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Abstract

This paper describes the first report on cross-
lingual transfer for semantic dependency pars-
ing. We present the insight that there are two
different kinds of cross-linguality, namely sur-
face level and semantic level, and try to cap-
ture both kinds of cross-linguality by combin-
ing annotation projection and model transfer
of pre-trained language models. Our exper-
iments showed that the performance of our
graph-based semantic dependency parser al-
most achieved the approximated upper bound.

1 Introduction

Cross-lingual dependency parsing attracted much
attention for its powerful representational capa-
bility in grammatical and semantic lexical rela-
tions (Zhang and Barzilay, 2015; Guo et al., 2015;
Ammar et al., 2016; Zeman et al., 2017, 2018;
de Lhoneux et al., 2018; Schuster et al., 2019).
Several remarkable contributions have been made
in syntactic dependency parsing, especially on uni-
versal dependencies (UD; Nivre et al. 2016). For
example, Kondratyuk and Straka (2019) showed
that a single multilingually fine-tuned neural model
utilizing a pre-trained language model could suc-
cessfully parse 75 languages in UD with compara-
ble performances to state-of-the-art parsers.

However, cross-lingual semantic dependency
parsing (Oepen et al., 2014, 2015, 2016), which
is totally different dependency structure from syn-
tactic dependencies (shown in Figure 1), has not
been explored as far as we know. A reason for this
is the lack of parallel graphbanks that cover many
languages with consistent annotation policies. One
exception is Prague Semantic Dependencies (PSD;
Mikulová 2009), which is a treebank of bi-lexical
semantic graphs and contains over 30,000 pairs of
parallel annotated sentences from the Wall Street
Journal in English and Czech.

A technique is impossible to apply to crops
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Figure 1: Example dependency annotations. Above:
Semantic dependency (PSD). Below: Syntactic depen-
dency (UD). Semantic dependency focuses more on
meaning relationship between words.

Considering these circumstances, we propose
to train semantic dependency parsers by capturing
commonalities across languages as a remedy for the
absence of massive multilingual graphbanks. Our
work draws on the intuition that cross-linguality
exists in both superficial level and semantic level.
Accordingly, we leverage a two-stage fashion in-
volving treebank-based transfer and model-based
transfer.

Treebank-based transfer, often called annotation
projection, is a method of projecting source lan-
guage annotations to a target language by using
a mapping function such as word alignment. The
annotation projection has been reported as a promis-
ing approach under truly low-resource settings for
UD parsing (Rosa and Mareček, 2018). However,
annotation projection often suffers from noise in
word alignment (Damonte and Cohen, 2018). For
the model-based transfer, several studies on trans-
ferring contextualized word vectors have reported
that it improves the parsing performance (Mulcaire
et al., 2019; Kondratyuk and Straka, 2019).

Our experiments on PSD graphbank indicate that
the optimal performance can be achieved by incor-
porating the two-stage transfer. Surprisingly, we
observed improvement even when the projected
treebank was erroneous. Furthermore, the two-
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Figure 2: Project-then-Transfer approach.

stage transfer method achieved almost upper-bound
performance, which was approximated by evaluat-
ing the cross-linguality of PSD annotation through
the projection. We also provide detailed analyses
from both perspectives of cross-linguality.

2 Related Work

Semantic Dependency Parsing: The topic of
semantic dependency parsing has spurred endur-
ing interest (Peng et al., 2017, 2018; Dozat and
Manning, 2018; Wang et al., 2019; Kurita and
Søgaard, 2019). Much of the current interest lies in
higher-level interactions between relations. In par-
allel with our study, Aminian et al. (2020) shows
improvement of PSD parsing trained on cross-
lingually projected graphbank with multitask train-
ing of UD parsing as an auxiliary task. Unlike their
work, we perform a zero-shot training with UDify
pretrained model to validate the hypothesis of the
two different cross-linguality.

Utilizing Models across Different Graphbanks:
Parsing semantic graphs in different semantic ab-
straction levels was introduced as CoNLL shared
task 2019 (Oepen et al., 2019). Candidate
teams tackled this problem with methods such as
transition-based parsers (Hershcovich et al., 2018;
Bai and Zhao, 2019; Lai et al., 2019) and graph-
based parsers (Zhang et al., 2019; Koreeda et al.,
2019). Small improvements were reported in both
approaches, but improving semantic parsing on dif-
ferent semantic graphs remains a difficult problem.

3 Transfer Strategies

To enable cross-lingual semantic parsing, we fo-
cused on two different types of cross-linguality,
namely cross-linguality on surface and cross-
linguality in semantics. Cross-linguality on surface
lies on our hypothesis of typological correspon-
dences among most of languages. For example,
annotation projection, which is a treebank-based
transfer, assumes cross-linguality on surface and
projects source language annotations to a target
language. On the other hand, cross-linguality in

semantics is based on the assumption that lexical-
, phrase-, or sentence-level meaning correspon-
dences may exist among most of languages. Re-
cently, multilingual BERT (Devlin et al., 2019;
Pires et al., 2019) directly captures cross-linguality
in semantics beyond lexicons by large-scaled lan-
guage model training on parallel corpora.

Though both annotation projection and multi-
lingual pre-trained model can handle either cross-
linguality on surface or in semantics, we argue that
they could not utilize both cross-linguality in ef-
fective way. Hence, we propose two-stage transfer
which incorporates both methods, to capture the
two kinds of cross-linguality as possible. We firstly
introduce the two transfer methods for applying
them to PSD graphbank, and then we explain our
two-stage transfer method; Project-then-Transfer.

Annotation Projection: As aforementioned,
this is the approach focuses on cross-linguality on
surface. We trained word alignment model on PSD
graphbank, and then projected all annotations in a
monolingual graphbank to the other language.

Zero-shot Model Transfer: In this study, we
transferred only pre-trained language models, be-
cause we aimed to focus on cross-linguality in se-
mantics more.We trained PSD parsers with multi-
lingual pre-trained model on a monolingual graph-
bank in PSD, and then apply the monolingually
trained parsers to the other language.

Project-then-Transfer: We incorporate both
transfer methods by applying them in two-stage
fashion as shown in Figure 2. Firstly, we prepared
multilingually projected PSD graphbanks. We au-
tomatically generated PSD annotations on English
sentences in a multilingual parallel corpus by the
previously introduced English PSD parser which
was created in the zero-shot approach. By utiliz-
ing bi-lingual word alignment, we projected PSD
annotations on English to other languages. We
finally trained Project-then-Transfer models on a
concatenated graphbank of both original and pro-
jected PSD.

4 Experiments

4.1 Setup and Implementations

To perform word alignment, we used an IBM2
aligner fast align1 (Dyer et al., 2013).

1https://github.com/clab/fast_align

https://github.com/clab/fast_align
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Language Model Approach UP UR UF LP LR LF LF/UF
Czech Graph-UDify Project-then-Transfer 86.5 78.7 82.5 62.4 56.7 59.4 72.0
(Trained on Graph-BERT (ours) 80.1 62.7 70.4 59.7 46.8 52.5 74.6
English) Graph-UDify Zero-shot 86.9 75.5 80.8 61.8 53.7 57.5 71.1

Graph-BERT 79.1 61.1 69.0 58.7 45.3 51.1 74.1
fast align Projection 49.3 40.7 44.6 37.1 30.6 33.5 75.1

English Graph-UDify Project-then-Transfer 77.4 79.7 78.5 57.4 59.1 58.2 74.1
(Trained on Graph-BERT (ours) 66.9 57.7 62.0 50.7 43.7 46.9 75.6
Czech) Graph-UDify Zero-shot 81.0 72.4 76.5 59.2 52.9 55.9 73.1

Graph-BERT 73.6 58.1 65.0 56.5 44.6 49.9 76.8
Transition-BERT 55.2 22.6 32.3 41.8 17.2 24.4 75.5
fast align Projection 48.6 44.3 46.3 35.6 32.4 33.9 73.2

Li et al. (2019) (English monolingual training) 93. 92. 92.5 82. 81. 81.7 88.3

Table 1: SDP scores for each model and approach. U and L stand for “unlabeled” and“labeled” respectively. P,
R, and F stand for “precision”, “recall” and “F1-score” respectively. LF/UF is a proxy metric of label prediction
accuracy. Bold values represent the best scores. Li et al. (2019) is the best PSD parser at CoNLL 2019 shared task.

To perform model-based transfer, we used
mainly graph-based parsers, but we also used a
transition-based parser for a comparison purpose.
Our graph-based PSD parser employed UDify ar-
chitecture2 (Kondratyuk and Straka, 2019). We
replaced activation function of biaffine attention
layers in UDify with sigmoid activation (Dozat
and Manning, 2018). We trained two variances of
graph-based parsers, and a transition-based parser:

Graph-BERT: We trained it with mulitilinugal
BERT as Kondratyuk and Straka (2019) did.

Graph-UDify: We trained it with UDify’s pre-
trained language model3 instead of multilingual
BERT. Since UDify is pre-trained on many lan-
guages in UD, we expect that it capture more cross-
linguality on surface than BERT.

Transition-BERT: We used an architecture in-
troduced by Che et al. (2019)4, which was the best
transition-based parser in the CoNLL 2019 shared
task (Oepen et al., 2019). We trained it from scratch
with the same hyperparameters given by the source
code.

The pre-trained multilingual BERT5 was down-
loaded via the above parser implementations. We
used mtool6 to evaluate SDP scores (Oepen et al.,
2014) as metrics for parsing performance. A list of
the best hyperparameters is available in Appendix.
We added “tag loss w”, which is a constant multi-

2https://github.com/Hyperparticle/
UDify (Pre-trained models are also available from the link.)

3We did not utilize biaffine and MLP layers of UDify.
4https://github.com/DreamerDeo/

HIT-SCIR-CoNLL2019
5https://github.com/google-research/

bert/blob/master/multilingual.md
6https://github.com/cfmrp/mtool

plied by the loss of relation label predictions.
We divided PSD graphbank into three splits,

namely train-set (30,000 pairs), dev-set (2000
pairs), and test-set (3653 pairs). We selected the
best models by monitoring the labeled F1-score of
SDP on the dev-set of the target language and evalu-
ated the scores on the test-set of the target language.
We chose Parallel Universal Dependencies (PUD;
Zeman et al. 2017) as additional multilingual paral-
lel corpora for Project-then-Transfer, because they
contain 1,000 parallel sentences for 18 languages,
with mostly consistent UD annotations. Further
details are in Appendix.

4.2 Results and Discussion

Table 1 shows the SDP scores for each model in
each approach. Firstly, we focus on the cross-
linguality of PSD annotations by the annotation
projection. Unlabeled scores of projection models
were within a range of 0.4 - 0.5. Since alignment
error rate (AER) of English-Czech reported around
0.25 (Legrand et al., 2016), edge projection accu-
racy could be estimated as (1 − AER)2 ≈ 0.56 7.
Annotation agreement rate of relations8 between
the two languages was estimated to fluctuate be-
tween 0.7 to 0.9 according to the mitigation effi-
cacy of alignment error. Annotation agreement rate
of relation labels was estimated as about 0.75 by
comparing unlabeled and labeled scores (LF/UF
of fast align model). These rates could be upper
bounds of performances.

By comparing monolingual training (Li et al.,

7Suppose one edge has two nodes A and B, then edge pro-
jection accuracy is estimated as probability that both projected
nodes A’ and B’ are correct.

8We simply divided the unlabeled scores by the projection
accuracy estimated by AER.

https://github.com/Hyperparticle/UDify
https://github.com/Hyperparticle/UDify
https://github.com/DreamerDeo/HIT-SCIR-CoNLL2019
https://github.com/DreamerDeo/HIT-SCIR-CoNLL2019
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/cfmrp/mtool
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Figure 3: Example gold and Graph-UDify outputs in each scenario (English).

noun verb num adp0.0
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0.8 Freq.

Projection
Zero
Prj then Trans

Figure 4: Relation accuracy for each UPOS type.

Model language UF LF
Graph-BERT + PUD Czech en2cs 68.9 50.8
Graph-UDify + PUD Czech en2cs 80.6 57.8

Table 2: Unlabeled and labeled scores trained on En-
glish PSD with projected PUD Czech.

2019), unlabeled-F of Project-then-Transfer (UD-
ify) was about 85% of that of monolingual training.
This ratio is in the range of estimated annotation
agreement rate of relations.

Models and Approaches Comparison: As we
can see from Table 1, the graph-based models out-
performed the Transition-BERT, especially, graph-
based UDify models demonstrated superiority
to the other models. Graph-UDify of Project-
then-Transfer approach, which is the best model,
achieved an unlabeled F1-score of 82.5, that is
close to the upper-bounds estimated above. In addi-
tions, there were few differences in LF/UF scores,
which are also close to the upper-bound of relation
label prediction. Thus, our best model achieved
high performance, which is close to theoretical up-
per bounds. This indicates that bi-lexical relations
captured by syntactic dependency are also helpful
for parsing semantic dependency, yet there remain-
ing information that were not captured in the UDify.
We claim that the missing information was related
to cross-linguality on surface, then we perform a
deeper analysis on this in the following paragraph.

What is NOT captured by Pre-trained Models?:
Figure 3 shows examples of gold and Graph-UDify
(cs2en) outputs. The annotation projection had
managed completely project unlabeled relations in
the source language, but a swapping had happened
between two relations, namely “REG” and “PAT-
arg”, which had been caused by alignment errors.

We observed that parsers based on the model-
based transfer often failed to parse relations which
contain functional words. This phenomenon can
be observed in Figure 3c. Those relations con-
taining functional words tended to be successfully
converted by the annotation projection. Hence,
we obtained better results with the Project-then-
Transfer approach as shown in Figure 3d. This
implies that pre-trained models including UDify
represent rather semantic bi-lexical relations than
grammatical ones.

We performed a further analysis on cross-
linguality of UDify model. Figure 4 shows re-
lation accuracy for each of four UPOS, namely
noun, verb, num and adp. We calculated condi-
tional “unlabeled” relation accuracy, which mea-
sures whether source or target word belongs to the
specific UPOS type. By focusing on the accuracy
of num (numeric) and adp (adposition), which are
considered to be hard-to-contextualize examples,
the annotation projection outperformed the zero-
shot approach. The Project-then-Transfer approach
improved the accuracy for almost all UPOS types
including num and adp.

Cross-linguality on Surface: Table 5 shows
SDP scores trained on English PSD with projected
PUD Czech. The performances were comparable
to the zero-shot approach, but less than those of
the Project-then-Transfer approach. Hence, mul-
tilingually projected treebank is significant to im-
prove the performances. This implies that cross-
linguality on surface can be captured by training
on multilingually projected treebank.
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5 Conclusion

This paper described transfer methods for cross-
lingual semantic dependency parsing. We showed
that both cross-linguality on surface and in seman-
tics were necessary to improve the performance.
Consequently, we achieved almost the upper bound
performance approximated by the annotation pro-
jection. The results encouraged us to develop cross-
lingual semantic dependency parser for many lan-
guages. We will further conduct explore these mod-
els, and evaluations on cross-linguality across lan-
guages broadly.
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Towards comparability of linguistic graph Banks for
semantic parsing. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 3991–3995, Por-
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Model Parameters
fast align – iteration: 10

– num. of trials: 1
– average runtime: less than 1min.

Graph-UDify – batch size: 32
– learning rate: 1e-3
– activation: relu
– beta: [0.99, 0.99]
– tag representation dim: 128
– tag loss w: 0.1
– num. of trials: 32 for each
– average runtime: 12 hrs.
– num. of params.: 225695576

Transition-BERT – batch size: 4
– num. of trials: 1
– average runtime: 48 hrs.
– num. of params.: 201555396

Table 3: The best hyperparameters and training settings
for fast align, Graph-UDify, and Transition-BERT.
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A Appendices

In this section, we provide details of training setup,
analyses on relation accuracy and multi-task learn-
ing results.

A.1 Detail of Training Setups

In this sub-section, we provide training setups,
which are for the reproducibility criteria. Table 3
shows all detailed settings. We did not performed
a severe automatic hyperparameter tuning, but did
a manual tuning. Thus our best hyperparameters
may be different from the true best hyperparam-
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Language Model Approach UP UR UF LP LR LF LF/UF
Czech Graph-BERT Project-then-Transfer 80.5 62.0 70.1 60.1 46.3 52.3 74.6

Graph-UDify 86.4 78.3 82.7 62.5 57.3 59.8 72.3
(Trained on English) Graph-BERT Zero-shot 78.8 60.3 68.4 58.4 44.7 50.6 74.0

Graph-UDify 86.5 75.6 80.7 61.3 53.6 57.1 70.8
fast align Projection 49.3 40.7 44.6 37.1 30.6 33.5 75.1

English Graph-BERT Project-then-Transfer 67.3 57.4 62.0 49.2 42.0 45.3 73.1
Graph-UDify 77.3 79.6 78.5 55.7 57.4 56.5 72.0

(Trained on Czech) Graph-BERT Zero-shot 73.4 57.6 64.5 54.8 43.0 48.2 74.7
Graph-UDify 81.3 72.5 76.7 57.6 51.3 54.3 70.8
Transition-BERT 55.4 62.6 58.8 40.4 45.7 42.8 72.8
fast align Projection 48.6 44.3 46.3 35.6 32.4 33.9 73.2

Table 4: SDP scores on the dev-set for each model and approach.

Model language UF LF
Graph-BERT + PUD Czech en2cs 69.0 50.7
Graph-UDify + PUD Czech en2cs 80.9 58.0

Table 5: Unlabeled and labeled dev-set scores of models trained on English PSD with projected PUD Czech.

eters. We tuned hyperparamters in zero-shot ap-
proach, then we reused the best hyperparameters
in Project-then-Transfer approach. We trained all
models with NVIDIA V100 on Ubuntu 18.04. Our
GPU environment is a mixture of both 32GB and
64GB memories.

We obtained PSD treebank from the Linguistic
Data Consortium (LDC) 9. We converted original
SDP format data to MRP format before the training.
This SDP to MRP graph conversion is a loss-less
conversion.

A.2 Performances on Dev-set

Figure 5 shows expected validation performances.
Table 4 and Table 5 show performances on the
dev-set. Most of scores were consistent with the
performances on the test-set. Only transition-based
model is an exceptional case. Though over-fitting
seemed to happen, its performances are still lower
than those of graph-based models.

A.3 Full Results of Relation Accuracy

Figure 6 shows relation accuracy for all UPOS
types. We can see that zero-shot performances of
eleven types, namely noun, verb, propn (proper
noun), conj (conjunction), pron (pronoun), adv (ad-
verb), punct (punctuation), det (determiner), part
(particle), cconj (coordinating conjunction), and x
(other), are outperformed those of annotation pro-
jection, and all content words are included in this
group. Zero-shot performances of the other five
types, num, sym (symbol), adp, sconj and intj (in-

9https://catalog.ldc.upenn.edu/
LDC2016T10

terjection), are comparable or underwhelmed to
those of annotation projection. Because the words
categorized as intj only appeared a few times in this
analysis, we could not make a discussion regarding
intj.

A.4 Multi-Task Learning
We argue that it is natural to perform multi-task
learning (MTL) of UD and PSD dependencies
when both annotations are available, since UD-
ify’s pre-train model, which is trained on UD an-
notations, improved the performances. Firstly, we
added UD annotation on PSD treebank by exist-
ing UD parser UDPipe10. Our MTL setting is to
share only BERT layers, but higher layers including
scalar-mix layers are distinct. We used UDify “as
is” for UD prediction. A Loss function to perform
MTL is a simple linear combination of that of UD-
ify and our PSD model. We show the MTL results
in Table 6. Performances were degraded by com-
paring to those of non-MTL models. This could be
because UD and PSD annotations are contradictive
to perform MTL.

10http://ufal.mff.cuni.cz/udpipe

https://catalog.ldc.upenn.edu/LDC2016T10
https://catalog.ldc.upenn.edu/LDC2016T10
http://ufal.mff.cuni.cz/udpipe
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Figure 6: Relation accuracy for all UPOS types.

Dataset Model Approach UP UR UF LP LR LF LF/UF
test-set Graph-BERT-MTL Project-then-Transfer 83.7 60.5 70.2 61.6 44.5 51.7 73.6

Graph-UDify-MTL 86.4 73.9 79.7 63.3 54.1 58.4 73.3
dev-set Graph-BERT-MTL Project-then-Transfer 83.9 57.0 67.9 61.9 42.0 50.0 73.6

Graph-UDify-MTL 85.9 73.5 79.2 63.3 54.1 58.3 73.6

Table 6: SDP scores for MTL model and approach.


