the
QA-SRL BANK 2.0 where the answer span to the
generalized version of qi appears in the xth place
relative to other answer spans, according to the nat-
ural order of the sentence. For each argument slot
in the derived extraction, the answer to the ques-
tion with the highest probability qix of naturally
occurring in that slot is chosen as the argument.
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Figure 3: Top: performance of Supervised OIE systems
on the LSOIE-wiki test set. Bottom: ls oie estimated
confidence at each extraction.

In our example extraction in Figure 1, the ques-
tion Who [predicate] something? precedes
What is being [predicate]? which precedes
Where does someone [predicate] something?,
enabling our algorithm to accurately extract argu-
ment ordering, which is not available from the nat-
ural ordering of the sentence or the ordering of
crowd annotations in FitzGerald et al. (2018).

3.2 Dataset Statistics

We run our updated dataset conversion process
over the directly crowdsourced portion of the train,
development, and test partitions of the QA-SRL

BANK 2.0. Stratifying the resulting data by domain,
we present the new LSOIE corpus in two sections,
LSOIE-wiki and LSOIE-sci. Dataset statistics are
shown in Table 1. Example extractions are shown
in Table 2. We provide the distribution of argu-
ment, predicate, and null tag labels in Figure 2.
The LSOIE corpus expands the scope of OIE2016
and AW-OIE in size, textual diversity, and domain.

4 Benchmark Evaluation

Models: We evaluate several models on our new
LSOIE dataset. Following Stanovsky et al. (2018),
we model OIE as a supervised learning problem
and format it as BIO tagging with tunable threshold-
ing on extractions. We benchmark several model
variants:
• rnnoie is a replication of the model in

Stanovsky et al. (2018), based on a bidirec-
tional LSTM transducer over GloVe embed-

LSOIE-wiki LSOIE-sci

Model F1 AUC F1 AUC

rnnoie .22 .07 .26 .10
ls oie .28 .13 .33 .18
ls oie crf .29 .14 .33 .19
srl bert oie2016 .23 .08 .29 .13
srl bert ls .31 .16 .37 .21
ls oie sci - - .34 .19
ls oie crf sci - - .35 .20
srl bert ls sci - - .38 .22

Table 3: Modeling results on the LSOIE test sets.

dings (Pennington et al., 2014) and learned
part-of-speech embedding features.
• ls oie is a replication of rnnoie trained

on LSOIE.
• ls oie crf is the same as ls oie, but

trained end-to-end with a Conditional Ran-
dom Field on top to capture BIO transition
constraints and trained to maximize the likeli-
hood of the gold BIO sequence.
• srl bert ls is based on ls oie, but uses

BERT (Devlin et al., 2019) as the bidirectional
encoder and the Sentence A / Sentence B em-
bedding feature as the predicate indicator, in-
spired by Shi and Lin (2019).
• srl bert oie2016 is the same architec-

ture as srl bert ls but applied to the
OIE2016 data.
• * sci models were trained with the same

architectures applied only to the LSOIE-sci
training set.

Experiments and Evaluation: We use the Al-
lenNLP framework (Gardner et al., 2018) built
on PyTorch (Paszke et al., 2019) to implement,
train, and test our models. We train rnnoie and
srl bert oie2016 on OIE2016 and ls oie
and srl bert ls on LSOIE-wiki. We also focus
the series of models by only training on LSOIE-sci.
We do not evaluate * sci models on LSOIE-wiki.
We limit our evaluation to supervised OIE systems.

We evaluate our system’s performance against
the gold test data in LSOIE-wiki and LSOIE-sci by
considering extractions to be a match if they con-
tain the same predicate as the gold extraction and
contain the syntactic head of each gold argument.
Syntactic heads are extracted with the Stanford
CoreNLP dependency parser (Chen and Manning,
2014). Although it would be ideal to have the
gold syntactic head, this method is preferable to
taking the lexical overlap of the entire extraction
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Stanovsky and Dagan (2016), ignoring argument
tags and ordering as pointed out in Lechelle et al.
(2019).

We then assign a confidence score to each extrac-
tion to allow for tuning the precision-recall tradeoff.
For the non-CRF models, we use the mean log prob-
ability assigned to the tag labels in the extraction as
the confidence score. For the CRF model, we use
the log probability assigned to the entire sequence.
We differ from Stanovsky et al. (2018) where con-
fidence was calculated as the product of the inverse
of the model’s estimate probability for each tag la-
bel, preferring longer extractions which were more
likely to get a 50% lexical match, outweighing the
deficit of swimming upstream against the model’s
estimated confidence and still producing a down-
ward sloping precision recall curve.

We use Viterbi decoding to extract the most
likely valid BIO tagging sequence given the
model’s probability output for each BIO tag. We
import the Viterbi algorithm functionality from the
AllenNLP library (Gardner et al., 2018).

5 Discussion

Figure 3 shows precision and recall curves on the
LSOIE-wiki test set, accompanied by the ls oie
model’s estimated confidence. Table 3 shows F1

and AUC scores for the benchmark models on the
LSOIE-wiki and LSOIE-sci test sets.

The OIE modeling task is difficult. Results on
both evaluation sets show that the BERT model
and the CRF output layer improve over the base-
line model. Training with the LSOIE improves
model performance. When science is the target
domain, the * sci models are preferable, as they
have slightly higher in-domain performance, show-
ing the value of the domain split in LSOIE.

5.1 Error Analysis

We conduct a manual error analysis of the ls oie
model, where we find that our baseline models
could benefit from more careful extractions.

Incorrect predicate: At minimum confidence,
53% of the model’s precision errors come from
verbs that are not present in the gold dataset. Half
of these are legitimate predicates that are missing
from the gold dataset and the other half are auxil-
iary verbs, that should not be present in the gold
dataset. Depending on the deployment environ-
ment, the model could be improved with predicate
filtering heuristics at prediction time.

Argument Concatenation: We examined 500
incorrect extractions by ls oie. We found that
36% of unmatched extractions were semantically
similar to the gold extraction. These extractions ei-
ther concatenated arguments A1-AN into A1 while
gold did not, split these arguments apart while gold
did, or dropped a non-material argument. For fu-
ture modeling, this is an argument to drop A2 and
beyond from the dataset and only model OIE with
extraction triples.

True Errors: Among the extraction errors, 2/3
involve errors in argument ordering, often follow-
ing the natural order of the sentence. The other 1/3
of errors involved the model making nonsensical
extractions or not making extracting arguments be-
yond A0, presumably because of lack of confidence
and defaulting to the O label.

LSOIE Modeling Improvements: We also
manually examined 100 extractions where ls oie
chose the right extraction over rnnoie. In these
cases, we found improved argument ordering, in-
creased confidence on relevant A1 objects, and bet-
ter accuracy identifying subjects that are distant
from the predicate.

6 Conclusion

In this paper, we introduced the LSOIE dataset as a
resource for supervised OIE. We have algorithmi-
cally re-purposed the QA-SRL BANK 2.0 into a new
OIE dataset, LSOIE, which contains over 70,000
sentences and over 150,000 extraction tuples. To
benchmark the new dataset, we trained and evalu-
ated a series of supervised OIE models, providing
baselines for future research on the OIE modeling
task.

The code and datasets introduced in this pa-
per can be found at https://github.com/
Jacobsolawetz/large-scale-oie.
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