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Abstract

Many types of distributional word embeddings
(weakly) encode linguistic regularities as di-
rections (the difference between jump and
jumped will be in a similar direction to that
of walk and walked, and so on). Several at-
tempts have been made to explain this fact.
We respond to Allen and Hospedales’ recent
(ICML, 2019) theoretical explanation, which
claims that word2vec and GloVe will encode
linguistic regularities whenever a specific re-
lation of paraphrase holds between the four
words involved in the regularity. We demon-
strate that the explanation does not go through:
the paraphrase relations needed under this ex-
planation do not hold empirically.

1 Introduction

The study of linguistic regularities in distributional
word embeddings—that the difference vector calcu-
lated between the vectors jump and jumped shows
a similar direction to that of walk and walked, and
so on—has been both stimulating and controversial.
While a number of such regularities appear to hold,
across a number of different kinds of embeddings,
the standard 3COSADD analogy test used to mea-
sure the presence of these regularities has come
under fire for confounding analogical regularities
with unrelated properties of semantic embeddings.
It is thus important to note that several papers have
proposed theoretical explanations for why linguis-
tic regularities should hold in distributional word
embeddings. Particularly in light of the controver-
sies over linguistic regularities, it is important to
examine the soundness of these arguments.

Allen and Hospedales (2019) develop such an
explanation by linking the semantic definition of
an analogy to paraphrases. In the sense of Git-
tens et al. (2017), paraphrases are sets of words
which are semantically and distributionally closely

equivalent to another word or set of words—for ex-
ample, king may be paraphrased by {man, royal}.
Allen and Hospedales argue that the standard anal-
ogy criterion, that king - man + woman = queen, is
equivalent to a criterion whereby {king, woman}
paraphrases {man, queen}. With this in mind, it
becomes possible to rewrite the arithmetic analogy
criterion in terms of vectors encoding the pointwise
mutual information (PMI) between words and their
contexts, and to decompose the error in the anal-
ogy equality into several components, including
a paraphrase error term measuring the degree to
which the critical paraphrase holds. Making use of
an assumption that the word2vec embedding is a
linear transformation of the PMI matrix, they argue
that results in terms of PMI apply to word vectors.
Thus, under their explanation, a major part of suc-
cess on an analogy a− a∗ + b∗ = b is due to a, b∗

and a∗, b being close distributional paraphrases.

We first review the literature on the analogy test
itself, underlining known pitfalls which any expla-
nation of linguistic regularities must navigate. We
then show empirically that the relation between
the PMI matrix and word2vec embeddings is to
some degree linear, which may be enough to satisfy
the assumption of Allen and Hospedales (2019).
We further examine the proposed decomposition
into error terms. We demonstrate that, empirically,
these error terms tend to be undefined due to data
sparseness, undermining their explanatory force.
Most importantly, examining a number of analo-
gies which pass the standard test, we show that
the critical paraphrase error term is, contrary to the
proposed explanation, very large.1

1Code is available at www.github.com/bootphon/
paraphrases_do_not_explain_analogies.

www.github.com/bootphon/paraphrases_do_not_explain_analogies
www.github.com/bootphon/paraphrases_do_not_explain_analogies
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2 Related work

Early works proposing explanations of the analogi-
cal properties of word embeddings include Mikolov
et al. (2013b) and Pennington et al. (2014). A ge-
ometrical explanation is proposed by Arora et al.
(2016), but this explanation relies on very strong
preconditions, notably, that the word vectors be
distributed uniformly in space. Ethayarajh et al.
(2019) also propose an explanation, providing a
link between the PMI and the norm of word em-
beddings. However, as pointed out by Allen and
Hospedales (2019), this explanation, too, rests on
strong assumptions. Notably, the words involved in
the analogy are required to be coplanar, a property
that seems unlikely in light of the lack of paral-
lelism we discuss in the next section.

3 Issues with the test

Issues have arisen with the standard way of mea-
suring linguistic analogies. Levy and Goldberg
(2014a), Vylomova et al. (2016), Rogers et al.
(2017), and Fournier et al. (2020) all demonstrate
that the standard 3COSADD measure conflates sev-
eral very different properties of embeddings, simul-
taneously measuring not only the directional regu-
larities suggested by typical illustrations of vectors
in a parallelogram, but also the similarity of indi-
vidual matched pairs such as king, man, as well
as the global arrangement of vectors in semantic
fields, such as king, queen, prince, . . . versus man,
woman, child, . . . in distinct regions of the space.
These issues undermine the construct validity of
the standard analogy test. This conflation of proper-
ties explains certain pathological behaviours of the
test (Linzen, 2016; Rogers et al., 2017). In spite of
these issues, Fournier et al. (2020) demonstrate, us-
ing alternative measures, that linguistic regularities
are nevertheless coded by directional similarities.
This parallelism is weak, with directions tending to
be closer, in the absolute, to being orthogonal than
to being parallel, but is present above chance level
(unmatched word pairs).

Thus, before turning to Allen and Hospedales
(2019), one of a number of theoretical attempts to
explain performance on the 3COSADD objective,
we underscore that such demonstrations run the
risk of explaining properties of the test which may
be of secondary interest, or, conversely, of placing
undue emphasis on the role of directional regulari-
ties, which have been shown to play only a small
role in success on 3COSADD.

4 Explaining analogies through
paraphrases

For a word wi and a word cj which can appear
in the context of wi, the pairwise mutual informa-
tion PMI(wi, cj) is defined as log p(wi,cj)

p(wi)p(cj)
. As

shown by Levy and Goldberg (2014b), skip-gram
word2vec with negative sampling factorizes the
PMI: PMI ≈W> ·C, with W and C the word and
context embedding matrices of a word2vec model.

For two pairs of words (a, a∗) and (b, b∗) from
the same semantic relation, the standard arithmetic
analogy test criterion is that a− a∗+ b∗ = b. Writ-
ing W = {a, b∗},W∗ = {a∗, b}, and PMIx the
PMI vector of x, Allen and Hospedales (2019)
show that is possible to rewrite the arithmetic anal-
ogy formula with PMI vectors, and to decompose
the error in the equality into five terms as follows:

PMIb∗ =PMIb + PMIa∗ − PMIa
+ ρW,W∗︸ ︷︷ ︸

Paraphrase error

+ σW − σW∗︸ ︷︷ ︸
Conditional dependence error

+ (τW − τW∗)1︸ ︷︷ ︸
Mutual dependence error

(1)

The error terms are vectors of length |V| (vocab-
ulary size), with each element j defined as:

ρW,W∗ = log
p(cj |W∗)
p(cj |W)

σW = log
p(W|cj)∏
W p(wi|cj)

τW = log
p(W)∏
W p(wi)

(2)

The authors claim that these terms can be em-
bedded linearly into a word2vec embedding space
by multiplying them by the Moore-Penrose pseudo-
inverse C† of the context matrix C. Then with wx

the word2vec embedding of x, C† · PMIx ≈ wx.
Thus we get the final decomposition:

wb∗ =wb + wa∗ − wa+

C†
(
ρW,W∗ + σW − σW∗ − (τW − τW∗)1

)
(3)

The paraphrase error term is claimed to be small
for successful analogies. Elaborating on the no-
tation,W is taken to paraphraseW∗ if, wherever
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all w ∈ W appear together, we observe the same
distribution of surrounding words as forW∗. The
paraphrase error assesses the similarity of the dis-
tributions of words in the context ofW (all words
inW appearing together) versusW∗.

5 Linearity of the link between PMI and
word2vec

Though it is true that there is a relation between
the word2vec matrices W> ·C and the PMI matrix,
in practice the link is more complicated than sim-
ple linear matrix factorization, due in part to the
training tricks described in Mikolov et al. (2013a).
The result of Allen and Hospedales (2019) requires
that the embedding from PMI vectors to word2vec
embeddings be “linear enough” for C†· PMI to
approximate W .

To assess this, we use the text8 corpus 2 both
to train word2vec embeddings 3 and to estimate a
PMI matrix. We replace infinite values in the PMI
matrix by 0. In Figure 1a, we show the distribution
of the Pearson correlation coefficient (assessing the
presence of a linear relation) between the word2vec
embedding and the corresponding row of C†· PMI
for the top ten thousand words in the corpus. As
can be seen from the figure, the correlation tends to
be between 0.5 and 0.8. For instance in Figure 1b,
the word2vec embedding for king is plotted against
the row of C†· PMI corresponding to king.

While the relation is not perfectly linear—many
words have a correlation of around 0.55, far lower
than that of king—the empirical relations shown
here leave open the possibility that it may indeed be
“sufficiently linear” to be taken for granted. How-
ever, while linearity is necessary for the result of
Allen and Hospedales (2019) to go through, it is
not sufficient. In the next section, we assess the
critical question of whether the paraphrase error
is small enough to serve as an explanation for the
success of linguistic analogies.

6 Empirical analysis of the error terms

We now seek to examine the proposed explana-
tion by calculating the proposed error terms em-
pirically. However, in practice, many of the terms

2A text dataset composed of 100 million characters from
Wikipedia: (Mahoney, 2006).

3Skip-gram architecture with negative sampling (1 word),
negative sampling exponent equal to 1, no undersampling of
common words, and a high dimension size of 500. These
parameters allow us to be as close as possible to a direct
factorization of the PMI matrix.

Figure 1a: Histogram of the Pearson correlations between
true and approximated word2vec embeddings for the top ten
thousand words in the text8 corpus. The mean value is 0.643
and the variance is 0.014.

Figure 1b: Plot of the values of the word2vec embedding for
king, versus coefficients for the row of C†· PMI corresponding
to king, for word2vec matrices trained on the same corpus
(text8). The Pearson correlation is one of the best possible at
0.825.

are undefined, since they rely on cooccurrences
unattested in practical corpora. The most extreme
situation occurs when the two words of a para-
phrase W = {w1, w2} are never present in the
same context window in the corpus. We found that
only 16% of the paraphrase sets associated with
the BATS analogy set (Gladkova et al., 2016)—for
example, king, woman—were present together in
the text8 corpus in a context window of length five.
We refer to such paraphrase sets as “well-defined”
with respect to the corpus. The problem of zero
co-occurrence counts was anticipated by Allen and
Hospedales (2019), who propose to restrict their
analysis to the case where the context window is
sufficiently large that all relevant terms are well de-
fined. We stress that our trained word2vec vectors
are also trained with a context window of five, and
yield expected levels of performance on the BATS
analogy test, despite having access to little train-
ing data on which to model co-occurrences such as
king, woman, queen, man, and so on.

At a minimum, if the proposed explanation holds,
the cases for which the error terms are empirically
well-defined should show signs of the paraphrase
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Category I01 I02 I05 I06 I07 I08 I09 I10 D02 D03 D05 D08 D10 E01 E02
Paraphrase error norm 177 153 111 127 126 124 138 97 102 122 130 110 107 124 176
Dependence errors sum norm 1006 938 867 903 957 883 952 908 856 893 514 585 699 749 848
All errors sum norm 1032 957 878 917 970 897 966 916 864 905 539 602 710 765 875
Category E03 E04 E05 E08 E09 E10 L02 L03 L04 L05 L06 L07 L08 L09 L10
Paraphrase error norm 162 176 155 229 179 190 197 189 209 206 133 169 185 175 432
Dependence errors sum norm 866 797 519 739 910 833 642 982 907 1103 921 995 1044 1017 1302
All errors sum norm 889 822 553 778 933 865 683 1007 939 1131 937 1016 1066 1040 1416

Table 1: L2 norms of the error terms in 1, following our implementation.

Category I01 I02 I05 I06 I07 I08 I09 I10 D02 D03 D05 D08 D10 E01 E02
Average rank 7762K 7589K 7759K 8744K 8160K 6454K 7028K 11889K 31952K 19558K 7857K 1506K 2556K 4394K 9507K
Median rank 1630K 2195K 3055K 3239K 2530K 4090K 3004K 4535K 6754K 3564K 3260K 1506K 2556K 2117K 1622K

Category E03 E04 E05 E08 E09 E10 L02 L03 L04 L05 L06 L07 L08 L09 L10
Average rank 1305K 5611K 9192K 727K 8421K 11946K 52183K 1857K 12687K 6747K 2475K 7727K 4502K 4679K 16871K
Median rank 695K 1703K 1426K 854K 1908K 169K 52182K 1261K 2460K 1343K 2255K 2136K 1549K 1 739K 785K

Table 2: For an analogy equivalent to two paraphrases W and W∗, the rank of W∗ in the list of the closest
paraphrases to W with respect to the L2 norm of the paraphrase error vector. 7762K means a rank of 7762000,
rounded to the nearest thousand.

error being relatively small. We now detail how
we implemented the error terms in cases for which
they were well-defined. We count co-occurrences
N(wi, wj , wk) in text8 for all triplets of words
wi, wj , wk, withwk at the center of the context win-
dow, and W = {wi, wj} any paraphrase, both oc-
curring anywhere within a context window of width
five. We restrict analysis to the ten thousand most
frequent word types wi and wj , yielding 108 possi-
ble paraphrases.4 We use the relative frequencies as
estimators of p(wk|{wi, wj}) and p({wi, wj}|wk),
and marginalize to obtain p(wi|wk), p({wi, wj})
and p(wk). The error terms follow. Since this
can still lead to ill-defined elements, we replace
log(+∞) and log(0) by +/ − log(ε), with ε =
10−15 (within reason, the value of ε is immaterial).
We also replace log(0/0) with 0.

Table 1 shows the mean and median values of
the L2 norms of the paraphrase error vectors across
several categories of the BATS dataset. We com-
pare them with the sum of the four dependence
error terms (the dependence error reflects statistical
dependencies withinW andW∗ irrelevant to the
analogy), as well as the sum of all five error terms
(equal to the difference between the PMI ofW and
W∗).The paraphrase error is indeed smaller than
the other error terms. However, as we now show,
the paraphrase error is not small enough to con-
tribute substantially to the success of analogies.5

4wk is allowed to vary over all of the types included in the
training for word2vec, of which there are 71290. Thus, for
each paraphrase, the error vectors have 71290 elements, one
for each vocabulary word.

5We note also that the error values seem relatively con-
sistent between categories, while success on the analogy test
varies differ greatly between categories.

Take the norm of the paraphrase error vector
ρ as a measure of the divergence in the PMI be-
tween two paraphrases. For an analogy with as-
sociated paraphrases W and W∗, we assess how
many paraphrases are closer to W than to W∗
by calculating the rank of the norm of ρW,W∗

among all ρW,X , where X spans over all pairs of
words constructible from the top ten thousand most
frequent words in the corpus. To do so, we de-
fine a Paraphrase Conditional Information matrix
(PCI). For Wij = {wi, wj} and wk, we define
PCI(lij , k), the value at column lij and row k to
be log(p(Wij |wk)), where with lij is a unique in-
dex associate with tuple (i, j). We compute only
the positive PCI, to obtain a sparse matrix. The dif-
ference between two PCI columns is a paraphrase
error vector, and their Euclidean distance is the
norm of the paraphrase error.

We now compute, for each analogy, the distance
between the PCI column ofW and every other col-
umn (paraphrase) of the PCI matrix. We calculate
the rank of the true analogy pairW∗. Given that
the analogy test generally succeeds in picking out b
as being the most similar to a− a∗ + b∗ out of the
entire vocabulary (modulo Linzen 2016), we would
expect that, for successful analogies, the paraphrase
error for the true analogy would be among the high-
est, if small paraphrase error were the explanation
for success. Table 2 displays the mean of this rank
within each BATS category. The rank is extremely
low (in the millions), making the paraphrase error
in true analogies far too high to be the explanation
for their success.6

6Limiting the search to the paraphrases composed by at
least one of the words of W∗ still results in a very low rank
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7 Conclusion

Recent work has shown that, in spite of the stan-
dard analogy test’s confound with simple vector
similarity, distributional word vectors genuinely do
encode linguistic regularities as directional regular-
ities above and beyond vector similarity (Fournier
et al., 2020), further research is warranted into the
mechanisms by which distributional word embed-
dings come to show these regularities. However,
the analysis of analogies as paraphrases does not
hold up as an explanation of performance on the
analogy test—nor would an explanation of perfor-
mance on the 3COSADD analogy test be a satisfy-
ing result, since the test is not a useful measure to
begin with.
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