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Abstract

Recent advances in language and vision push
forward the research of captioning a single im-
age to describing visual differences between
image pairs. Suppose there are two images,
I1 and I2, and the task is to generate a de-
scriptionW1,2 comparing them, existing meth-
ods directly model ⟨I1, I2⟩ → W1,2 mapping
without the semantic understanding of individ-
uals. In this paper, we introduce a Learning-
to-Compare (L2C) model, which learns to
understand the semantic structures of these
two images and compare them while learn-
ing to describe each one. We demonstrate
that L2C benefits from a comparison between
explicit semantic representations and single-
image captions, and generalizes better on the
new testing image pairs. It outperforms the
baseline on both automatic evaluation and hu-
man evaluation for the Birds-to-Words dataset.

1 Introduction

The task of generating textual descriptions of im-
ages tests a machine’s ability to understand visual
data and interpret it in natural language. It is a fun-
damental research problem lying at the intersection
of natural language processing, computer vision,
and cognitive science. For example, single-image
captioning (Farhadi et al., 2010; Kulkarni et al.,
2013; Vinyals et al., 2015; Xu et al., 2015) has
been extensively studied.

Recently, a new intriguing task, visual compari-
son, along with several benchmarks (Jhamtani and
Berg-Kirkpatrick, 2018; Tan et al., 2019; Park et al.,
2019; Forbes et al., 2019) has drawn increasing at-
tention in the community. To complete the task
and generate comparative descriptions, a machine
should understand the visual differences between
a pair of images (see Figure 1). Previous meth-
ods (Jhamtani and Berg-Kirkpatrick, 2018) often
consider the pair of pre-trained visual features such

vs

This bird has grey wings with a 
white neck and black peak.

animal1 has a medium sized dark beak, a 
white breast and grey wings. animal2 has a 

white breast with brown wings and tail, 
black eyes and a brown head .

vs

Figure 1: Overview of the visual comparison task and
our motivation. The key is to understand both images
and compare them. Explicit semantic structures can be
compared between images and used to generate com-
parative descriptions aligned to the image saliency.

as the ResNet features (He et al., 2016) as a whole,
and build end-to-end neural networks to predict
the description of visual comparison directly. In
contrast, humans can easily reason about the vi-
sual components of a single image and describe the
visual differences between two images based on
their semantic understanding of each one. Humans
do not need to look at thousands of image pairs to
describe the difference of new image pairs, as they
can leverage their understanding of single images
for visual comparison.

Therefore, we believe that visual differences
should be learned by understanding and comparing
every single image’s semantic representation. A
most recent work (Zhang et al., 2020) conceptu-
ally supports this argument, where they show that
low-level ResNet visual features lead to poor gen-
eralization in vision-and-language navigation, and
high-level semantic segmentation helps the agent
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Figure 2: Our L2C model. It consists of a segmentation encoder, a graph convolutional module, and an LSTM
decoder with an auxiliary loss for single-image captioning. Details are in Section 2.

generalize to unseen scenarios.
Motivated by humans, we propose a Learning-to-

Compare (L2C) method that focuses on reasoning
about the semantic structures of individual images
and then compares the difference of the image pair.
Our contributions are three-fold:

• We construct a structured image representa-
tion by leveraging image segmentation with
a novel semantic pooling, and use graph con-
volutional networks to perform reasoning on
these learned representations.

• We utilize single-image captioning data to
boost semantic understanding of each image
with its language counterpart.

• Our L2C model outperforms the baseline on
both automatic evaluation and human eval-
uation, and generalizes better on the testing
image pairs.

2 L2C Model

We present a novel framework in Figure 2, which
consists of three main components. First, a seg-
mentation encoder is used to extract structured vi-
sual features with strong semantic priors. Then, a
graph convolutional module performs reasoning on
the learned semantic representations. To enhance
the understanding of each image, we introduce a
single-image captioning auxiliary loss to associate
the single-image graph representation with the se-
mantic meaning conveyed by its language coun-
terpart. Finally, a decoder generates the visual
descriptions comparing two images based on dif-
ferences in graph representations. All parameters
are shared for both images and both tasks.

2.1 Semantic Representation Construction

To extract semantic visual features, we utilize pre-
trained fully convolutional networks (FCN) (Long
et al., 2015) with ResNet-101 as the backbone. An
image I is fed into the ResNet backbone to pro-
duce a feature map F ∈ RD×H×W , which is then
forwarded into an FCN head that generates a binary
segmentation mask B for the bird class. However,
the shapes of these masks are variable for each im-
age, and simple pooling methods such as average
pooling and max pooling would lose some infor-
mation of spatial relations within the mask.

To address this issue and enable efficient aggre-
gation over the area of interest (the masked area),
we add a module after the ResNet to cluster each
pixel within the mask into K classes. Feature map
F is forwarded through this pooling module to
obtain a confidence map C ∈ RK×H×W , whose
entry at each pixel is a K-dimensional vector that
represents the probability distribution of K classes.

Then a set of nodes V = {v1, ..., vK}, vk ∈ RD

is constructed as following:

vk =∑
i,j

F ⊙ B ⊙ Ck (1)

where i=1, ...H, j=1, ...,W,, Ck is the k-th proba-
bility map and ⊙ denotes element-wise multiplica-
tion.

To enforce local smoothness, i.e., pixels in a
neighborhood are more likely belong to one class,
we employ total variation norm as a regularization
term:

LTV =∑
i,j

∣Ci+1,j−Ci, j∣+∣Ci,j+1−Ci, j∣ (2)
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2.2 Comparative Relational Reasoning
Inspired by recent advances in visual reasoning
and graph neural networks (Chen et al., 2018; Li
et al., 2019), we introduce a relational reasoning
module to enhance the semantic representation of
each image. A fully-connected visual semantic
graph G = (V,E) is built, where V is the set of
nodes, each containing a regional feature, and E
is constructed by measuring the pairwise affinity
between each two nodes vi, vj in a latent space.

A(vi, vj) = (Wivi)T (Wjvj) (3)

where Wi,Wj are learnable matrices, and A is the
constructed adjacency matrix.

We apply Graph Convolutional Networks (GCN)
(Kipf and Welling, 2016) to perform reasoning
on the graph. After the GCN module, the out-
put V o

= {vo1, ..., voK}, vok ∈ RD will be a rela-
tionship enhanced representation of a bird. For
the visual comparison task, we compute the differ-
ence of each two visual nodes from two sets, de-
noted as V g

diff = {vodiff,1, ..., vodiff,K}, vodiff,k =
v
o
k,1 − v

o
k,2 ∈ RD.

2.3 Learning to Compare while Learning to
Describe

After obtaining relation-enhanced semantic fea-
tures, we use a Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) to generate
captions. As discussed in Section 1, semantic un-
derstanding of each image is key to solve the task.
However, there is no single dataset that contains
both visual comparison and single-image annota-
tions. Hence, we leverage two datasets from simi-
lar domains to facilitate training. One is for visual
comparison, and the other is for single-image cap-
tioning. Alternate training is utilized such that for
each iteration, two mini-batches of images from
both datasets are sampled independently and fed
into the encoder to obtain visual representations V o

(for single-image captioning) or V o
diff (for visual

comparison).
The LSTM takes V o or V o

diff with previous out-
put word embedding yt−1 as input, updates the
hidden state from ht−1 to ht, and predicts the word
for the next time step. The generation process
of bi-image comparison is learned by maximizing
the log-likelihood of the predicted output sentence.
The loss function is defined as follows:

Ldiff = −∑
t

logP (yt∣y1∶t−1, V o
diff) (4)

Similar loss is applied for learning single-image
captioning:

Lsingle = −∑
t

logP (yt∣y1∶t−1, V o) (5)

Overall, the model is optimized with a mixture
of cross-entropy losses and total variation loss:

Lloss = Ldiff + Lsingle + λLTV (6)

where λ is an adaptive factor that weighs the total
variation loss.

3 Experiments

3.1 Experimental Setup
Datasets The Birds-to-Words (B2W) has 3347
image pairs, and each has around 5 descriptions of
visual difference. This leads to 12890/1556/1604
captions for train/val/test splits. Since B2W con-
tains only visual comparisons, We use the CUB-
200-2011 dataset (CUB) (Wah et al., 2011), which
consists of single-image captions as an auxiliary
to facilitate the training of semantic understanding.
CUB has 8855/2933 images of birds for train/val
splits, and each image has 10 captions.

Evaluation Metrics Performances are first eval-
uated on three automatic metrics1: BLEU-4 (Pa-
pineni et al., 2002), ROUGE-L (Lin, 2004), and
CIDEr-D (Vedantam et al., 2015). Each generated
description is compared to all five reference para-
graphs. Note for this particular task, researchers
observe that CIDEr-D is susceptible to common
patterns in the data (See Table 1 for proof), and
ROUGE-L is anecdotally correlated with higher-
quality descriptions (which is noted in previous
work (Forbes et al., 2019)). Hence we consider
ROUGE-L as the major metric for evaluating per-
formances. We then perform a human evaluation
to further verify the performance.

Implementation Details We use Adam as the
optimizer with an initial learning rate set to 1e-
4. The pooling module to generate K classes is
composed of two convolutional layers and batch
normalization, with kernel sizes 3 and 1 respec-
tively. We set K to 9 and λ to 1. The dimension
of graph representations is 512. The hidden size of
the decoder is also 512. The batch sizes of B2W
and CUB are 16 and 128. Following the advice
from (Forbes et al., 2019), we report the results

1https://www.nltk.org

https://www.nltk.org
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Validation Test

Model BLEU-4 ↑ ROUGE-L ↑ CIDEr-D ↑ BLEU-4 ↑ ROUGE-L ↑ CIDEr-D ↑

Most Frequent 20.0 31.0 42.0 20.0 30.0 43.0
Text-Only 14.0 36.0 5.0 14.0 36.0 7.0
Neural Naturalist 24.0 46.0 28.0 22.0 43.0 25.0
CNN+LSTM 25.1 43.4 10.2 24.9 43.2 9.9

L2C [B2W] 31.9 45.7 15.2 31.3 45.3 15.1
L2C [CUB+B2W] 32.3 46.2 16.4 31.8 45.6 16.3

Human 26.0 47.0 39.0 27.0 47.0 42.0

Table 1: Results for visual comparison on the Birds-to-Words dataset (Forbes et al., 2019). Most Frequent produces
only the most observed description in the dataset: “the two animals appear to be exactly the same”. Text-Only
samples captions from the training data according to their empirical distribution. Neural Naturalist is a transformer
model in Forbes et al. (2019). CNN+LSTM is a commonly-used CNN encoder and LSTM decoder model.

Choice (%) L2C CNN+LSTM Tie

Score 50.8 39.4 9.8

Table 2: Human evaluation results. We present work-
ers with two generations by L2C and CNN+LSTM for
each image pair and let them choose the better one.

using models with the highest ROUGE-L on the
validation set, since it could correlate better with
high-quality outputs for this task.

3.2 Automatic Evaluation

As shown in Table 1, first, L2C[B2W] (training
with visual comparison task only) outperforms
baseline methods on BLEU-4 and ROUGE-L. Pre-
vious approaches and architectures failed to bring
superior results by directly modeling the visual rela-
tionship on ResNet features. Second, joint learning
with a single-image caption L2C[B2W+CUB] can
help improve the ability of semantic understanding,
thus, the overall performance of the model. Finally,
our method also has a smaller gap between vali-
dation and test set compared to neural naturalist,
indicating its potential capability to generalize for
unseen samples.

3.3 Human Evaluation

To fully evaluate our model, we conduct a pair-
wise human evaluation on Amazon Mechanical
Turk with 100 image pairs randomly sampled from
the test set, each sample was assigned to 5 work-
ers to eliminate human variance. Following Wang
et al. (2018), for each image pair, workers are pre-
sented with two paragraphs from different models
and asked to choose the better one based on text

Validation

Model BLEU-4 ↑ ROUGE-L ↑ CIDEr-D ↑

L2C 31.9 45.7 15.2

− Semantic Pooling 24.5 43.2 7.2
− TV Loss 29.3 44.8 13.6
− GCN 30.2 43.5 10.7

Table 3: Ablation study on the B2W dataset. We indi-
vidually remove Semantic Pooling, total variation (TV)
loss, and GCN to test their effects.

quality2. As shown in Table 2, L2C outperforms
CNN+LSTM, which is consistent with automatic
metrics.

3.4 Ablation Studies

Effect of Individual Components We perform
ablation studies to show the effectiveness of seman-
tic pooling, total variance loss, and graph reason-
ing, as shown in Table 3. First, without seman-
tic pooling, the model degrades to average pool-
ing, and results show that semantic pooling can
better preserve the spatial relations for the visual
representations. Moreover, the total variation loss
can further boost the performance by injecting the
prior local smoothness. Finally, the results without
GCN are lower than the full L2C model, indicat-
ing graph convolutions can efficiently modeling
relations among visual regions.

Sensitivity Test We analyze model performance
under a varying number of K (K is the number of
classes for confidence map C), as shown in Figure 3.
Empirically, we found the results are comparable
when K is small.

2We instruct the annotators to consider two perspectives,
relevance (the text describes the context of two images) and
expressiveness (grammatically and semantically correct).
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Figure 3: Sensitivity test on number of K chosen.

4 Conclusion

In this paper, we present a learning-to-compare
framework for generating visual comparisons. Our
segmentation encoder with semantic pooling and
graph reasoning could construct structured image
representations. We also show that learning to de-
scribe visual differences benefits from understand-
ing the semantics of each image.
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