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Abstract

Integrating external knowledge into common-
sense reasoning tasks has shown progress in
resolving some, but not all, knowledge gaps
in these tasks. For knowledge integration to
yield peak performance, it is critical to select
a knowledge graph (KG) that is well-aligned
with the given task’s objective. We present
an approach to assess how well a candidate
KG can correctly identify and accurately fill
in gaps of reasoning for a task, which we
call KG-to-task match. We show this KG-
to-task match in 3 phases: knowledge-task
identification, knowledge-task alignment, and
knowledge-task integration. We also analyze
our transformer-based KG-to-task models via
commonsense probes to measure how much
knowledge is captured in these models be-
fore and after KG integration. Empirically,
we investigate KG matches for the SocialIQA
(SIQA) (Sap et al., 2019b), Physical IQA
(PIQA) (Bisk et al., 2020), and MCScript2.0
(Ostermann et al., 2019) datasets with 3 di-
verse KGs: ATOMIC (Sap et al., 2019a), Con-
ceptNet (Speer et al., 2017), and an automat-
ically constructed instructional KG based on
WikiHow (Koupaee and Wang, 2018). With
our methods we are able to demonstrate that
ATOMIC, an event-inference focused KG, is
the best match for SIQA and MCScript2.0, and
that the taxonomic ConceptNet and WikiHow-
based KGs are the best matches for PIQA
across all 3 analysis phases. We verify our
methods and findings with human evaluation.1

1 Introduction

Recently, several datasets (Sap et al., 2019b; Huang
et al., 2019; Bhagavatula et al., 2020; Talmor et al.,
2019b) have been released to tackle the challenge
of commonsense reasoning. While deep pretrained

1Our code and commonsense probes will be publicly avail-
able on our webpage.

language-models (LMs) (Devlin et al., 2019; Rad-
ford et al., 2019; Liu et al., 2019; Yang et al., 2019)
have been at the top of most leaderboards, they still
have shortcomings when it comes to commonsense
reasoning (Sap et al., 2019b; Rajani et al., 2019;
Mitra et al., 2019). Thus, incorporating knowledge
graph (KG) information into these models is an
active area of research (Lin et al., 2019a; Sun et al.,
2019; Mitra et al., 2019; Bosselut et al., 2019).
However, when selecting a KG match for a task, it
is often difficult to quantitatively assess what kind
of knowledge is missing from these models and
how much of the missing knowledge required for
the task is available in a candidate KG. It is also
critical to examine how easily transformer-based
models can learn commonsense knowledge, to de-
termine the benefits of integrating a KG.

We investigate how well a KG matches with
a task objective, referred to as KG-to-task match.
We use a 3-step process that examines knowledge
identification, alignment, and integration. We uti-
lize a modular pipeline approach to allow for inter-
pretable results and easy replacement of new and
different modules. Our approach reveals features
such as: how often a KG identifies a knowledge gap
in a question-answer pair (identification), whether
a KG identifies the correct knowledge gap (align-
ment), and whether the inserted knowledge cor-
rectly fills the knowledge gap required for the task
(integration). These steps are depicted in Fig. 1.
We also compare the effects of knowledge content,
structure, and shape.

The results of this analysis are impacted by the
model we use, and thus we also develop probes
to examine how much commonsense knowledge
LMs already know and how easy it is for them to
learn. We evaluate our KG-to-task models in a QA
probe setup to examine how much commonsense
is learned with and without the matched KG. Our
probes are automatically built from ATOMIC, en-
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Figure 1: We illustrate our 3 phases of analysis: Knowledge-Task Extraction Analysis, Knowledge-Task Alignment
Analysis, and Knowledge-Task Integration Analysis with Probing Analysis.

abling us to leverage existing knowledge sources
as a probing base without relying on expensive col-
lection methods. We also include an MLM probe
setup to obtain zero-shot and fine-tuned results on
probes for social relations, agent-patient assign-
ment, and world knowledge.

We present detailed empirical results on three
diverse datasets: SocialIQA (SIQA) task (Sap et al.,
2019b), which requires social knowledge; Physi-
cal IQA (PIQA) (Bisk et al., 2020) which requires
physical knowledge; and MCScript2.0 (Ostermann
et al., 2019), which requires commonsense script
knowledge, not restricted to a particular domain.
Since both SIQA and PIQA require a particular
domain of commonsense knowledge, these tasks
allow us to draw strong conclusions about KG in-
tegration, as knowledge must be well aligned with
the tasks to yield performance gains. Analyzing
MCScript2.0, on the other hand, allows us to un-
derstand how this analysis applies to a task where
the best match is not obvious. We compare KG-to-
task match with three diverse KGs: ATOMIC (Sap
et al., 2019a), ConceptNet (Speer et al., 2017), and
automatically extracted subgraphs from WikiHow.
Each KG is tailored for a different commonsense
domain: ATOMIC focuses on social commonsense,
ConceptNet on taxonomic commonsense, and Wik-
iHow on instruction-based commonsense. This al-
lows us to see how different tasks require different
types of commonsense knowledge.

To investigate KG-to-task match, we follow
three phases: identify, align, and integrate. In
our first phase, we examine knowledge gap iden-

tification by analyzing our extraction quantities.
In our second phase, we examine alignment by
utilizing a ‘knowledge-surrounded’ (KS) model,
in which we replace task candidate answers with
knowledge-surrounded answers. We found that
ATOMIC is the best match for SIQA across both
identification and alignment: 11% more ATOMIC
data is extracted for question-answer knowledge
gaps than ConceptNet data, with a 4.8% perfor-
mance increase over BERT using our ATOMIC KS
model. We use our third phase, integration, to inves-
tigate the classification change distributions from
BERT to the KS model, finding that our model is
more confident about correct classification changes,
supporting the ATOMIC-SIQA match. Addition-
ally, both ConceptNet and WikiHow graphs outper-
formed ATOMIC on PIQA: 8% more ConceptNet
data is extracted than ATOMIC and a 17.4% per-
formance increase is achieved with our Concept-
Net KS model, whereas we get a 15.5% increase
with our WikiHow KS model. Finally, we find that
ATOMIC is the best match for MCScript2.0, with
a 2.7% increase with our ATOMIC KS model.

We also perform human evaluation and show im-
portant connections between the analysis phases.
We see that if our KS model shows improvement
for high quality settings, our extraction step is a
valid knowledge-gap identification metric between
74% and 89% of the time, depending on the dataset.
We also show that our best alignment strategy for
ATOMIC-SIQA fills knowledge gaps 66% of the
time, outperforming the best alignment strategy for
ConceptNet-SIQA, which supports our KS model
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performance results. We find similar trends for
PIQA alignment and also find that the amount of
information available at inference time may affect
alignment results for MCScript2.0. Human evalua-
tion shows that 93% of ATOMIC-SIQA KS model
prediction changes (with respect to the baseline) se-
lect the answer with the highest knowledge quality,
verifying our integration phase as a quality metric.

Our commonsense QA probes before and after
KG integration show that our KS model only con-
siderably outperforms the BERT baseline on cer-
tain relational probes, indicating the type of knowl-
edge gaps ATOMIC is better at resolving, e.g., re-
lational knowledge such as feelings, reactions, etc.

Overall, our methods not only illustrate the type
of knowledge that current transformer-based mod-
els are missing to approach human-level common-
sense reasoning but also how we can identify, align,
and integrate knowledge between a KG and a task
to find the best match to fill in these missing gaps
of reasoning.

2 Related Work

Language Model Probes: Recent work in probe
construction has examined neural model knowl-
edge (Richardson and Sabharwal, 2019; Zhou et al.,
2020b; Rogers et al., 2020; Lin et al., 2020). Tal-
mor et al. (2019a) constructed eight tasks that eval-
uated LMs for operations such as comparison, con-
junction, and composition. Zhou et al. (2020a)
created logically equivalent probes to evaluate ro-
bustness on commonsense tasks to syntax. Kwon
et al. (2019) proposed tests based on ConceptNet to
measure what types of commonsense MLMs under-
stand. Our work instead focuses on probing models
for causal, social commonsense in both the MLM
and QA setup before and after KG integration and
fine-tuning, and automatically constructs probes
from existing knowledge sources.
Commonsense Reasoning: Recent commonsense
reasoning datasets (Bhagavatula et al., 2020;
Zellers et al., 2018; Zhou et al., 2019; Sap et al.,
2019b; Bisk et al., 2020; Lin et al., 2019b; Zellers
et al., 2019; Ostermann et al., 2019) have motivated
research in several domains of commonsense: ab-
ductive, grounded, temporal, social, and physical.
Commonsense reasoning can be learned either by
KGs pre-training (Bosselut et al., 2019; Bosselut
and Choi, 2019; Ye et al., 2019) or by integrating
explicit knowledge (Chen et al., 2017; Mitra et al.,
2018; Bauer et al., 2018; Lin et al., 2019a; Zhang

et al., 2019; Xiong et al., 2019). We show how find-
ing nuanced knowledge for successful common-
sense reasoning can be quantitatively examined.
Commonsense Knowledge Analysis: Zhang et al.
(2020) presented a categorization of essential
knowledge for the Winograd Schema Challenge
(Levesque et al., 2012) via human annotation to
identify what knowledge was required for better
commonsense reasoning. Ma et al. (2019) investi-
gated how KG integration methods affected model
performance on different tasks and found that the
degree of domain overlap between the KG and the
task plays a crucial role in performance. We further
investigate this by measuring KG-to-task match
across 3 automatic phases, considering different
extraction methods, and probing models for knowl-
edge before and after KG integration.

3 Tasks & Knowledge Graphs

3.1 Tasks

SIQA: The SocialIQA (SIQA) (Sap et al., 2019b)
task focuses on social commonsense. Given a con-
text and question, a model selects from 3 answers.
SIQA contexts are based on ATOMIC (Sap et al.,
2019a) events and SIQA question types are guided
by ATOMIC inference dimensions. Thus, we ex-
pect ATOMIC to match SIQA requirements. For
simplicity, we refer to the concatenation of context
and question as the question throughout the paper.
PIQA: The PhysicalIQA (PIQA) (Bisk et al., 2020)
task objective focuses on physical commonsense
reasoning. Given a goal, a model selects from 2
candidate solutions. PIQA is derived from the in-
struction domain, and thus we expect instructional
physical commonsense to benefit PIQA. For sim-
plicity, we refer to the goal as the question.
MCScript2.0: MCScript2.0 (Ostermann et al.,
2019) focuses on script events and participants,
requiring commonsense knowledge, in particular
script knowledge, to answer questions correctly.
We specifically choose this dataset such that it does
not have a strong preference for any of the KGs we
investigate, to illustrate what our analysis may look
like for an unpredictable result. For simplicity, we
refer to the concatenation of context and question
as the question throughout the paper.

3.2 Knowledge Sources

We show results across three knowledge graphs to
illustrate differences in KG-to-task identification,
alignment, and integration, and to show how BERT
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Figure 2: Examples of different knowledge shapes per KG given SIQA context and ground truth answer.

KG Shape Cond. Filter Sets Pres.

AT triple QC HQ CS-1 KS+
CN path A HR CS-2 KS-
WH subgraph - - CS-3 -

Table 1: Variations for each knowledge setting.
AT=ATOMIC, CN=ConceptNet, WH=WikiHow,
QC=question-conditioned, A=unconditioned,
HR=high recall, HQ=high quality, KS+/-=knowledge
presence at inference time.

responds differently to various types of knowledge.
ATOMIC: ATOMIC (Sap et al., 2019a) is an in-
ferential knowledge atlas that focuses on if-then
reasoning. This knowledge is structured as event-
inference pairs, where each pair reflects one of 9
possible inference dimensions for different if-then
reasoning relations (cause vs. effect, etc). Knowl-
edge is in the form of short, abstracted, free-text.
See the left of Fig 2 for examples.
ConceptNet: ConceptNet (Speer et al., 2017) is a
taxonomic knowledge graph that connects natural
language concepts with relation edges. While there
are relation edges similar to ATOMIC inference
dimensions, the structure of the knowledge is in
the form of structured triples and generally tends to
focus on relations between words or phrases. See
the right of Fig 2 for examples.
WikiHow: We automatically extract subgraphs
from WikiHow (Koupaee and Wang, 2018) to build
our own instruction-based, domain-specific KG.
Details are found in the appendix.

4 Phase 1: Identify

4.1 Setup

We identify knowledge using the following extrac-
tion methods for each KG. Our setup with all pos-
sible options is illustrated in Table 1. We will use

Fig 2 as a running example throughout this section.

4.1.1 Knowledge Conditioning
Unconditioned (A) Answer-Knowledge:
ATOMIC: For each candidate answer, we extract a
pool of top scoring knowledge using tf-idf between
the answer and all ATOMIC event-inference pairs.
ConceptNet & WikiHow: For each candidate an-
swer, we extract knowledge that links concepts in
the answer to any concept in the KG, where con-
cepts are tokens in the answer and nodes in the KG.
Example: Consider the SIQA context and ground-
truth answer on the right side of Fig 2. Here, the A
conditioning setup for ConceptNet would extract
the triple [keep, Antonym, get rid].
Question-Conditioned (QC) Answer-Knowl.:
ATOMIC: We select a question-conditioned knowl-
edge pool via the top scoring tf-idf match between
the question & candidate answer and all ATOMIC
event-inference pairs. We then select a pool of top
scoring knowledge for each candidate answer us-
ing tf-idf between the candidate answer and the
question-conditioned knowledge pool.
ConceptNet & WikiHow: For each candidate an-
swer, we extract knowledge that links concepts in
the question directly to concepts in the answer.
Example: All knowledge illustrated in Fig 2 is ex-
tracted using QC conditioning.

4.1.2 Knowledge Shape
Knowledge Pairs/Triples:
ATOMIC: We take the highest scoring knowledge
pair determined by the conditioning step.
ConceptNet & WikiHow: We select a triple at ran-
dom from the conditioning step.
Knowledge Paths:
ATOMIC: In the QC setup, for each data point, we
extract a question-knowledge pool via top scoring
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tf-idf match between the question and all ATOMIC
event-inference pairs. If there exists a concept
link between the question-knowledge pool and the
answer-knowledge pool from the conditioning step,
we link this knowledge as a path. In the A setup, we
make the modification that our answer-knowledge
pool can link to any pair in ATOMIC.
WikiHow: In the QC setup, we find a path from a
word in the question, to another word in the ques-
tion, to a word in the answer. In the A setup, we
find a path from a word in the answer to any word
it connects to in the KG, as a path through the KG.
Knowledge Subgraphs:
ATOMIC: We take a maximum of the 3 highest
scoring knowledge triples determined by the condi-
tioning step to create 1-hop subgraphs.
ConceptNet & WikiHow: From the conditioning
knowledge pool, we add the subgraph with the
highest number of edges, as we assume these to
be the most informative. We only consider 1-hop
edges and take the top 5.
Example: All three shape variations are illustrated
in Fig 2, using QC conditioning.

4.1.3 Knowledge Filtering
High Quality/Low Recall (HQ): We constrain
each answer candidate to keep its highest scoring
unique knowledge such that no answer candidate
shares knowledge, intending to ensure the rele-
vance of the knowledge to that candidate alone.
Low Quality/High Recall (HR): Candidate
keeps its highest scoring knowledge regardless of
knowledge sharing among candidates.

4.1.4 Data Subsets & Baseline Training
We split data into subsets depending on how many
candidate answers extracted knowledge (CS-X) to
evaluate knowledge impact on task performance
fairly. For our main results, we use the split in
which each answer has access to knowledge (CS-2
for PIQA and MCScript2.0, CS-3 for SIQA). Table
2 illustrates the percent of original data for each
split. We compare KS model subset results against
a BERT baseline trained and evaluated on the same
subset simply without the added knowledge.

4.2 Analysis

We examine how often a KG identifies a potential
knowledge gap between a question and an answer.
This is illustrated on the far left in Fig. 1. Table 2
shows the percent of knowledge extracted for each

Variation ATOMIC ConceptNet

SIQA:
QC-HQ CS-1 51% 39%
QC-HQ CS-2 24% 22%
QC-HQ CS-3 2% 6%
QC-HQ CS 77% 66%

PIQA:
QC-HQ CS-1 16% 24%
QC-HQ CS-2 8% 8%
QC-HQ CS 24% 32%

MCScript2.0:
QC-HQ CS-1 2% 36%
QC-HQ CS-2 88% 54%
QC-HQ CS 90% 90%

Table 2: %Knowledge extracted for each subset wrt.
original data size. Results shown for the best aligned
KG shape in the QC-HQ setting: SIQA=CN triples,
ATOMIC paths; PIQA=CN subgraphs, ATOMIC pairs;
MCScript2.0=CN subgraphs, ATOMIC pairs.

QC-HQ subset. We use the QC-HQ setting to show
how often our KG specifically identifies question-
answer knowledge gaps. We use each KG’s best
aligned shape in this comparison (Section 5.2.2).
For SIQA, we extract more ATOMIC data than
for ConceptNet and for PIQA, we extract more
ConceptNet data than for ATOMIC. This illustrates
that ATOMIC identifies more knowledge gaps for
SIQA, and ConceptNet identifies more knowledge
gaps for PIQA. For MCScript2.0, we see that the
same total knowledge is extracted from both KGs,
however more ATOMIC knowledge is extracted in
the CS-2 setup, indicating better coverage.

5 Phase 2: Align

5.1 Setup

Baseline Model: We fine-tune BERT-base (Devlin
et al., 2019) as our baseline on SIQA following Sap
et al. (2019b), BERT-base on MCScript2.0, and
BERT-large (Devlin et al., 2019) as our baseline on
PIQA following Koupaee and Wang (2018). See
original papers for hyperparameter settings.
Knowledge-Surrounded (KS) Model: We en-
hance task candidate answers with knowledge-
surrounded answers, in which answer-specific
knowledge is appended to each candidate answer.
This knowledge is intended to explicitly add miss-
ing knowledge gaps to the answer. This model is
used in the alignment and integration steps in Fig.
1. We encode input as follows. For a question qi,
we modify each candidate answer, cij , by append-
ing its respective knowledge kij . The sequence
of tokens {[CLS] qi [SEP] cijkij [SEP]} is then
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Variation Base. KS+ KS-
SIQA AT. QC-HQ 38.1 42.9 40.5
SIQA AT. QC-HR 60.3 59.0 56.4
SIQA AT. A-HQ 60.4 60.0 59.2
SIQA AT. A-HR 61.8 60.8 61.0
SIQA CN QC-HQ 54.1 45.0 43.2
SIQA CN QC-HR 54.5 52.2 49.1
SIQA CN A-HQ 61.5 61.5 61.9
SIQA CN A-HR 61.2 60.0 59.7
PIQA AT. QC-HQ 54.6 49.3 50.0
PIQA AT. QC-HR 61.8 51.2 48.8
PIQA AT. A-HQ 50.6 61.2 64.9
PIQA AT. A-HR 70.5 64.9 65.4
PIQA CN QC-HQ 60.5 66.5 59.9
PIQA CN QC-HR 51.4 57.2 58.7
PIQA CN A-HQ 49.0 64.5 66.4
PIQA CN A-HR 70.5 54.5 51.9
PIQA WH QC-HQ 53.3 54.7 48.0
PIQA WH QC-HR 59.9 54.7 55.0
PIQA WH A-HQ 53.5 68.3 69.0
PIQA WH A-HR 67.5 51.4 49.3
MC AT. QC-HQ 80.3 83.0 79.6
MC AT. QC-HR 82.4 80.8 79.4
MC AT. A-HQ 82.5 80.9 79.6
MC AT. A-HR 81.2 80.0 77.6
MC CN QC-HQ 78.6 79.4 76.2
MC CN QC-HR 78.8 79.3 78.4
MC CN A-HQ 82.6 80.3 77.4
MC CN A-HR 82.2 80.2 76.9

Table 3: Accuracy for extraction variations on: SIQA
CS-3 for ATOMIC paths & ConceptNet triples; PIQA
CS-2 for ATOMIC pairs & ConceptNet subgraphs &
WikiHow paths; and MCScript2.0 CS-2 for ATOMIC
pairs & ConceptNet subgraphs.

passed as input to BERT. Thus, each candidate an-
swer is surrounded by knowledge that allows BERT
to potentially fill reasoning gaps between the ques-
tion and answer. The extraction variations for kij
are described in Section 4.1.

5.2 Analysis
We investigate how well the extracted knowledge
and the task are aligned by allowing the knowledge
to fill in the question-answer knowledge gap and
determining whether this improves performance.
This is illustrated in the center of Fig. 1.

5.2.1 Extraction Variation Analysis
Table 3 illustrates performance for each KG across
each of the different extractions, using the subset in
which each candidate answer has access to knowl-
edge. We compare question-conditioned, uncondi-
tioned, high recall, and high quality settings for the
best aligned knowledge shape (ConceptNet triples,
ATOMIC paths for SIQA; ConceptNet subgraphs,
ATOMIC pairs, WikiHow paths for PIQA; Concept-
Net subgraphs, ATOMIC pairs for MCScript2.0)
across the three KGs. For each setting, we show
results both for when knowledge is present dur-

ing inference time (KS+) and when it is not (KS-).
We see that SIQA performed best when it received
QC-HQ knowledge from ATOMIC, reflecting the
strong, one-to-one alignment between SIQA and
ATOMIC. PIQA, however, performs well across
most extractions for ConceptNet, indicating that
PIQA is generally well aligned with ConceptNet
and only performs poorly when the extraction pro-
cess becomes too noisy. Additionally, PIQA per-
forms well with WikiHow for the unconditioned,
high quality setting, indicating that the WikiHow
KG is not well aligned across question-answer
pairs, but does identify useful knowledge gaps
within the answer that may improve performance
on the task. Finally, we see that MCScript2.0 per-
formed best when it received QC-HQ knowledge
from ATOMIC, and similarly to SIQA, improves
when seeing this knowledge at inference time.

5.2.2 Knowledge Shape Analysis
We discuss knowledge shape effects on alignment.
ATOMIC: For SIQA, ATOMIC paths have the
best alignment, due to the high quality achieved
when constraining knowledge for the SIQA ques-
tion to link to knowledge for the answer. ATOMIC
pairs and subgraphs seem to be learned more im-
plicitly and do not yield large overall improvements
when added explicitly during inference time. It
seems that SIQA requires longer, more informa-
tive knowledge at inference time, which pairs and
subgraphs do not offer. For example, consider
the SIQA context and answer on the right of Fig
2. For this data point, we extract the following
ATOMIC path: [PersonX has to go to the dentist,
need to make an appointment, PersonX picks
up from school, to drive kids home], and the fol-
lowing ATOMIC pair: [PersonX picks up from
school, to drive kids home]. We can see that the
path clearly contains more context and detail for
the knowledge required to make the correct predic-
tion. For PIQA, we saw the largest improvements
for ATOMIC pairs and subgraphs, where pairs ul-
timately perform best, indicating that PIQA might
find concise and direct information from ATOMIC
more useful. For MCScript2.0, ATOMIC pairs
aligned best exclusively.
ConceptNet: For SIQA, ConceptNet triples and
subgraphs show similar alignment results and we
do not see major improvements. It seems that the
content of ConceptNet is not aligned well to SIQA,
regardless of shape. For PIQA, we see improve-
ments for both triples and subgraphs, and get our
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best improvements with subgraphs, indicating that
the extra knowledge encoded in a subgraph shape
via ConceptNet is helpful for the PIQA task. Sim-
ilarly to SIQA, MCScript2.0 performed best with
ConceptNet subgraphs, but these do not yield ma-
jor improvements. Interestingly, results on MC-
Script2.0 only show slight improvement for Con-
ceptNet when knowledge is present at inference
time, and shows no improvement otherwise.
WikiHow: WikiHow paths performed best, indi-
cating that paths were the best way to extract in-
formation, as WikiHow pairs and subgraphs might
have contained redundant information given limita-
tions with the WikiHow KG extraction process.

5.2.3 Knowledge Graph Analysis
Given our alignment results, it is clear to see that
ATOMIC is the best match for SIQA, that Concept-
Net is the best match for PIQA, and that ATOMIC
is the best match for MCScript2.0 (most likely due
to its need for script knowledge, which often re-
quires social knowledge). The encoding of each
KG plays an important role in this match. We see
that the ConceptNet to PIQA match is more robust
to extraction methods, which may be a side effect
of ConceptNet’s encoding, where directly linking
nodes is less noisy than using tf-idf measures for
the ATOMIC encoding, in which we only see posi-
tive results when we have very selective filters in
our extraction techniques. The concise, short na-
ture of ConceptNet’s knowledge also lends itself to
more implicit knowledge learning for certain types
of tasks, whereas the more descriptive nature of
ATOMIC can be read during inference time (see
Fig 2 for examples). This illustrates the possibil-
ity that ConceptNet may boost performance as a
regularizer for certain tasks.

6 Phase 3: Integrate

6.1 Setup

We analyze two aspects of integration, depicted on
the far right in Fig. 1. First, we construct common-
sense probes to demonstrate how much knowledge
we gain from our KGs via our transformer-based
KS model with respect to a BERT baseline. Sec-
ond, we examine distributional changes in our mod-
els before and after commonsense integration and
verify our results with human evaluation. With
our probes, we can compare how well models dis-
tinguish between several types of ATOMIC-style
knowledge, outlined below.

Type Baseline KS model

Relation Probes
xWant vs xEffect 53.66 46.59
xWant vs xReact 51.66 77.39
xWant vs xIntent 52.05 45.77
xWant vs xNeed 47.99 50.32
xWant vs xAttr 71.74 65.19
xEffect vs xReact 43.32 63.36
xEffect vs xIntent 54.29 44.85
xEffect vs xNeed 49.22 52.48
xEffect vs xAttr 61.52 59.44
xReact vs xIntent 52.34 73.32
xReact vs xNeed 49.21 74.76
xReact vs xAttr 48.48 57.71
xIntent vs xNeed 44.18 42.24
xIntent vs xAttr 78.96 64.64
xNeed vs xAttr 68.97 68.49
oWant vs oEffect 51.74 41.83
oWant vs oReact 43.90 72.04
oEffect vs oReact 49.12 59.02

Agent-Patient Probes
xWant vs oWant 70.12 70.09
xEffect vs oEffect 74.34 73.51
xReact vs oReact 74.34 69.51

Concept Probes
inference 74.96 77.40
event 67.74 65.07

Table 4: QA probe results on ATOMIC-SIQA QC-HQ
KS model vs BERT baseline.

Relational Probes: We predict the ATOMIC rela-
tion between an event and inference pair, constrain-
ing our candidate answer set to two specified infer-
ence dimensions. For example, xWant vs xNeed
might refer to a probe that will predict an answer
from the candidate set: [Person wants recogni-
tion, Person needs recognition] given some event,
essentially pitting the two relations against each
other to evaluate the difficulty of distinguishing.
Agent-Patient Probes: We predict the agent of the
inference where the candidate set is the agent and
patient of the event (using ATOMIC abstractions).
Concept Probes: We predict concepts and con-
strain our candidate answer set to the most salient
concept in the sequence and its respective antonym.
A full description of probe construction and exam-
ples for each knowledge type can be found in the
appendix. We evaluate QA probes via standard
accuracy after fine-tuning.

6.2 Analysis: Commonsense Probes

Table 4 compares the performance between the
best performing ATOMIC-SIQA KS model and
respective SIQA BERT baseline. We see notable
performance differences for our relation probes,
showing that the KS model does well at identify-
ing the React relation and that the baseline tends
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Correct Incorrect

19.5% 12.4%

Table 5: Distribution changes for selected class from
baseline to KS model.

to identify the Attribute relation well. While
the KS model improves on several QA relational
probes, the performance was comparable for agent-
patient and world knowledge probes, indicating
the knowledge gaps ATOMIC is better at resolv-
ing, i.e., relational (feelings, reactions, etc.) versus
antonym/synonym information about concepts.

6.3 Analysis: Distribution Change

We conduct an integration analysis on our best
ATOMIC-SIQA setting (QC-HQ). We examine 40
multiple choice questions and analyze KS model
prediction changes with respect to the baseline. We
observe that 93% of prediction changes were made
because the new prediction’s knowledge had the
best reasoning flow to resolve a knowledge gap.

Fig. 1 defines our distribution change analysis
as ∆pcs sel = pcscs sel − pbasecs sel. Here, pcscs sel in-
dicates the KS Model’s probability of selecting
the KS Model’s selected answer and pbasecs sel indi-
cates the baseline’s probability of selecting the KS
Model’s selected answer. Thus, ∆pcs sel indicates
the change in the probability of selection for the
KS Model’s selected answer before (Base Model)
and after (KS Model) knowledge integration.

Table 5 shows the distribution change from the
baseline to the KS model for the selected answer.
When a switch became positive, the average prob-
ability increase of the selected ground truth candi-
date answer was 19.5%, whereas when a switch
became negative the increase was 12.4%. Thus, the
distribution change shows more confidence about
ground truth selection with added knowledge, in-
dicating that the quality of a ground truth’s knowl-
edge is higher than that of a negative candidate.

6.4 Analysis: Human Evaluation

We performed human evaluation on 100 SIQA, 100
PIQA, and 100 MCScript2.0 question-answer pairs
to determine the validity of our process for both
knowledge gap identification and alignment.2 To
show the validity of our QC-HQ extraction method
as a measure for knowledge gap identification, we

2Done by expert authors since this is time-consuming, fine-
grained verification analysis (instead of model evaluation).

ATOMIC CN

SIQA 89% 91%
PIQA 48% 82%
MC 75% 74%

Table 6: Human evaluation for valid knowledge gap.

ATOMIC CN

SIQA 66% 18%
PIQA 16% 22%
MC 31% 43%

Table 7: Human evaluation for correct knowledge gap.

find that this extraction method is a valid poten-
tial SIQA knowledge gap identification 89% of the
time for ATOMIC and 91% for ConceptNet. Valid,
in this case, means that the correct concepts (that
identify a relevant knowledge gap) were used to
create a link. These results are found in Table 6.
We also show that for our best ATOMIC extraction
(QC-HQ), we extract the correct knowledge for the
gap 66% of the time, demonstrating the connection
between KS model improvement and alignment.
Correct, in this case, means that the content of the
link itself is relevant to resolve the commonsense
gap. These results are found in Table 7. In contrast,
we see that our best ConceptNet extraction (A-HQ)
finds the correct knowledge for the gap 18% of the
time. This is probably why we do not see much
improvement when we give our ConceptNet KS
model knowledge during inference time and why it
seems to improve mostly via regularization.
On PIQA, we find that this extraction method is a
valid potential knowledge gap identification 48%
of the time for ATOMIC and 82% for Concept-
Net. We conclude that if we do not see alignment
improvement on the QC-HQ setting (as is true of
ATOMIC-PIQA), then extraction does not indicate
the best knowledge gap coverage. Additionally, we
find that for our best ATOMIC extraction method
(A-HQ), we extract the correct knowledge for the
gap 16% of the time and that for our best Con-
ceptNet extraction method (A-HQ), we extract the
correct knowledge for the gap 22% of the time.

For MCScript2.0, we found the best empiri-
cal performance with QC-HQ settings for both
ATOMIC and ConceptNet. With these settings,
we found that a valid potential knowledge gap iden-
tification occurs 75% of the time for ATOMIC and
74% for ConceptNet. Additionally, we find that
with ATOMIC, we extract the correct knowledge
for the gap for 31% of examples, and with Con-
ceptNet for 43%. The higher correct extractions for
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Type BERT RoBERTa

Relation Probes
xWant vs xEffect 60.90 56.68
xWant vs xReact 94.15 94.96
xWant vs xIntent 57.02 57.10
xWant vs xNeed 57.13 59.52
xWant vs xAttr 87.73 86.68
xEffect vs xReact 60.88 57.93
xEffect vs xIntent 78.74 71.79
xEffect vs xNeed 58.38 50.49
xEffect vs xAttr 58.18 58.13
xReact vs xIntent 84.97 92.59
xReact vs xNeed 94.63 94.29
xReact vs xAttr 56.72 57.27
xIntent vs xNeed 51.23 52.67
xIntent vs xAttr 61.57 64.73
xNeed vs xAttr 83.51 77.87
oWant vs oEffect 61.71 61.61
oWant vs oReact 94.80 90.97
oEffect vs oReact 60.46 61.00

Agent-Patient Probes
xWant vs oWant 65.79 46.71
xEffect vs oEffect 32.24 60.67
xReact vs oReact 62.64 52.10

Concept Probes
inference 79.15 80.68
event 68.91 68.51

Table 8: MLM probe zero-shot results.

ConceptNet are most likely due to the best perform-
ing extraction settings being QC-HQ. ATOMIC
QC-HQ settings visibly outperform the baseline
empirically, whereas ConceptNet QC-HQ settings
perform only slightly better. This may be due to
the fact that MCScript2.0 has a much larger context
than any of our other datasets, and thus a model
may already be able to implicitly infer the explicit
taxonomic knowledge offered by ConceptNet.

7 MLM Commonsense Probes

We evaluate the transformer-based models used
in our setup to assess how much knowledge LMs
already know and how easy it is for them to learn.

7.1 Setup
We examine our MLM probes in two settings: zero-
shot and fine-tuned. For the zero-shot setting, we
use a pre-trained LM without any fine-tuning. This
is to examine how much knowledge a pre-trained
transformer model already holds. For the fine-
tuned setting, we train on each probe’s respective
train set and evaluate using the same metrics as in
Talmor et al. (2019a). This is to examine how fast a
model learns given its encoding before fine-tuning.
Results, set up, metrics, and analysis for fine-tuned
settings are found in the appendix.

7.2 Results

Table 8 compares the performance of BERT and
RoBERTa for zero-shot results. Majority label re-
sults are found in the appendix.
Zero-shot Results: RoBERTa and BERT perform
comparably for most Relation probes. While per-
formance is poor for most settings, both models
perform very well at discerning between Want
and React (xWant vs xReact, oWant vs
oReact), and between xReact vs xNeed. Both
models perform reasonably well at discerning
Attr and Intent from other dimensions in
certain settings (xWant vs xAttr, xNeed vs
xAttr, xEffect vs xIntent, xReact vs
xIntent). In general, the models seem to most
consistently discern React from other dimensions.
Finally, both models perform comparably and rea-
sonably well on Concept probes, whereas the per-
formance for Agent-Patient probes differs largely
between the models and is often poor.

8 Conclusion

We proposed a method to analyze how well a can-
didate KG can correctly identify and accurately fill
in gaps of reasoning for a given task. We presented
a three step approach for analyzing this KG-to-task
match via identification, alignment, and integration.
We found that the ATOMIC KG aligns best with the
SIQA task, and quantitatively analyze the quality
of the extracted commonsense. We also found that
the ConceptNet and WikiHow based KGs match
best with the PIQA task. Finally, we see that the
ATOMIC KG also aligns best with MCScript2.0,
which was a novel discovery and is most likely a re-
sult of the task’s script knowledge requirement. We
demonstrate the knowledge contained and learned
by our KS model via our commonsense probes, il-
lustrating what knowledge transformer-based mod-
els already know and what they can learn. This
analysis can be extended to any set of tasks and
KGs to analyze match potential.
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A Appendix

A.1 WikiHow Subgraph Extraction
Procedure

We extract PIQA-conditioned WikiHow subgraphs
for each PIQA datapoint. We do this in three steps:
1. Given a PIQA goal, extract relevant titles in Wik-
ihow via tf-idf.
2. Dependency parse the PIQA goal, extracted
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Type Data Size

xWant vs xEffect 10012
xWant vs xReact 10693
xWant vs xIntent 9790
xWant vs xNeed 9829
xWant vs xAttr 11730
xEffect vs xReact 9519
xEffect vs xIntent 8616
xEffect vs xNeed 8655
xEffect vs xAttr 10556
xReact vs xIntent 9297
xReact vs xNeed 9336
xReact vs xAttr 11237
xIntent vs xNeed 8433
xIntent vs xAttr 10334
xNeed vs xAttr 10334
oWant vs oEffect 3873
oWant vs oReact 3873
oEffect vs oReact 3685
xWant vs oWant 7974
xEffect vs oEffect 5911
xReact vs oReact 7293
inference 8401
event 13228

Table 9: MLM & QA dev probe sizes.

Wikihow title, and each sentence in the title’s cor-
responding paragraph.
3. Find overlapping concepts in the dependency
parses for which to create concept nodes. Then,
create a graph by combining all possible edges for
a concept node (found in all dependency parses).

A.2 Probe Construction Details

A.2.1 QA
We use ATOMIC events and respective inferences
and map them into the following QA formats.

Relational Probes. For relational probes, we
state the event and follow it with “What happens
next?”. We then create candidates out of a corre-
sponding inference, each with a different relation.
For example,

PersonX puts out a fire. What happens next?

For the probe xWant vs xNeed, we select from
the candidate answers: [PersonX wants to receive
recognition, PersonX needs to receive recognition],
where our ground truth is PersonX wants to receive
recognition.

Agent-Patient Probes. ATOMIC inference di-
mensions are either assigned to “PersonX” (most
often the agent of the event, unless otherwise spec-
ified) or “others” (who are often influenced by the
effects of PersonX’s actions and may not be directly

referred to in the event, see original ATOMIC pa-
per for more details). For Agent-Patient probes, we
state the event and follow it with “Who [relation]
[inference]”? Using our previous example, we have
the following:

PersonX puts out a fire. Who wants to receive
recognition?

Where our candidate answers are: [PersonX, oth-
ers].

Concept Probes. For event concept prediction,
we first state the inference and then ask “What
happened?” We then create event candidates with
a ground truth salient concept (determined in the
same way as the MLM salient concepts described
in the next section) and an antonym concept. For
example:

PersonX wants to receive recognition. What
happened?

Where our candidate answers would be: [PersonX
puts out a fire, PersonX puts out a water].

For inference concept prediction, we state the
event and follow it with “What happens next?”.
We then create inference candidates with a ground
truth salient concept and an antonym concept. For
example:

PersonX puts out a fire. What happens next?

Where our candidate answers would be: [PersonX
wants to receive recognition, PersonX wants to give
recognition].

A.2.2 MLM
Relational Probes. For inference dimensions
relating to PersonX, we map the inference di-
mensions xWant, xNeed, xIntent, xReact,
xEffect, xAttr onto the verbs wants, needs, in-
tends, feels, effect, and is. For example, given the
event:

PersonX puts out a fire.

We have the following inference in the xWant
dimension: to receive recognition. We map this
onto text for the following probe:

PersonX puts out a fire. PersonX [MASK] to
receive recognition.

The correct prediction for [MASK] is wants. So
for the probe xWant vs xNeed, our candidate
answers for predicting the mask would be [wants,
needs].
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BERT-FT RoBERTa-FT

Type majority max WS max WS

Relation Probes
xWant vs xEffect 56 95.25 93.56 95.45 93.95
xWant vs xReact 52 99.10 98.70 99.21 98.32
xWant vs xIntent 57 75.30 66.94 70.11 59.02
xWant vs xNeed 57 82.17 72.48 86.70 70.66
xWant vs xAttr 52 99.19 99.11 99.22 98.81
xEffect vs xReact 54 98.17 96.73 98.18 93.32
xEffect vs xIntent 51 95.89 93.93 96.30 93.50
xEffect vs xNeed 51 95.22 93.48 95.64 93.86
xEffect vs xAttr 58 98.44 97.58 98.58 97.57
xReact vs xIntent 55 97.96 97.45 97.93 93.76
xReact vs xNeed 55 99.27 98.79 99.41 98.60
xReact vs xAttr 55 80.54 76.48 79.82 75.65
xIntent vs xNeed 50 87.81 77.81 90.00 72.19
xIntent vs xAttr 59 98.42 98.08 98.51 97.78
xNeed vs xAttr 59 99.14 98.97 99.16 98.54
oWant vs oEffect 61 93.90 91.21 93.98 90.78
oWant vs oReact 52 99.10 98.49 99.08 98.81
oEffect vs oReact 60 97.29 96.26 97.72 96.55

Agent-Patient Probes
xWant vs oWant 70 84.46 76.62 83.70 72.45
xEffect vs oEffect 75 84.99 77.58 83.45 76.67
xReact vs oReact 70 78.77 72.49 70.88 70.11

Concept Probes
inference - 94.99 91.82 95.26 87.06
event - 98.47 91.82 97.41 91.64

Table 10: Majority label and fine-tuning results for MLM probes.

For inference dimensions relating to Others, we
map the inference dimensions oWant, oReact,
and oEffect to the same verbs as before: wants,
feels, and effect respectively. We set up probes in
the same way as above.

Agent-Patient Probes. We create probes to eval-
uate whether a model can determine whether an
inference dimension is assigned to PersonX or oth-
ers. For example, consider the following probe:

PersonX puts out a fire. [MASK] wants to receive
recognition.

In this example, the correct prediction is Per-
sonX. However, in the below probe, the correct
prediction is others.

PersonX puts out a fire. [MASK] want to thank
PersonX.

Both of these probes use the following answer
candidates: [PersonX, others]. We also remove
plurals to ensure that the model does not make
predictions using hints from grammar.

Concept Probes. We investigate two kinds of
concepts in our probe: event concepts and infer-
ence concepts. In event concept probe construction,

we find the most salient concept in the event via
POS tagging. We then replace this concept with
[MASK] and set candidate answers as the ground
truth answer and an antonym, as found via Word-
Net (Miller, 1995). For example, given the event
and inference:

PersonX discovers the answer. PersonX feels
accomplished.

We identify discovers as the most salient concept
in the event, and use the lemma from WordNet: dis-
covery. We then use this to find a viable antonym:
lose. Finally, we have the probe:

PersonX [MASK] the answer. PersonX feels
accomplished.

And the candidates: [discovery, lose].
We lemmatize the answers to allow for fair pre-

diction between the truth concept and the antonym
(which often comes lemmatized from Wordnet).

Similarly, we construct inference concept probes
by predicting salient concepts in the inference di-
mension instead of the event.

A.2.3 Training Setup
We create a training and a development set for each
of our probes using the ATOMIC train and dev set.
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We show the sizes of our probe dev sets in Table 9.
The sizes are directly derived from ATOMIC dev
sizes. We train each model using 1 GeForce GTX
1080 Ti GPU.

A.3 Commonsense MLM Probes: Fine-tuned
A.3.1 Setup
We evaluate our MLM probes in a fine-tuned set-
ting. We train on each probe’s respective training
set and evaluate the max and WS as in Talmor
et al. (2019a), which defines (1) max as the maxi-
mal accuracy on the learning curve and (2) WS as
the weighted average of accuracies on the learning
curve, where higher weights are assigned to earlier
points on the curve. This is to examine how fast the
model learns given its encoding before fine-tuning.

A.3.2 Results
Table 10 compares the performance of BERT and
RoBERTa for fine-tuned results.
Fine-tuning Results: After fine-tuning on probe
training sets, both models do not fully solve the fol-
lowing categories: xWant vs xIntent, xWant
vs xNeed, xReact vs xAttr, and xIntent
vs xNeed. This demonstrates that these com-
monsense knowledge categories are difficult to
learn even with fine-tuning. Additionally, BERT
does learn faster than RoBERTa for the following
Subject Probes: xWant vs xIntent, xNeed vs
xIntent, and xReact vs xIntent. Overall,
this illustrates that BERT and RoBERTa do not cap-
ture much ATOMIC commonsense in a zero-shot
setting, and that many of these relations are difficult
to learn even with fine-tuning, including nuanced
relations like xWant vs xIntent and xWant vs
xNeed. Agent-Patient relations seem difficult to
learn and do not achieve high final results. Simi-
larly, BERT and RoBERTa perform poorly on Con-
cept Probes in zero-shot setting, however seem to
learn these quickly with high final results. Overall,
it seems that both models perform comparably for
most probes.

A.4 Reproducibility
We train each KS model using 2 GeForce GTX
1080 Ti GPUs. Hyperparameter settings are used
from previously reported BERT results on each
task (Sap et al., 2019b; Bisk et al., 2020; Da and
Kasai, 2019).


